31 research outputs found

    Terminal interruption of relux source technique in the treatment of active venous ulcers

    Get PDF
    Introduction: The treatment for venous ulcers in most cases is unsatisfactory, with recurrences and poor healing. Objective: to evaluate adjuvant therapy in the treatment of active venous ulcers. Methods: We analyzed 20 patients with active venous ulcers attending the general Surgery outpatient clinic at the “Dr. José eleuterio gonzález” University Hospital from October 2012 to January 2013. they were randomly divided into 2 groups: group A (11 patients) underwent compression therapy and group B (9 patients) underwent compression therapy plus removal of the vein that gives terminal relux to the ulcer, guided by ultrasound (microphlebectomy). Patients were evaluated weekly (8 weeks). At each assessment, photographs and lesion measurements were taken and pain was evaluated using the visual analog scale. Results: No significant differences were found between the study groups in terms of age, weight, height, body mass index (BMi), ankle-brachial index, and baseline measurement of the ulcer (p>0.05). Group B showed a greater reduction in ulcer size and a statistically signiicant lower score on the visual analog pain scale (p<0.05) from the second and third week of treatment, respectively. Conclusions: the results obtained in patients with surgical procedure (group B) are consistent with the reported eficacy of chronic venous ulcer treatment with saphenectomy (conventional surgery), the difference is that in this study we used a minimally invasive procedure (microphlebectomy)

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p−Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p−Pb collisions at sNN−−−√=5.02 TeV are extended to a pseudorapidity gap of Δη∼8 between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of Δη∼8 for the first time in p−Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p−Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2({\eta}), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of −3.1<η<4.8 in various centrality classes in p−Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the v2(η) measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s = 13 TeV

    No full text
    Measurements of the production cross sections of prompt D0, D+, D∗+, D+s, Λ+c, and Ξ+c charm hadrons at midrapidity in proton−proton collisions at s√=13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios of pT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10−5−10−4). The measurements of Λ+c (Ξ+c) baryon production extend the measured pT intervals down to pT=0(3)~GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the cc¯¯ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+, D+s, Λ+c, Ξ0c and, for the first time, Ξ+c, and of the strongly-decaying J/psi mesons. The first measurements of Ξ+c and Σ0,++c fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e− and ep collisions. The cc¯¯ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text
    Measurements of charged-particle production in pp, p−Pb, and Pb−Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (ptrigT) in the range 8<ptrigT<15 GeV/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NTch/⟨NTch⟩, is used to group events according to their UE activity, where NTch is the charged-particle multiplicity per event in the transverse region and ⟨NTch⟩ is the mean value over the whole analysed sample. The energy dependence of the RT distributions in pp collisions at s√=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pT spectra as a function of RT in the three azimuthal regions in pp, p−Pb, and Pb−Pb collisions at sNN−−−√=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−Pb)

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events

    Measurements of jet quenching using semi-inclusive hadron+jet distributions in pp and central Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high pT) charged hadron, in pp and central Pb−Pb collisions at center of mass energy per nucleon−nucleon collision sNN−−−√=5.02 TeV. The large uncorrelated background in central Pb−Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in pT,chjet and jet resolution parameter R. Recoil jet yields are reported for R=0.2, 0.4, and 0.5 in the range 7<pT,chjet<140 GeV/c and π/2<Δφ<π, where Δφ is the azimuthal angular separation between hadron trigger and recoil jet. The low pT,chjet reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of pT,chjet distributions from pp and central Pb−Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s\sqrt{s} = 13 TeV and in p-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    International audienceLong- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s=13\sqrt{s}=13 TeV and p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ\Delta\varphi and pseudorapidity separation Δη\Delta\eta for pairs of primary charged particles within the pseudorapidity interval η<0.9|\eta| < 0.9 and the transverse-momentum interval 1<pT<41 < p_{\rm T} < 4 GeV/cc. Flow coefficients are extracted for the long-range correlations (1.6<Δη<1.81.6 < |\Delta\eta| <1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN−−−√= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2) and triangular (v3) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope rNorm3 is found to be larger than zero and to have a magnitude similar to rNorm2, thus pointing to a large background contribution for these measurements. Furthermore, rNorm2 can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMW) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMW, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level
    corecore