29 research outputs found
A hagyományos és az ökológiai gazdálkodási rendszerek hatása a talaj biológiai aktivitására = The effect of the conventional and ecological farming systems in the biological activity of soil
Vizsgálatainkat hagyományos és ökológiai gazdálkodási rendszerben, mészlepedékes csernozjom talajtípuson végeztük. Arra kerestük a választ, hogy a két gazdálkodási rendszer, illetve az ökológiai gazdálkodásban a növénykultúra és a meszezés, míg a hagyományos gazdálkodásban a növénykultúra és a műtrágyázás hogyan befolyásolja a talajok biológiai aktivitását. A két gazdálkodási rendszert összehasonlítva megállapítottuk, hogy az ökológiai gazdálkodásban magasabb volt az összes csiraszám, mikroszkopikus gombaszám és az aerob cellulózbontó baktériumok száma, intenzívebb volt a foszfatáz, dehidrogenáz és celluláz enzimek aktivitása, illetve nagyobb volt a CFI és CFE módszerrel meghatározott biomassza-C tartalom. A hagyományos gazdálkodás a nitrogén körforgalomban szerepet játszó mikroorganizmusoknak, valamint a szacharáz, kataláz és ureáz enzimek működéséhez teremtett kedvezőbb feltételeket. Az ökológiai gazdálkodási rendszerben a meszezés hatására nőtt az összes baktériumszám, a kataláz és a dehidrogenáz enzimek aktivitása. A borsó vetésszerkezetben való szerepeltetése több mikroorganizmus számára, a szacharáz és dehidrogenáz enzimek aktivitására és talajok CO2-termelésre hatott kedvezően. A műtrágyázás hatását vizsgálva megállapíthatjuk, hogy a kisebb műtrágyadózisok (30, 60 kg/ha N+PK) többnyire pozitívan hatottak a mikrobákra, a vizsgált enzimek aktivitásra és a biomassza-C tartalomra. A 90 kg/ha-os műtrágyaadag a vizsgált talajjellemzők értékét már csökkentette. A hagyományos gazdálkodásban az elővetemények közül a csemegekukorica kedvezőbb előveteménynek bizonyult, mint a napraforgó. | The experiments were carried out in ecological and traditional farming system on calcareous chernozem soil. We were wondered that the two farming systems, as well as the culture and liming within the ecological farming system and the culture and the artificial manuring within the traditional farming system how could be influenced the soil biological activity. Comparing the two farming systems the total number of bacteria, number of microscopic fungi and cellulose decomposing bacteria, the activity of phosphatase, dehydrogenase and cellulase enzymes, as well as the biomass-C content determined by CFI and CFE methods were higher in the ecological farming system. The traditional farming system was favourable to the microbes playing role in the nitrogen cycle and stimulated the activity of saccharase, catalase and urease enzimes. In the ecological farming system the liming increased the total number of bacteria and the activity of catalase and dehydrogenase enzymes. The pea as a preculture was favourable to the amount of several microbes, the activity of saccharase and dehydrogenase as well as the CO2 production of soils. Studying the effect of artificial mannuring we could state, that the lower doses - 30 and 60 kg/ha N+PK - had a positive effect on the microbes, the examined enzyme activities and the biomass-C content. The 90 kg/ha dose decreased the values of examined soil parameters. In the traditional farming system the sweet maize proved a better preculture than the sunflower
The water use efficiency of maize depending on abiotic stress factors in field experiments
There is little direct information about the effects of the abiotic stress factors such as low soil water content on the photosynthesis system of field crops. Some recent publications pay attention to this field of research. Water stress has significant effect on the yield and other agronomic parameters of maize. The aim of our work was to get more data about the relations between water supply and the assimilation parameters. The photosynthetic gas exchange parameters of maize are remarkably improved by nutrient supply in well watered conditions. The water stress through decreased stomatal conductance has significant negative effect on the assimilation parameters of the crops. The obtained results suggest that the water use efficiency of the maize is higher in dry conditions. In well water supply state maize uses up to 300 per cent more water for 1 g CO2 assimilation
A növénytermesztési tér (talaj-növény) anyagforgalmának interaktív vizsgálata a minőségi búza előállítása céljából = Interactive study of material circulation in agronomy space (soil-plant) for the production of quality wheat
