56 research outputs found

    OPA1 functions in mitochondria and dysfunctions in optic nerve

    Get PDF
    OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA), a blinding disease that affects specifically the retinal ganglion cells (RGCs), which function consists in connecting the neuro-retina to the brain. OPA1 encodes an intra-mitochondrial dynamin, involved in inner membrane structures and ubiquitously expressed, raising the critical question of the origin of the disease pathophysiology. Here, we review the fundamental knowledge on OPA1 functions and regulations, highlighting their involvements in mitochondrial respiration, membrane dynamic and apoptosis. In light of these functions, we then describe the remarkable RGC mitochondrial network physiology and analyse data collected from animal models expressing OPA1 mutations. If, to date RGC mitochondria does not present any peculiarity at the molecular level, they represent possible targets of numerous assaults, like light, pressure, oxidative stress and energetic impairment, which jeopardize their function and survival, as observed in OPA1 mouse models. Although fascinating fields of investigation are still to be addressed on OPA1 functions and on DOA pathophysiology, we have reached a conspicuous state of knowledge with pertinent cell and animal models, from which therapeutic trials can be initiated and deeply evaluated

    The Effect of OPA1 on Mitochondrial Ca2+ Signaling

    Get PDF
    The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca2+ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca2+ to the transporters in the crista membrane and thus would enhance Ca2+ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca2+ signals evoked with K+ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca2+] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca2+ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca2+ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na+/Ca2+ and Ca2+/H+ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca2+ metabolism

    Primary intestinal lymphangiectasia (Waldmann's disease)

    Get PDF
    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lacteals resulting in lymph leakage into the small bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. Prevalence is unknown. The main symptom is predominantly bilateral lower limb edema. Edema may be moderate to severe with anasarca and includes pleural effusion, pericarditis or chylous ascites. Fatigue, abdominal pain, weight loss, inability to gain weight, moderate diarrhea or fat-soluble vitamin deficiencies due to malabsorption may also be present. In some patients, limb lymphedema is associated with PIL and is difficult to distinguish lymphedema from edema. Exsudative enteropathy is confirmed by the elevated 24-h stool α1-antitrypsin clearance. Etiology remains unknown. Very rare familial cases of PIL have been reported. Diagnosis is confirmed by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of intestinal biopsy specimens. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Differential diagnosis includes constrictive pericarditis, intestinal lymphoma, Whipple's disease, Crohn's disease, intestinal tuberculosis, sarcoidosis or systemic sclerosis. Several B-cell lymphomas confined to the gastrointestinal tract (stomach, jejunum, midgut, ileum) or with extra-intestinal localizations were reported in PIL patients. A low-fat diet associated with medium-chain triglyceride supplementation is the cornerstone of PIL medical management. The absence of fat in the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are absorbed directly into the portal venous circulation and avoid lacteal overloading. Other inconsistently effective treatments have been proposed for PIL patients, such as antiplasmin, octreotide or corticosteroids. Surgical small-bowel resection is useful in the rare cases with segmental and localized intestinal lymphangiectasia. The need for dietary control appears to be permanent, because clinical and biochemical findings reappear after low-fat diet withdrawal. PIL outcome may be severe even life-threatening when malignant complications or serous effusion(s) occur

    Man against machine reloaded : performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions

    Get PDF
    Copyright © 2019 European Society for Medical Oncology. Published by Elsevier Ltd. All rights reserved.Background: Convolutional neural networks (CNNs) efficiently differentiate skin lesions by image analysis. Studies comparing a market-approved CNN in a broad range of diagnoses to dermatologists working under less artificial conditions are lacking. Materials and methods: One hundred cases of pigmented/non-pigmented skin cancers and benign lesions were used for a two-level reader study in 96 dermatologists (level I: dermoscopy only; level II: clinical close-up images, dermoscopy, and textual information). Additionally, dermoscopic images were classified by a CNN approved for the European market as a medical device (Moleanalyzer Pro, FotoFinder Systems, Bad Birnbach, Germany). Primary endpoints were the sensitivity and specificity of the CNN's dichotomous classification in comparison with the dermatologists’ management decisions. Secondary endpoints included the dermatologists’ diagnostic decisions, their performance according to their level of experience, and the CNN's area under the curve (AUC) of receiver operating characteristics (ROC). Results: The CNN revealed a sensitivity, specificity, and ROC AUC with corresponding 95% confidence intervals (CI) of 95.0% (95% CI 83.5% to 98.6%), 76.7% (95% CI 64.6% to 85.6%), and 0.918 (95% CI 0.866–0.970), respectively. In level I, the dermatologists’ management decisions showed a mean sensitivity and specificity of 89.0% (95% CI 87.4% to 90.6%) and 80.7% (95% CI 78.8% to 82.6%). With level II information, the sensitivity significantly improved to 94.1% (95% CI 93.1% to 95.1%; P < 0.001), while the specificity remained unchanged at 80.4% (95% CI 78.4% to 82.4%; P = 0.97). When fixing the CNN's specificity at the mean specificity of the dermatologists’ management decision in level II (80.4%), the CNN's sensitivity was almost equal to that of human raters, at 95% (95% CI 83.5% to 98.6%) versus 94.1% (95% CI 93.1% to 95.1%); P = 0.1. In contrast, dermatologists were outperformed by the CNN in their level I management decisions and level I and II diagnostic decisions. More experienced dermatologists frequently surpassed the CNN's performance. Conclusions: Under less artificial conditions and in a broader spectrum of diagnoses, the CNN and most dermatologists performed on the same level. Dermatologists are trained to integrate information from a range of sources rendering comparative studies that are solely based on one single case image inadequate.publishersversionPeer reviewe

    Inhibitory Action Of A New Lectin From Xerocomus Chrysenteron On Cell-Substrate Adhesion

    Full text link
    Lectins are carbohydrate-binding proteins which potentially link to cell surface glycoconjugates and affect cell proliferation. We investigated the effect of a new lectin from the mushroom Xerocomus chrysenteron (XCL) on cell proliferation using adherent and suspension cell lines. XCL caused a dose-dependent inhibition of proliferation of the adherent cell lines NIH-3T3 and HeLa. Several experiments suggest that disruption of cell-substrate adhesion is the main factor affecting cell growth inhibition. (i) No antiproliferative effect was observed on the SF9 cell line, which does not require to be attached to grow. (ii) XCL was shown to affect the adherence of cells following their suspension by trypsin treatment. (iii) XCL was localized on the cell surface where it would act as a coating agent. (iv) XCL induced morphological changes from well spread to rounded cells and disrupted the actin cytoskeleton. By contrast, flow cytometric analysis showed that XCL does not interfere with the cell cycle, and does not induce apoptosis
    corecore