176 research outputs found

    Inferring the in vivo looping properties of DNA

    Full text link
    The free energy of looping DNA by proteins and protein complexes determines to what extent distal DNA sites can affect each other. We inferred its in vivo value through a combined computational-experimental approach for different lengths of the loop and found that, in addition to the intrinsic periodicity of the DNA double helix, the free energy has an oscillatory component with about half the helical period. Moreover, the oscillations have such an amplitude that the effects of regulatory molecules become strongly dependent on their precise DNA positioning and yet easily tunable by their cooperative interactions. These unexpected results can confer to the physical properties of DNA a more prominent role at shaping the properties of gene regulation than previously thought.Comment: 20 pages, 4 figure

    Production and evaluation of chemical composition, tanin, in vitro protein digestibility and microbiological studies of fermented local variety of sorghum, fortified with cowpea and ground nut

    Get PDF
    *Corresponding author The fermented sorghum (yafi moro) based cereal/legume blend was produced from 70 parts of fermented local sorghum flour, 20 parts of dehulled cowpea and 10 parts of roasted ground paste (FSCG). The chemical composition, mineral elements, in vitro protein digestibility and microbiological was determined using standard methods. The result showed that the protein of the samples (FSCG), raw and fermented sorghum were 12.46%, 8.65 and 9.5% respectively. The Moisture content 4.0%, 3.6%, 3.8%; Ash content was 2.0%, 2.2% and 1.5% while Carbohydrate 70.1%, 74.3% and 68.54%. The calculated energy value is 351Kcal, 332.8Kcal and 353.2 Kcal respectively. A significant decreased (p≥0.05) in the level of phytate, mineral element levels with a concomitant increased in in vitro digestibility in both fermented and fermented fortified blend compared to the unprocessed samples. The microorganism isolated and characterized were lactic acid bacteria. It can thus be concluded that; processing methods such as fermentation and subsequent fortification of the fermented samples with legume has greatly enhanced its nutritional value as reported in this study

    Nucleosome-mediated cooperativity between transcription factors

    Get PDF
    Cooperative binding of transcription factors (TFs) to cis-regulatory regions (CRRs) is essential for precision of gene expression in development and other processes. The classical model of cooperativity requires direct interactions between TFs, thus constraining the arrangement of TFs sites in a CRR. On the contrary, genomic and functional studies demonstrate a great deal of flexibility in such arrangements with variable distances, numbers of sites, and identities of the involved TFs. Such flexibility is inconsistent with the cooperativity by direct interactions between TFs. Here we demonstrate that strong cooperativity among non-interacting TFs can be achieved by their competition with nucleosomes. We find that the mechanism of nucleosome-mediated cooperativity is mathematically identical to the Monod-Wyman-Changeux (MWC) model of cooperativity in hemoglobin. This surprising parallel provides deep insights, with parallels between heterotropic regulation of hemoglobin (e.g. Bohr effect) and roles of nucleosome-positioning sequences and chromatin modifications in gene regulation. Characterized mechanism is consistent with numerous experimental results, allows substantial flexibility in and modularity of CRRs, and provides a rationale for a broad range of genomic and evolutionary observations. Striking parallels between cooperativity in hemoglobin and in transcription regulation point at a new design principle that may be used in range of biological systems

    Designing sequential transcription logic: a simple genetic circuit for conditional memory

    Full text link
    The ability to learn and respond to recurrent events depends on the capacity to remember transient biological signals received in the past. Moreover, it may be desirable to remember or ignore these transient signals conditioned upon other signals that are active at specific points in time or in unique environments. Here, we propose a simple genetic circuit in bacteria that is capable of conditionally memorizing a signal in the form of a transcription factor concentration. The circuit behaves similarly to a "data latch" in an electronic circuit, i.e. it reads and stores an input signal only when conditioned to do so by a "read command". Our circuit is of the same size as the well-known genetic toggle switch (an unconditional latch) which consists of two mutually repressing genes, but is complemented with a "regulatory front end" involving protein heterodimerization as a simple way to implement conditional control. Deterministic and stochastic analysis of the circuit dynamics indicate that an experimental implementation is feasible based on well-characterized genes and proteins. It is not known, to which extent molecular networks are able to conditionally store information in natural contexts for bacteria. However, our results suggest that such sequential logic elements may be readily implemented by cells through the combination of existing protein-protein interactions and simple transcriptional regulation.Comment: 20 pages, 5 figures; supplementary material available upon request from the author

    Thermodynamic State Ensemble Models of cis-Regulation

    Get PDF
    A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1) the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2) the binding constants that describe the affinity of the protein–protein and protein–DNA interactions that occur in each state, and (3) whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    The Influence of Transcription Factor Competition on the Relationship between Occupancy and Affinity

    Get PDF
    Transcription factors (TFs) are proteins that bind to specific sites on the DNA and regulate gene activity. Identifying where TF molecules bind and how much time they spend on their target sites is key to understanding transcriptional regulation. It is usually assumed that the free energy of binding of a TF to the DNA (the affinity of the site) is highly correlated to the amount of time the TF remains bound (the occupancy of the site). However, knowing the binding energy is not sufficient to infer actual binding site occupancy. This mismatch between the occupancy predicted by the affinity and the observed occupancy may be caused by various factors, such as TF abundance, competition between TFs or the arrangement of the sites on the DNA. We investigated the relationship between the affinity of a TF for a set of binding sites and their occupancy. In particular, we considered the case of the transcription factor lac repressor (lacI) in E.coli, and performed stochastic simulations of the TF dynamics on the DNA for various combinations of lacI abundance and competing TFs that contribute to macromolecular crowding. We also investigated the relationship of site occupancy and the information content of position weight matrices (PWMs) used to represent binding sites. Our results showed that for medium and high affinity sites, TF competition does not play a significant role for genomic occupancy except in cases when the abundance of the TF is significantly increased, or when the PWM displays relatively low information content. Nevertheless, for medium and low affinity sites, an increase in TF abundance (for both cognate and non-cognate molecules) leads to an increase in occupancy at several sites. © 2013 Zabet et al

    Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Get PDF
    BACKGROUND: Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. RESULTS: We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. CONCLUSION: Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases
    • …
    corecore