A tartamkísérleti eredményeink azt bizonyították, hogy a növénytermesztési tér (talaj-növény) anyagforgalma (tápanyag- és vízháztartása) jelentősen befolyásolta a földfeletti fitomassza tömeget, a LAI-t, ezeken keresztül pedig az őszi búza termésmennyiségét és minőségét. A nedves sikértartalmat és a valorigráfos értékszámot az évjárat, a fajta és a trágyázás jelentősen, a vetésváltás és növényvédelem mérsékelt mértékben befolyásolta. A búzafajták termésmennyiség szempontjából optimális műtrágya adagját (N60-90+PK) meghaladta a minőség szempontjából optimális műtrágya dózist (N120-150+PK). | The results of our long-term experiments proved, that the materials flows of crop husbandry site (soil-plant) deeply modified the surface dry matter production, the LAI, the yields and the baking quality parameters of winter wheat varieties. The wet gluten content and farinograph index were highly modified by cropyear, genotype and fertilization, and the effects of forecrops and crop protection technology on them were moderate. The optimum fertilizer doses for yields were moderated (N60-90+PK) comparing with the optimum doses for baking quality (N120-150+PK)
A növényi produkciót befolyásoló talajfizikai, vízgazdálkodási, tápanyaggazdálkodási tulajdonságok interaktív vizsgálata = Interactive examination of soil physical, water balance, nutrient management characteristics determining plant production
A kutatásba három növényfajt vontunk be a kutatási tervben foglaltaknak megfelelően, az őszi búzát, tritikálét, (C3-as) és a kukoricát (C4-es). Őszi búzából három fajtát, kukoricából szintén három, eltérő tenyészidejű hibridet, tritikáléból egy fajtát vizsgáltunk. A kutatási tervben meghatározott méréseket sikerült elvégeznünk, az adatok feldogozása megtörtént, az eddigi eredményeket részben publikáltuk is. Az őszi búza vizsgálatok azt mutatják, hogy szignifikáns különbségek vannak a fajták között minden mérési időpontban. Szoros korrelációt lehetett kimutatni a kalászoláskori fotoszintézis intenzitás és a termés között a vizsgált őszi búza fajták esetében. A kedvező vízellátottság következtében nem volt megfigyelhető a 2003-ban jellemző depresszió a nagyobb N dózisok miatt, a fotoszintézis intenzitása minden időpontban az N120P90K106 kezelésben volt a legmagasabb A kukoricában végzett mérések elemzése során megállapítható, hogy az első mérési időpontban volt a legmagasabb a nettó fotoszintézis intenzitása, a tenyészidő során fokozatosan csökkent mindegyik kukoricahibrid esetében. A különböző műtrágyázási szintek szignifikáns eltérést eredményeztek a fotoszintetikus aktivitásban. Az első méréskor a kontroll és a 60 kg N+PK adag között nem volt igazolható a különbség, a többi esetben 5 %-os szinten szignifikáns eltérés volt. A három mérési időpont átlagában a legmagasabb értéket a középső, 120 kg N+PK, műtrágyaadagnál mértük. | The aim of our work is to add some information about the yield forming procedure of winter wheat. Taking leaf gas exchange measurements not in a laboratory but in the field has great significance. We measured the net photosynthesis of three winter wheat, maize varieties and one triticale variety in a field trial on the nutrient supply. evaluating the survey data In winter wheat it is concluded that there were significant differences between net photosynthetic rate of varieties in all of years. However there were no significant deviations in all cases. We made the pair-wise comparison of the varieties in all the four measurements dates. In the case of some varieties, there were no statistical differences in the net photosynthesis rate. The results of the present study show close significant correlation between yield and net photosynthesis in heading growth stage. By the help of these connections we can get closer to understanding of the yield-forming processes of winter wheat In maize after data processing we found that there are significant differences on P=5% level in the net photosynthesis, the stomatal conductance and the transpiration results between the nutrient levels in all the season. The differences in the intercellular CO2 concentration are not significant in every case, but the data measured in the N0P0K0 blocks are significantly lower than those in the other levels. The varied nutrient supply caused differences in the net photosynthetic rate
Mitigating the Negative Effect of Drought Stress in Oat (Avena sativa L.) with Silicon and Sulphur Foliar Fertilization
