398 research outputs found

    Decreased levels of serum glutathione peroxidase 3 are associated with papillary serous ovarian cancer and disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutathione peroxidase 3 (GPX3) is a selenocysteine-containing antioxidant enzyme that reacts with hydrogen peroxide and soluble fatty acid hydroperoxides, thereby helping to maintain redox balance within cells. Serum levels of GPX3 have been found to be reduced in various cancers including prostrate, thyroid, colorectal, breast and gastric cancers. Intriguingly, GPX3 has been reported to be upregulated in clear cell ovarian cancer tissues and thus may have implications in chemotherapeutic resistance. Since clear cell and serous subtypes of ovarian cancer represent two distinct disease entities, the aim of this study was to determine GPX3 levels in serous ovarian cancer patients and establish its potential as a biomarker for detection and/or surveillance of papillary serous ovarian cancer, the most frequent form of ovarian tumors in women.</p> <p>Patients and Methods</p> <p>Serum was obtained from 66 patients (median age: 62 years, range: 22-89) prior to surgery and 65 controls with a comparable age-range (median age: 53 years, range: 25-83). ELISA was used to determine the levels of serum GPX3. The Mann Whitney <it>U </it>test was performed to determine statistical significance between the levels of serum GPX3 in patients and controls.</p> <p>Results</p> <p>Serum levels of GPX3 were found to be significantly lower in patients than controls (p = 1 × 10<sup>-2</sup>). Furthermore, this was found to be dependent on the stage of disease. While levels in early stage (I/II) patients showed no significant difference when compared to controls, there was a significant reduction in late stage (III/IV, p = 9 × 10<sup>-4</sup>) and recurrent (p = 1 × 10<sup>-2</sup>) patients. There was a statistically significant reduction in levels of GPX3 between early and late stage (p = 5 × 10<sup>-4</sup>) as well as early and recurrent (p = 1 × 10<sup>-2</sup>) patients. Comparison of women and controls stratified to include only women at or above 50 years of age shows that the same trends were maintained and the differences became more statistically significant.</p> <p>Conclusions</p> <p>Serum GPX3 levels are decreased in women with papillary serous ovarian cancer in a stage-dependent manner and also decreased in women with disease recurrence. Whether this decrease represents a general feature in response to the disease or a link to the progression of the cancer is unknown. Understanding this relationship may have clinical and therapeutic consequences for women with papillary serous adenocarcinoma.</p

    Harmonization guidelines for HLA-peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium

    Get PDF
    Purpose: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. Experimental design: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. Results: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. Conclusions: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedure

    Study protocol for THINK : a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types

    Get PDF
    Introduction: NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3 zeta signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning. Methods and analysis: This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3x10(8), 1x10(9) and 3x10(9) NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours. Ethics approval and dissemination: Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals

    Complex Segregation Analysis of Pedigrees from the Gilda Radner Familial Ovarian Cancer Registry Reveals Evidence for Mendelian Dominant Inheritance

    Get PDF
    Familial component is estimated to account for about 10% of ovarian cancer. However, the mode of inheritance of ovarian cancer remains poorly understood. The goal of this study was to investigate the inheritance model that best fits the observed transmission pattern of ovarian cancer among 7669 members of 1919 pedigrees ascertained through probands from the Gilda Radner Familial Ovarian Cancer Registry at Roswell Park Cancer Institute, Buffalo, New York.Using the Statistical Analysis for Genetic Epidemiology program, we carried out complex segregation analyses of ovarian cancer affection status by fitting different genetic hypothesis-based regressive multivariate logistic models. We evaluated the likelihood of sporadic, major gene, environmental, general, and six types of Mendelian models. Under each hypothesized model, we also estimated the susceptibility allele frequency, transmission probabilities for the susceptibility allele, baseline susceptibility and estimates of familial association. Comparisons between models were carried out using either maximum likelihood ratio test in the case of hierarchical models, or Akaike information criterion for non-nested models. When assessed against sporadic model without familial association, the model with both parent-offspring and sib-sib residual association could not be rejected. Likewise, the Mendelian dominant model that included familial residual association provided the best-fitting for the inheritance of ovarian cancer. The estimated disease allele frequency in the dominant model was 0.21.This report provides support for a genetic role in susceptibility to ovarian cancer with a major autosomal dominant component. This model does not preclude the possibility of polygenic inheritance of combined effects of multiple low penetrance susceptibility alleles segregating dominantly

