33,575 research outputs found

    Magnetic ordering in GaAlAs:Mn double well structure

    Full text link
    The magnetic order in the diluted magnetic semiconductor barrier of double AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo simulations. A confinement adapted RKKY mechanism is implemented for indirect exchange between Mn ions mediated by holes. It is shown that, depending on the barrier width and the hole concentration a ferromagnetic or a spin-glass order can be established.Comment: 3 figure

    On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer

    Full text link
    A self-consistent calculation of the density of states and the spectral density function is performed in a two-dimensional spin-polarized hole system based on a multiple-scattering approximation. Using parameters corresponding to GaMnAs thin layers, a wide range of Mn concentrations and hole densities have been explored to understand the nature, localized or extended, of the spin-polarized holes at the Fermi level for several values of the average magnetization of the Mn ystem. We show that, for a certain interval of Mn and hole densities, an increase on the magnetic order of the Mn ions come together with a change of the nature of the states at the Fermi level. This fact provides a delocalization of spin-polarized extended states anti-aligned to the average Mn magnetization, and a higher spin-polarization of the hole gas. These results are consistent with the occurrence of ferromagnetism with relatively high transition temperatures observed in some thin film samples and multilayered structures of this material.Comment: 3 page

    Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures

    Full text link
    The occurrence of inhomogeneous spin-density distribution in multilayered ferromagnetic diluted magnetic semiconductor nanostructures leads to strong dependence of the spin-polarized transport properties on these systems. The spin-dependent mobility, conductivity and resistivity in (Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a function of temperature, scaled by the average magnetization of the diluted magnetic semiconductor layers. An increase of the resistivity near the transition temperature is obtained. We observed that the spin-polarized transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure

    A Bayesian estimate of the CMB-large-scale structure cross-correlation

    Full text link
    Evidences for late-time acceleration of the Universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB) and large-scale structure (LSS). In this work, we focus on the integrated Sachs--Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB--LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and a galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey (2MASS) galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.Comment: 21 pages, 15 figures, 4 tables. We extended the previous analyses including WMAP9 Q, V and W channels, besides the ILC map. Updated to match accepted ApJ versio

    From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems

    Full text link
    Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are capable to solve or at least to alleviate some cosmological puzzles, among them: (i) the singularity, (ii) horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the cosmological constant problem become less severe provided that the characteristic scales of the two limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new references adde

    Anisotropic superconducting properties of aligned MgB2 crystallites

    Full text link
    Samples of aligned MgB2 crystallites have been prepared, allowing for the first time the direct identification of an upper critical field anisotropy Hc2^{ab}/Hc2^{c}= xi_{ab}/xi_{c} ~ 1.73; with xi_{o,ab} ~ 70 A, xi_{o,c} ~ 40 A, and a mass anisotropy ratio m_{ab}/m_{c} ~ 0.3. A ferromagnetic background signal was identified, possibly related to the raw materials purity.Comment: 4 pages, 4 figures; Revised version to appear in Phys. Rev. Let
    corecore