Ex-Th17 Foxp3+ T cells - a novel subset of Foxp3+ T cells induced in cancer

Stephanie Downs-Canner¹, Roshni Ravindranathan ${ }^{1}$, Robert P Edwards ${ }^{2}$, Pawel Kalinski1, Kunle Odunsi³, David L Bartlett ${ }^{1}$, Natasa Obermajer ${ }^{1 *}$

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

Th17 and regulatory $\mathrm{T}\left(\mathrm{T}_{\text {reg }}\right)$ cells are integral in maintaining immune homeostasis and Th17- $\mathrm{T}_{\text {reg }}$ misbalance associates with inflammation.
We demonstrate that in addition to natural (n) $\mathrm{T}_{\text {reg }}$ and induced (i) $\mathrm{T}_{\text {reg }}$ cells developed from naïve precursors, Th17 cells are a novel source of Foxp 3^{+}cells by converting into ex-Th17 Foxp3 ${ }^{+}$cells, and this helps to reconcile the contradictory information about the relevance in particularly of Th17 subset in immune surveillance.

We identified IL-17A ${ }^{+}$Foxp 3^{+}double-positive and ex-IL-17-producing IL-17A ${ }^{-}$Foxp3 ${ }^{+} \mathrm{T}$ cells to be the underlying mechanism of immune regulation in mesenchymal stem cell-mediated prolonged allograft survival. Further, we identified accumulation of IL17A ${ }^{+}$Foxp 3^{+}and ex-Th17 Foxp 3^{+}cells in tumor bearing mice, indicating progressive direct Th17-into- $\mathrm{T}_{\text {reg }}$ cell conversion as a novel phenomenon in cancer.
Moreover, we determined the importance of the Th17 cell plasticity for tumor induction and/or progression in ROR $-\mathrm{g}^{-/-}$mice. Our data indicate that RORgt is required not only for Th17 development, but also for effective $\mathrm{T}_{\text {reg }}$ cell induction. TGF- b_{1} induced Foxp3 expression was reduced in ROR-g ${ }^{-/-}$cells. Further, tumor bearing ROR-$\mathrm{g}^{-/-}$mice showed significantly less Foxp $3^{+} \mathrm{T}_{\text {reg }}$ cells, but higher IFNg^{+}Tcells compared to wild type animals.
Increased infiltration of $\mathrm{IL} 17^{+}$and $\mathrm{FoxP}^{+} \mathrm{CD}^{+}$ T cells in the human ovarian cancer ascites, with the presence of a distinct $\mathrm{IL} 17^{+}$FoxP3 ${ }^{+}$subset, and a significant correlation between tumor-associated Th17 and $\mathrm{T}_{\text {reg }}$ cells demonstrates the existence of Th17-Foxp3 ${ }^{+}$ T cell inter-relationship in cancer patients.

[^0]Yin-yang of $\mathrm{IL17}^{+}$and Foxp3 ${ }^{+}$is important principle for improved clinical approaches targeting responses against self, allo and/or neo-self.

Authors' details

${ }^{1}$ University of Pittsburgh, Pittsburgh, PA, USA. ${ }^{2}$ Magee-Womens Research Institute Ovarian Cancer Center of Excellence, Pittsburgh, PA, USA. ${ }^{3}$ Roswell Park Cancer Institute, Buffalo, NY, USA.

Published: 4 November 2015
doi:10.1186/2051-1426-3-S2-P273
Cite this article as: Downs-Canner et al.: Ex-Th17 Foxp3+ T cells - a novel subset of Foxp3+ T cells induced in cancer. Journal for ImmunoTherapy of Cancer 2015 3(Suppl 2):P273.

Submit your next manuscript to BioMed Central

 and take full advantage of:- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

[^0]: ${ }^{1}$ University of Pittsburgh, Pittsburgh, PA, USA
 Full list of author information is available at the end of the article

