43 research outputs found

    Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

    Get PDF
    Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale

    Rewetting offers rapid climate benefits for tropical and agricultural peatlands but not for forestry‐drained peatlands

    Get PDF
    Peat soils drained for agriculture and forestry are important sources of carbon dioxide and nitrous oxide. Rewetting effectively reduces these emissions. However, rewetting also increases methane emissions from the soil and, on forestry-drained peatlands, decreases the carbon storage of trees. To analyze the effect of peatland rewetting on the climate, we built radiative forcing scenarios for tropical peat soils, temperate and boreal agricultural peat soils, and temperate and boreal forestry-drained peat soils. The effect of tree and wood product carbon storage in boreal forestry-drained peatlands was also estimated as a case study for Finland. Rewetting of tropical peat soils resulted in immediate cooling. In temperate and boreal agricultural peat soils, the warming effect of methane emissions offsets a major part of the cooling for the first decades after rewetting. In temperate and boreal forestry-drained peat soils, the effect of rewetting was mostly warming for the first decades. In addition, the decrease in tree and wood product carbon storage further delayed the onset of the cooling effect for decades. Global rewetting resulted in increasing climate cooling, reaching -70 mW (m(2)Earth)(-1)in 100 years. Tropical peat soils (9.6 million ha) accounted for approximately two thirds and temperate and boreal agricultural peat soils (13.0 million ha) for one third of the cooling. Forestry-drained peat soils (10.6 million ha) had a negligible effect. We conclude that peatland rewetting is beneficial and important for mitigating climate change, but abandoning tree stands may instead be the best option concerning forestry-drained peatlands.Peer reviewe

    Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests

    Get PDF
    Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe

    Root turnover and productivity of coniferous forests

    Full text link
    Fine roots and mycorrhizae have recently been shown to produce a major portion of the organic matter entering decomposition. Roots and mycorrhizae constitute 63 to 70% of total net primary production in Douglas-fir and Pacific silver fir stands. The importance of roots in primary production makes the method of root extraction from the soil important. Wet-sieving with small mesh screens is more effective than hand-sorting for fine roots and mycorrhizae. Screen size, the efficiency of recovery, the physiological status of the roots and coversion factors to derive biomass from the numbers of root tips should be stated. Published data is enhanced if the phenological status of the stand, its age, tree density, and soil texture are quoted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43475/1/11104_2005_Article_BF02182643.pd
    corecore