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Dynamic Communicability Predicts
Infectiousness

Alexander V. Mantzaris and Desmond J. Higham

Abstract Using real, time-dependent social interaction data, we look at correla-
tions between some recently proposed dynamic centrality measures and summaries
from large-scale epidemic simulations. The evolving network arises from email ex-
changes. The centrality measures, which are relatively inexpensive to compute, as-
sign rankings to individual nodes based on their ability to broadcast information over
the dynamic topology. We compare these with node rankings based on infectious-
ness that arise when a full stochastic SI simulation is performed over the dynamic
network. More precisely, we look at the proportion of the network that a node is able
to infect over a fixed time period, and the length of time that it takes for a node to in-
fect half the network. We find that the dynamic centrality measures are an excellent,
and inexpensive, proxy for the full simulation-based measures.

1 Background and Motivation

In many social interactions, the timing of the connections is vital. Suppose A meets
B today and B meets C tomorrow. This makes it possible for a message, or a disease,
to pass from A to B, but not from C to A. Further, the more active B happens to be
tomorrow, the more potential there is for today’s A-B link to have a downstream ef-
fect. Several authors have pointed out the need to account for topological dynamics
when considering disease propagation. The work in [15] considers the stages that
sexually transmitted diseases (STDs) pass through when infecting subpopulations of
a network, and shows that the timing in the connectivity between individuals plays
a crucial role. In [10] a disease is simulated with an SI model (as we use here) and
an SIR alternative, over contact networks relating to high-end prostitution. Both a
static and a temporal view of the interaction data is used, and the results show that
temporal effects play a key role. Epidemic simulations over temporal connectivity
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data are also used in [7] to explore vaccination strategies. Similarly, the spread of
computer malware over temporal networks is considered in [12, 11], and strategies
developed for the immunisation of key nodes. The SI framework is used in [2] to
characterise the global structure of a temporal network.

From a network science perspective, it is natural to seek generic centrality mea-
sures that rank individual nodes according to their “importance.” In the case of
static network topology, there is a wealth of such measures, most of which can
be traced back to the social network analysis community [4]. Devising centrality
measures that apply to time-dependent networks is a more recent pursuit. The work
of [14] used a shortest-path-counting approach to measure the closeness/betweeness
of nodes in a time varying graph. The alternative walk-counting approach in [5] was
based on a direct generalization of Katz centrality [6] to the case of time-dependent
networks. A key message from [13] and [8] is that centrality measures based on a
static, aggregate summary of the network will not adequately reflect the hierarchy
of importance.

The question that we address in this work is

given a time-dependent network, can suitable centrality measures provide useful informa-
tion about the spread of epidemics?

The question is motivated by the fact that centrality measures are typically much
cheaper to compute than large-scale stochastic simulations. For this reason, we focus
on the dynamic communicability approach in [5] where we can deal with all nodes
simultaneously by solving a sparse linear system at each time step (that is, finding x
in a matrix-vector system of the form Ax = b, where A has the same sparsity as the
current network adjacency matrix).

In the next section we give details of the computational tasks and the data set
used. Sections 3 and 4 describe the data and results, and we finish with a discussion
in Section 5.

2 Methodology

We consider a fixed set of N nodes whose connections are recorded at an equally
spaced set of time points t0 < t1 < · · · < tM . The network at each time point is
undirected and unweighted, with no self loops. So, at time tk, we can record the
state of the network in the adjacency matrix A[k] ∈ RN×N . Here

(
A[k]

)
i j
= 1 if node

i has a link to node j at time tk and
(

A[k]
)

i j
= 0 otherwise.

The epidemic simulations are peformed in a stochastic SI framework. At each
time point a node is either susceptible (S) or infectious (I). Once made infectious,
a node cannot return to the susceptible state. We begin, at t0, by infecting a single
node. Generally, to determine the status of the nodes at time tk+1, we use the fol-
lowing rule: for each node that was in the infectious state at time tk, we consider
all the time tk+1 neighbours pointed to by this node. If any such neighbour is in the
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susceptible state, then it is moved into the infectious state with independent proba-
bility β . More loosely, an infectious node has a fixed probability β of transmitting
the infection to each of its current contacts.

We measure the virulence of a node in two separate ways. After starting the
infection at this node, we compute

(a) the proportion of the network infected at the final time, tM ,
(b) the number of time points required to infect at least half of the network.

