10,216 research outputs found

    Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium molecular dynamics simulations

    Full text link
    The thermal boundary resistance of Si/Ge interfaces as been determined using approach-to-equilibrium molecular dynamics simulations. Assuming a reciprocal linear dependence of the thermal boundary resistance, a length-independent bulk thermal boundary resistance could be extracted from the calculation resulting in a value of 3.76x10−9^{-9} m2^2 K/W for a sharp Si/Ge interface and thermal transport from Si to Ge. Introducing an interface with finite thickness of 0.5 nm consisting of a SiGe alloy, the bulk thermal resistance slightly decreases compared to the sharp Si/Ge interface. Further growth of the boundary leads to an increase in the bulk thermal boundary resistance. When the heat flow is inverted (Ge to Si), the thermal boundary resistance is found to be higher. From the differences in the thermal boundary resistance for different heat flow direction, the rectification factor of the Si/Ge has been determined and is found to significantly decrease when the sharp interface is moderated by introduction of a SiGe alloy in the boundary layer.Comment: 7 pages, 6 figure

    Challenging the paradigm of singularity excision in gravitational collapse

    Get PDF
    A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those regions of the computational domain where a physical singularity may develop. We here challenge this paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black holes without excision. We show that this choice, combined with suitable gauge conditions and the use of minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this allows for the calculation of the waveforms well beyond what previously possible, providing information on the black-hole ringing and setting a new mark on the present knowledge of the gravitational-wave emission from the stellar collapse to a rotating black hole.Comment: 4 pages, 4 figures, accepted for publication on Phys. Rev. Let

    Redox control of multidrug resistance and Its possible modulation by antioxidants

    Get PDF
    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed

    Enlightening the atomistic mechanisms driving self-diffusion of amorphous Si during annealing

    Get PDF
    We have analyzed the atomic rearrangements underlying self-diffusion in amorphous Si during annealing using tight-binding molecular dynamics simulations. Two types of amorphous samples with different structural features were used to analyze the influence of coordination defects. We have identified several types of atomic rearrangement mechanisms, and we have obtained an effective migration energy of around 1 eV. We found similar migration energies for both types of samples, but higher diffusivities in the one with a higher initial percentage of coordination defects.Comment: 9 pages, 4 figure
    • …
    corecore