117 research outputs found

    Hysteresis, Avalanches, and Noise: Numerical Methods

    Full text link
    In studying the avalanches and noise in a model of hysteresis loops we have developed two relatively straightforward algorithms which have allowed us to study large systems efficiently. Our model is the random-field Ising model at zero temperature, with deterministic albeit random dynamics. The first algorithm, implemented using sorted lists, scales in computer time as O(N log N), and asymptotically uses N (sizeof(double)+ sizeof(int)) bits of memory. The second algorithm, which never generates the random fields, scales in time as O(N \log N) and asymptotically needs storage of only one bit per spin, about 96 times less memory than the first algorithm. We present results for system sizes of up to a billion spins, which can be run on a workstation with 128MB of RAM in a few hours. We also show that important physical questions were resolved only with the largest of these simulations

    Cortisol concentrations in human skeletal muscle tissue after phonophoresis with 10% hydrocortisone gel

    Get PDF
    CONTEXT: The delivery of hydrocortisone through phonophoresis is a widely prescribed technique for the treatment of various musculoskeletal inflammatory conditions. However, limited scientific evidence exists to support the efficacy of phonophoresis in delivering hydrocortisone to skeletal muscle tissue in humans. OBJECTIVE: To determine hydrocortisone (cortisol) concentrations in human skeletal muscle tissue after a phonophoresis treatment using 10% hydrocortisone gel. DESIGN: Randomized design in which 12 subjects were randomly assigned to either an ultrasound (sham) treatment or a 10% hydrocortisone phonophoresis treatment. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Twelve healthy subjects (8 women, 4 men: age = 22.3 +/- 2.64 years, height = 168.28 +/- 8.19 cm, mass = 69.58 +/- 9.05 kg) with no history of musculoskeletal disease, preexisting inflammatory conditions, or recent orthopaedic injuries. INTERVENTION(S): Ultrasound at 1.0 MHz, 1.0 W/cm (2), at a continuous setting for 7 minutes was applied to a standardized area of the vastus lateralis muscle in both groups. The contralateral limb served as the control (no treatment) for both the sham and the phonophoresis groups. MAIN OUTCOME MEASURE(S): Vastus lateralis muscle biopsies were taken from both legs immediately after treatment, and cortisol concentrations were analyzed using an enzyme-linked immunosorbent assay. RESULTS: We observed no significant difference in muscle cortisol concentration between the contralateral control limb and the treatment limb in either the sham or the phonophoresis group ( P \u3e .05). No significant difference was noted when the treatment limbs in the sham and phonophoresis groups were compared ( P \u3e .05). CONCLUSIONS: Our data suggest that a 10% hydrocortisone-based phonophoresis treatment did not increase cortisol concentrations in human skeletal muscle tissue

    Universal Pulse Shape Scaling Function and Exponents: A Critical Test for Avalanche Models applied to Barkhausen Noise

    Full text link
    In order to test if the universal aspects of Barkhausen noise in magnetic materials can be predicted from recent variants of the non-equilibrium zero temperature Random Field Ising Model (RFIM), we perform a quantitative study of the universal scaling function derived from the Barkhausen pulse shape in simulations and experiment. Through data collapses and scaling relations we determine the critical exponents τ\tau and 1/σνz1/\sigma\nu z in both simulation and experiment. Although we find agreement in the critical exponents, we find differences between theoretical and experimental pulse shape scaling functions as well as between different experiments.Comment: 19 pages (in preprint format), 5 figures, 1 tabl

    Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study

    Get PDF
    The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain

    Pretreatment HLADQA1-HLADRB1 Testing for the Prevention of Azathioprine-Induced Pancreatitis in Inflammatory Bowel Disease: A Prospective Cohort Study