    Ex-Th17 Foxp3+ T cells - a novel subset of Foxp3+ T cells induced in cancer

    Get PDF
    Th17 and regulatory T (Treg) cells are integral in maintaining immune homeostasis and Th17-Treg misbalance associates with inflammation.\ud \ud We demonstrate that in addition to natural (n)Treg and induced (i)Treg cells developed from naïve precursors, Th17 cells are a novel source of Foxp3+ cells by converting into ex-Th17 Foxp3+ cells, and this helps to reconcile the contradictory information about the relevance in particularly of Th17 subset in immune surveillance.\ud \ud We identified IL-17A+Foxp3+ double-positive and ex-IL-17-producing IL-17A-Foxp3+ T cells to be the underlying mechanism of immune regulation in mesenchymal stem cell-mediated prolonged allograft survival. Further, we identified accumulation of IL17A+Foxp3+ and ex-Th17 Foxp3+ cells in tumor bearing mice, indicating progressive direct Th17-into-Treg cell conversion as a novel phenomenon in cancer.\ud \ud Moreover, we determined the importance of the Th17 cell plasticity for tumor induction and/or progression in ROR-g-/- mice. Our data indicate that RORgt is required not only for Th17 development, but also for effective Treg cell induction. TGF-b1 induced Foxp3 expression was reduced in ROR-g -/- cells. Further, tumor bearing ROR-g-/- mice showed significantly less Foxp3+ Treg cells, but higher IFNg+ Tcells compared to wild type animals.\ud \ud Increased infiltration of IL17+ and FoxP3+ CD4+ T cells in the human ovarian cancer ascites, with the presence of a distinct IL17+FoxP3+ subset, and a significant correlation between tumor-associated Th17 and Treg cells demonstrates the existence of Th17-Foxp3+ T cell inter-relationship in cancer patients.\ud \ud Yin-yang of IL17+ and Foxp3+ is important principle for improved clinical approaches targeting responses against self, allo and/or neo-self

    A critical assessment for the value of markers to gate-out undesired events in HLA-peptide multimer staining protocols

    Get PDF
    Background: The introduction of antibody markers to identify undesired cell populations in flow-cytometry based assays, so called DUMP channel markers, has become a practice in an increasing number of labs performing HLA-peptide multimer assays. However, the impact of the introduction of a DUMP channel in multimer assays has so far not been systematically investigated across a broad variety of protocols. Methods: The Cancer Research Institute%27s Cancer Immunotherapy Consortium (CRI-CIC) conducted a multimer proficiency panel with a specific focus on the impact of DUMP channel use. The panel design allowed individual laboratories to use their own protocol for thawing, staining, gating, and data analysis. Each experiment was performed twice and in parallel, with and without the application of a dump channel strategy. Results: The introduction of a DUMP channel is an effective measure to reduce the amount of non-specific MULTIMER binding to T cells. Beneficial effects for the use of a DUMP channel were observed across a wide range of individual laboratories and for all tested donor-antigen combinations. In 48% of experiments we observed a reduction of the background MULTIMER-binding. In this subgroup of experiments the median background reduction observed after introduction of a DUMP channel was 0.053%. Conclusions: We conclude that appropriate use of a DUMP channel can significantly reduce background staining across a large fraction of protocols and improve the ability to accurately detect and quantify the frequency of antigen-specific T cells by multimer reagents. Thus, use of a DUMP channel may become crucial for detecting low frequency antigen-specific immune responses. Further recommendations on assay performance and data presentation guidelines for publication of MULTIMER experimental data are provided
    corecore