To understand the centrality measures from [5], we need to introduce the concept
of a dynamic walk of length w from node i to node j: this is simply any traversal
from i to j along w edges that respects the arrow of time (i.e. having used an edge
at time tr, the next edge that we use must exist at time tr or later). The ability of
node i to broadcast information to node j may then be measured as the total number
of dynamic walks from i to j, where a walk of length w is downweighted by the
factor αw. Here α ∈ (0,1) is a fixed parameter that reduces the influence of longer
walks. In the case of a single time point, this measure reduces to the classical Katz
centrality [6], which may be computed through the matrix resolvent, (I−αA)−1.
Generalizing to multiple time points in this way, we arrive at the expression

Q =
(

I−αA[0]
)−1(

I−αA[1]
)−1

. . .
(

I−αA[M]
)−1

, (1)

where Qi j measures how well node i can broadcast information to node j. To obtain
a single coefficient for node i we sum over all nodes in the network to obtain the
broadcast centrality. In practice, since we plan to use this measure to rank the nodes,
it is reasonable to normalize, which avoids numerical underflow/overflow, leading
to the iteration

Q̂[k] =
Q̂[k−1]

(
I−αA[k]

)−1∣∣∣∣∣∣Q̂[k−1]
(
I−αA[k]

)−1
∣∣∣∣∣∣ , (2)

for k = 0, . . . ,M, with Q̂[−1] = I and ‖ · ‖ representing the Euclidean matrix norm.
The broadcast centrality for node i is then given by ∑

N
j=1

(
Q̂[k]

)
i j

.

Just as in the original Katz version, this centrality measure involves a parameter,
α . In order for the matrix inverses to exist, we require α to be less than

α
? := min

0≤k≤M

(
ρ

(
A[k]

))−1
,

where ρ(·) denotes the spectral radius. Tests in [5] indicated that the results are not
sensitive to the choice of α , and in all tests here we use α = 0.9α?.
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3 Data

We perform the tests on real social interaction data that records email exchanges
between former Enron employees [3, 9]. There are N = 151 individuals, and we
summarize activity into daily time slices: an undirected edge between i and j in-
dicates that at least one email (including cc and bcc) passed between the two
individuals. Figure 1 shows a plot of the static aggregate degree each day for all the
nodes. Because the start date is arbitrary, we smooth out its influence by repeating
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Fig. 1 The static aggregate degree each day for all of the nodes (Enron employees).

computations over a sliding window that covers half the overall period; that is, 568
of the 1036 consecutive days. So the first window runs from day 1 to day 568, the
second window runs from day 2 to day 569, and so on. In this manner, we create 568
distinct evolving networks, each involving M + 1 = 568 consecutive days. Results
are averaged over all windows.

For each of the 568 windows, we compute the broadcast centralities and, with
each node in turn as a starting point for infection, perform one SI simulation. In
practice we found that computing the broadcast centralities was typically an order
of magnitude faster than computing N = 151 paths of the SI model, one from each
starting state.

For a small number of windows/starting node combinations, the infection level
remained below 50% at the final time point. For simplicity, these runs were omitted
from the averaging process when we measured the average time to infect 50% of
the population. For this reason, we regard the proportion of the network infected at
the final time as the more robust of the two SI-based measures.
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Table 1 Symbols for company position

President hexagram
CEO pentagram

Executive pentagram
Legal diamond

VicePresident hexagram
DirectorofTrading square
ManagingDirector upward triangle

Manager right facing triangle
Director left facing triangle

InHouseLawyer diamond
Trader square

Employee plus
Secretary circle
all others small dot

Table 2 Correlation coefficients relating to Figures 3, 7 and 11 for broadcast versus proportion of
the network infected.

β Pearson Kendall Tau Spearman
0.2 0.85 0.70 0.88
0.5 0.88 0.82 0.94
1.0 0.94 0.81 0.94

The Enron data set also provides the positions of most employees within the com-
pany. For completeness, we display this information in our figures. Table 1 indicates
the symbols that we use. However, in the results that follow there does not appear
to be any clear pattern based on these semantic labels.

4 Results

The SI simulations were repeated for three different choices of the infection proba-
bility, β . In each case, we provide two dimensional scatter plots (one point for each
node) that compare, in a pair-wise fashion, (a) the proportion of the network infected
at the final time point, (b) the time taken to infect 50% of the network, and (c) the
natural logarithm of the broadcast centrality. The corresponding Pearson, Kendall
Tau and Spearman correlation coeficients for the (a)-(c) pair are reported in Table 2.

We also scatter plot the aggregate degree—that is, the total number of edges
involving the node over all time points—against the proportion of the network in-
fected.

We emphasize that the broadcast centrality and aggregate degree are independent
of the parameter β in the SI model.
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4.1 Infection rate β = 0.2 results

For β = 0.2, Figure 2 focuses on the SI model and compares the infected proportion
against the time to infect 50%. These are seen to have a strong negative correla-
tion, and hence, in terms of ranking the nodes by infectiousness, they are broadly
comparable.
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Fig. 2 Infected proportion versus time for 50% of the network to be infected for β = 0.2.

