19 research outputs found

    Real-Time Locating System to study the persistence of sociality in large-mammal group dynamics

    Get PDF
    Je n'ai pas encore les pages des proceedingsReal-Time Locating System to study the persistence of sociality in large-mammal group dynamics. European Conference on Precisions Livestock Farming (ECPLF

    Dynamic communicability predicts infectiousness

    Get PDF
    Using real, time-dependent social interaction data, we look at correlations between some recently proposed dynamic centrality measures and summaries from large-scale epidemic simulations. The evolving network arises from email exchanges. The centrality measures, which are relatively inexpensive to compute, assign rankings to individual nodes based on their ability to broadcast information over the dynamic topology. We compare these with node rankings based on infectiousness that arise when a full stochastic SI simulation is performed over the dynamic network. More precisely, we look at the proportion of the network that a node is able to infect over a fixed time period, and the length of time that it takes for a node to infect half the network.We find that the dynamic centrality measures are an excellent, and inexpensive, proxy for the full simulation-based measures

    Random Walks on Stochastic Temporal Networks

    Full text link
    In the study of dynamical processes on networks, there has been intense focus on network structure -- i.e., the arrangement of edges and their associated weights -- but the effects of the temporal patterns of edges remains poorly understood. In this chapter, we develop a mathematical framework for random walks on temporal networks using an approach that provides a compromise between abstract but unrealistic models and data-driven but non-mathematical approaches. To do this, we introduce a stochastic model for temporal networks in which we summarize the temporal and structural organization of a system using a matrix of waiting-time distributions. We show that random walks on stochastic temporal networks can be described exactly by an integro-differential master equation and derive an analytical expression for its asymptotic steady state. We also discuss how our work might be useful to help build centrality measures for temporal networks.Comment: Chapter in Temporal Networks (Petter Holme and Jari Saramaki editors). Springer. Berlin, Heidelberg 2013. The book chapter contains minor corrections and modifications. This chapter is based on arXiv:1112.3324, which contains additional calculations and numerical simulation

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    Burstiness and fractional diffusion on complex networks

    No full text
    Many dynamical processes on real world networks display complex temporal patterns as, for instance, a fat-tailed distribution of inter-events times, leading to heterogeneous waiting times between events. In this work, we focus on distributions whose average inter-event time diverges, and study its impact on the dynamics of random walkers on networks. The process can naturally be described, in the long time limit, in terms of Riemann-Liouville fractional derivatives. We show that all the dynamical modes possess, in the asymptotic regime, the same power law relaxation, which implies that the dynamics does not exhibit time-scale separation between modes, and that no mode can be neglected versus another one, even for long times. Our results are then confirmed by numerical simulations.Comment: 7 pages, 4 figure
    corecore