A field experiment was carried out in the 2020–2021 growing season, aiming at investigating the abiotic stress tolerance of oat (Avena sativa L.) with silicon and sulphur foliar fertilization treatments and monitoring the effect of treatments on the physiology, production and stress tolerance of winter oat varieties. In the Hungarian national list of varieties, six winter oat varieties were registered in 2020, and all of the registered varieties were sown in a small plot field experiment in Debrecen, Hungary. The drought tolerance of the oat could be tested, because June was very dry in 2021; the rainfall that month totaled 6 mm only despite a 30-year average of 66.5 mm, and the average temperature for the month was 3.2 °C higher than the 30-year average. Foliar application of silicon and sulphur fertilizers caused differences in the photosynthesis rate, total conductance to CO2, transpiration, water use efficiency, leaf area, chlorophyll content, carotenoid content, thousand kernel weight (TKW) and yield of winter oat. The application of silicon significantly increased the photosynthesis rate (16.8–149.3%), transpiration (5.4–5.6%), air–leaf temperature difference (16.2–43.2%), chlorophyll (1.0%) and carotenoid (2.5%) content. The yield increased by 10.2% (Si) and 8.0% (Si plus S), and the TKW by 3.3% (Si) and 5.0% (Si plus S), compared to the control plots. The plants in the control plots assimilated less CO2 while transpiring 1 m3 water more than in the Si, S or Si plus S fertilized plots. The effect of the silicon varied from 9.0 to 195.4% in water use efficiency (WUE) in the three development stages (BBCH52, BBCH65 and BBCH77). A lower leaf area index was measured in the foliar fertilized plots; even so, the yield was higher, compared to that from the control plots. Great variation was found in response to the foliar Si and S fertilization among winter oat varieties—in WUE, 2.0–43.1%; in total conductance to CO2, 4.9–37.3%; in leaf area, 1.6–34.1%. Despite the droughty weather of June, the winter oat varieties produced a high yield. The highest yield was in ‘GK Arany’ (7015.7 kg ha−1), which was 23.8% more than the lowest yield (‘Mv Kincsem’, 5665.6 kg ha −1). In the average of the treatments, the TKW increased from 23.9 to 33.9 g (41.8%). ‘Mv Hópehely’ had the highest TKW. Our results provide information about the abiotic stress tolerance of winter oat, which, besides being a good model plant because of its drought resistance, is an important human food and animal feed
Photosynthetic and Agronomic Traits of Winter Barley (Hordeum vulgare L.) Varieties
We tested six winter barley (Hordeum vulgare L.) cultivars in a small plot field experiment, measuring photosynthesis and other parameters three times during the growing season. Four genotypes—Andoria, Jakubus, Paradies and Zophia—are new, promising varieties with requirements of intensive technology, high yield potential and very good disease resistance. The two popular Hungarian varieties (KG Apavár and KG Puszta) are relatively old but they have good tolerance to extreme ecological conditions and outstanding resistance and winter hardiness. The aim of our research was to test the new varieties’ performance. Several recent studies found close connections among various photosynthetic parameters in barley, and we confirmed that in our research. There were significant differences between the varieties in the assimilation rate—the highest values were measured at the BBCH 47–49 stage (end of booting), except Jakubus and Zophia, where the highest values were at BBCH 73–75 (milk ripe). The cultivars’ response to irradiation change varied, especially at higher photosynthetic photon flux density (PPFD) levels. In April and May, the plants were in drought stress according to the intercellular CO2 level and the total conductance to carbon dioxide. The differences between the air and leaf temperature were also low, indicating water stress, but the assimilation rate was relatively high (9.07–14.09 µmol m−2 s−1).We found a close connection between normalized difference vegetation index (NDVI) values and grain protein content in each of the tested barley cultivars. The correlation was significant, at p = 0.01 level. The protein yield per hectare was determined rather by grain yield than protein content. The relationship between the NDVI values and grain yield was moderate, but NDVI values and protein content are in strong correlation
The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research