182,553 research outputs found

    New analytic results for electroweak baryon number violation

    Get PDF
    Real-time anomalous fermion number violation has been investigated for massless chiral fermions in spherically symmetric SU(2) Yang-Mills gauge field backgrounds which can be weakly dissipative or even nondissipative. Restricting consideration to spherically symmetric fermion fields, a relation has been found between the spectral flow of the Dirac Hamiltonian and two characteristics of the background gauge field. This new result may be relevant to electroweak baryon number violation in the early universe.Comment: 7 pages with jhep3.cls, based on a talk at the International Europhysics Conference on High Energy Physics, Budapest, 200

    Fully automatic telemetry data processor

    Get PDF
    Satellite Telemetry Automatic Reduction System /STARS 2/, a fully automatic computer-controlled telemetry data processor, maximizes data recovery, reduces turnaround time, increases flexibility, and improves operational efficiency. The system incorporates a CDC 3200 computer as its central element

    Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    Get PDF
    This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 micrometers thick and 500 micrometers wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 micrometers thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 2x2 cm2 fuel cell stack including a 1.5x1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3mW/cm2 and current density is 100 mA/cm2 when using 8 vol. % methanol as fuel and operated at temperature 30 degrees C. The output power result is similar to other reports by using conventional graphite bipolar plates. However, conventional graphite bipolar plates have certain difficulty to be machined to such micro-fluidic channels. The proposed micro-electroforming metallic bipolar plates are feasible to miniaturize DMFC stacks for further portable 3C applications.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Image data compression application to imaging spectrometers

    Get PDF
    The potential of image data compression techniques to satisfy the anticipated requirements of imaging spectrometer missions is discussed. Noiseless coding, rate controlled compression, cluster compression, and error protection are addressed

    Solar pumped laser

    Get PDF
    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed

    Thunderstorm Persistence at Cape Kennedy, Florida

    Get PDF
    Probabilities of thunderstorm persistence at Cape Kennedy, Florid

    Quantum-mechanical wavepacket transport in quantum cascade laser structures

    Full text link
    We present a viewpoint of the transport process in quantum cascade laser structures in which spatial transport of charge through the structure is a property of coherent quantum-mechanical wavefunctions. In contrast, scattering processes redistribute particles in energy and momentum but do not directly cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review

    Particle-in-cell and weak turbulence simulations of plasma emission

    Full text link
    The plasma emission process, which is the mechanism for solar type II and type III radio bursts phenomena, is studied by means of particle-in-cell and weak turbulence simulation methods. By plasma emission, it is meant as a loose description of a series of processes, starting from the solar flare associated electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent partial conversion of beam energy into the radiation energy by nonlinear processes. Particle-in-cell (PIC) simulation is rigorous but the method is computationally intense, and it is difficult to diagnose the results. Numerical solution of equations of weak turbulence (WT) theory, termed WT simulation, on the other hand, is efficient and naturally lends itself to diagnostics since various terms in the equation can be turned on or off. Nevertheless, WT theory is based upon a number of assumptions. It is, therefore, desirable to compare the two methods, which is carried out for the first time in the present paper with numerical solutions of the complete set of equations of the WT theory and with two-dimensional electromagnetic PIC simulation. Upon making quantitative comparisons it is found that WT theory is largely valid, although some discrepancies are also found. The present study also indicates that it requires large computational resources in order to accurately simulate the radiation emission processes, especially for low electron beam speeds. Findings from the present paper thus imply that both methods may be useful for the study of solar radio emissions as they are complementary.Comment: 21 pages, 9 figure

    Relativistic Coulomb Green's function in dd-dimensions

    Full text link
    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential Zα/r-Z\alpha/r are derived for the arbitrary space dimensionality dd. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.Comment: 9 page
    corecore