218 research outputs found

    Oxidative Stress and Inflammation in Renal Patients and Healthy Subjects

    Get PDF
    The first goal of this study was to measure the oxidative stress (OS) and relate it to lipoprotein variables in 35 renal patients before dialysis (CKD), 37 on hemodialysis (HD) and 63 healthy subjects. The method for OS was based on the ratio of cholesteryl esters (CE) containing C18/C16 fatty acids (R2) measured by gas chromatography (GC) which is a simple, direct, rapid and reliable procedure. The second goal was to investigate and identify a triacylglycerol peak on GC, referred to as TG48 (48 represents the sum of the three fatty acids carbon chain lengths) which was markedly increased in renal patients compared to healthy controls. We measured TG48 in patients and controls. Mass spectrometry (MS) and MS twice in tandem were used to analyze the fatty acid composition of TG48. MS showed that TG48 was abundant in saturated fatty acids (SFAs) that were known for their pro-inflammatory property. TG48 was significantly and inversely correlated with OS. Renal patients were characterized by higher OS and inflammation than healthy subjects. Inflammation correlated strongly with TG, VLDL-cholesterol, apolipoprotein (apo) C-III and apoC-III bound to apoB-containing lipoproteins, but not with either total cholesterol or LDL-cholesterol

    Reduction in Cholesterol Absorption Is Enhanced by Stearate-Enriched Plant Sterol Esters in Hamsters

    Get PDF
    Consumption of plant sterol esters reduces plasma LDL cholesterol concentration by inhibiting intestinal cholesterol absorption. Commercially available plant sterol esters are prepared by esterifying free sterols to fatty acids from edible plant oils such as canola, soybean, and sunflower. To determine the influence of the fatty acid moiety on cholesterol metabolism, plant sterol esters were made with fatty acids from soybean oil (SO), beef tallow (BT), or purified stearic acid (SA) and fed to male hamsters for 4 wk. A control group fed no plant sterol esters was also included. Hamsters fed BT and SA had significantly lower cholesterol absorption and decreased concentrations of plasma non-HDL cholesterol and liver esterified cholesterol, and significantly greater fecal sterol excretion than SO and control hamsters. Cholesterol absorption was lowest in hamsters fed SA (7.5%), whereas it was 72.9% in control hamsters. Cholesterol absorption was correlated with fecal sterol excretion (r = –0.72, P \u3c 0.001), liver cholesterol concentration (r = 0.88, P \u3c 0.001), and plasma non-HDL cholesterol concentration (r = 0.85, P \u3c 0.001). A multiple regression model that included each sterol ester type vs. cholesterol absorption indicated that intake of steryl stearate was the only dietary component that contributed significantly to the model (R2 = –0.75, P \u3c 0.001). Therefore, our results demonstrate that BT and SA are more effective than SO in reducing cholesterol absorption, liver cholesterol, and plasma non-HDL cholesterol concentration, suggesting that cardioprotective benefits can be achieved by consuming stearate-enriched plant sterol esters

    Lipidomics: A Tool for Studies of Atherosclerosis

    Get PDF
    Lipids, abundant constituents of both the vascular plaque and lipoproteins, play a pivotal role in atherosclerosis. Mass spectrometry-based analysis of lipids, called lipidomics, presents a number of opportunities not only for understanding the cellular processes in health and disease but also in enabling personalized medicine. Lipidomics in its most advanced form is able to quantify hundreds of different molecular lipid species with various structural and functional roles. Unraveling this complexity will improve our understanding of diseases such as atherosclerosis at a level of detail not attainable with classical analytical methods. Improved patient selection, biomarkers for gauging treatment efficacy and safety, and translational models will be facilitated by the lipidomic deliverables. Importantly, lipid-based biomarkers and targets should lead the way as we progress toward more specialized therapeutics
    corecore