The broadcast centrality is compared with the infected proportion in Figure 3 and
with the time to infect 50% in Figure 4. In both cases, we see strong correlations.

In Figure 5 we show the aggregate degree against the infection level. Although
most of the very high degree nodes are typically strong infectors, the relationship
is far from linear and breaks down at the lower levels. We also emphasize that the
integer-valued nature of nodal degree makes it liable to produce more ties when
used to rank nodes.

4.2 Infection rate β = 0.5 results

We now repeat the experiments from subsection 4.1 with a stronger infection rate of
β = 0.5.

Figure 6 shows the infected proportion against the time to infect. We see that the
two measures are inverseley correlated more tightly than in the β = 0.2 case, shown
in Figure 2.
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Fig. 3 Broadcast centrality versus infected proportion for β = 0.2.
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Fig. 4 Broadcast centrality versus time to reach 50% network infection for β = 0.2.
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Fig. 5 Average degree versus infected percentage for β = 0.2.
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Fig. 6 The infected proportion against the time for 50% of the network to be infected for β = 0.5.
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Figures 7 and 8 compare the broadcast centrality with infected proportion and
time to infect 50%, respectively. The performance of the broadcast measure as a
proxy seems to improve slightly over the β = 0.2 case. This is confirmed in Table 2
in terms of the three correlation coefficients.
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Fig. 7 Broadcast centrality versus infected proportion for β = 0.5.
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Fig. 8 Broadcast centrality versus time to reach 50% network infection for β = 0.5.
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Figure 9 shows the aggregate degree against infected proportion and the effect
observed for β = 0.2 is now further exaggerated.
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Fig. 9 Average degree versus infected proportion for β = 0.5.

4.3 Infection rate β = 1.0 results

The final set of tests uses β = 1.0 in the SI model. In this case the disease transmis-
sion is no longer stochastic.

Following the format of the previous subsections, Figure 10 shows the infected
proportion against the time for 50% infection, and Figures 11 and 12 compare broad-
cast centrality with infected proportion and time to reach 50% network infection,
respectively. In this case, looking at the SI model in isolation, we see a build up of
virulent nodes in Figure 12 that have a similar ability to infect around 85-90% of the
network, but vary quite considerably in their time taken to infect the first 50%. The
picture is ‘spoilt’ by the faster infectors being unable to ‘finish off’ the final 10%
of nodes. To some extent this behaviour is also reflected in Figure 11, where some
of the very high broadcasters are underperforming in terms of their relative ability
to infect a very high proportion of the network. The results in Figure 12, where
broadcast is compared with time to infect 50% of the network, show a smoother re-
lationship. We conclude that in this high-infection-rate, sparse-connectivity regime,
the time to infect 50% is a more realistic measure of a node’s virulence than the
infected proportion after a fixed, long time horizon.
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Fig. 10 Infected percentage versus time for 50% of the network to be infected for β = 1.0.
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Fig. 11 Broadcast centrality versus infected proportion for β = 1.0.
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Fig. 12 Broadcast centrality versus time to reach 50% network infection for β = 1.0.

Finally, Figure 13 shows again that the aggregate degree is a poor predictor of
the infected network proportion.
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Fig. 13 Average degree versus infected proportion for β = 1.0.
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5 Discussion

We are concerned here with quantifying properties of a time-dependent interaction
network in terms of epidemic spread. Our results indicate that ranking nodes accord-
ing to their broadcast centrality from [5] can operate as an accurate, and relatively
inexpensive, proxy for more detailed rankings of their ability to spread infection
based on averaging over microscale simulations. In particular, the results were in-
sensitive to infection probability in the microscale model. By contrast, simply judg-
ing a node by its overall bandwidth does not provide a useful picture.

There are many avenues for extending this type of study. For example:

• Further investigation is needed to test whether improvements will arise from fine
tuning the Katz-style downweighting parameter α used in the broadcast central-
ity measure, as a function of the infection probability, β .

• Other types of interaction data could be used to generate the underlying dynamic
topology.

• The accompanying receive centrality measure from [5] can be tested as a proxy
for the vulnerability of a node to infection.

• More complex compartmental epidemic models could be investigated, including
SIS and SIR. In this case, our intuition is that the straightforward dynamic walk
counting approach of [5] will be less successful, and hence new classes of time-
respecting network centrality measures will be required.

• In addition to local node-based information, global summaries, such as an ap-
propriate, dynamic, version of the basic reproduction number, R0, could be com-
pared with network features. A study of this type has recently been performed
for the case of a static network in [1].
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