    Get PDF
    INTRODUCTION:Azathioprine-induced pancreatitis is an idiosyncratic and unpredictable response, occurring in up to 7% of azathioprine-exposed patients with inflammatory bowel disease (IBD). The haplotype HLADQA1-HLADRB1*07:01A\u3eC is strongly associated with azathioprine-induced pancreatitis in IBD. We aimed to evaluate whether pretreatment HLADQA1-HLADRB1*07:01A\u3eC screening will reduce the risk of azathioprine-induced pancreatitis.METHODS:Participants with IBD were screened for HLADQA1-HLADRB1*07:01A\u3eC, and participants with a variant genotype were excluded from azathioprine treatment. Wild-type participants were started on azathioprine and followed for 3 months. The incidence of pancreatitis was compared with unscreened historical controls.RESULTS:HLADQA1-HLADRB1*07:01A\u3eC screening resulted in an 11-fold reduction in the incidence of azathioprine-induced pancreatitis (n = 1/328 or 0.30% vs n = 13/373 or 3.4%). In propensity score-matched cohorts (age and sex), HLA DQA1-HLADRB1*07:01A\u3eC screening was significantly associated with a reduction in the incidence of AZA-induced pancreatitis independent of weight, glucocorticoid exposure, and smoking status (adjusted odds ratio = 0.075, 95% confidence interval = 0.01-0.58, P = 0.01). Up to 45% (n = 271/599) of participants were excluded from azathioprine therapy based on the haplotype in the HLADQA1-HLADRB1*07:01A\u3eC-screened cohort.DISCUSSION:HLADQA1-HLADRB1*07:01A\u3eC screening reduced the risk of azathioprine-induced pancreatitis; however, using this strategy to guide the use of azathioprine therapy in IBD may eliminate a large proportion of patients from being eligible for treatment with azathioprine. In regions where there is access to other IBD therapies, and given the short-term and long-term toxicities associated with azathioprine, HLADQA1-HLADRB1*07:01A\u3eC-screening may be a clinically relevant strategy for enhancing the safe use of azathioprine in IBD. In addition, cost-effectiveness analyses are needed to further solidify the utility of HLADQA1-HLADRB1*07:01A\u3eC screening in IBD populations

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs

    Get PDF
    Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases

    Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference

    Get PDF
    RNA interference (RNAi) represents the only method currently available for manipulating gene-specific expression in Schistosoma spp., although application of this technology as a functional genomic profiling tool has yet to be explored. In the present study 32 genes, including antioxidants, transcription factors, cell signaling molecules and metabolic enzymes, were selected to determine if gene knockdown by RNAi was associated with morphologically definable phenotypic changes in early intramolluscan larval development. Transcript selection was based on their high expression in in vitro cultured S. mansoni primary sporocysts and/or their potential involvement in developmental processes. Miracidia were allowed to transform to sporocysts in the presence of synthesized double-stranded RNAs (dsRNAs) and cultivated for 7 days, during which time developing larvae were closely observed for phenotypic changes including failure/delay in transformation, loss of motility, altered growth and death. Of the phenotypes evaluated, only one was consistently detected; namely a reduction in sporocyst size based on length measurements. The size-reducing phenotype was observed in 11 of the 33 (33%) dsRNA treatment groups, and of these 11 phenotype-associated genes (superoxide dismutase, Smad1, RHO2, Smad2, Cav2A, ring box, GST26, calcineurin B, Smad4, lactate dehydrogenase and EF1α), only 6 demonstrated a significant and consistent knockdown of specific transcript expression. Unexpectedly one phenotype-linked gene, superoxide dismutase (SOD), was highly induced (∼1600-fold) upon dsRNA exposure. Variation in dsRNA-mediated silencing effects also was evident in the group of sporocysts that lacked any definable phenotype. Out of 22 nonphenotype-expressing dsRNA treatments (myosin, PKCB, HEXBP, calcium channel, Sma2, RHO1, PKC receptor, DHHC, PepcK, calreticulin, calpain, Smeg, 14.3.3, K5, SPO1, SmZF1, fibrillarin, GST28, GPx, TPx1, TPx2 and TPx2/TPx1), 12 were assessed for the transcript levels. Of those, 6 genes exhibited consistent reductions in steady-state transcript levels, while expression level for the rest remained unchanged. Results demonstrate that the efficacy of dsRNA-treatment in producing consistent phenotypic changes and/or altered gene expression levels in S. mansoni sporocysts is highly dependent on the selected gene (or the specific dsRNA sequence used) and the timing of evaluation after treatment. Although RNAi holds great promise as a functional genomics tool for larval schistosomes, our finding of potential off-target or nonspecific effects of some dsRNA treatments and variable efficiencies in specific gene knockdown indicate a critical need for gene-specific testing and optimization as an essential part of experimental design, execution and data interpretation
    corecore