3 research outputs found

    DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer

    Get PDF
    Background: Genetic aberrations in DNA repair genes are linked to cancer, but less is reported about epigenetic regulation of DNA repair and functional consequences. We investigated the intragenic methylation loss at the three prime repair exonuclease 2 (TREX2) locus in laryngeal (n = 256) and colorectal cancer cases (n = 95) and in pan-cancer data from The Cancer Genome Atlas (TCGA). Results: Significant methylation loss at an intragenic site of TREX2 was a frequent trait in both patient cohorts (p = 0.016 and < 0.001, respectively) and in 15 out of 22 TCGA studies. Methylation loss correlated with immunohistochemically staining for TREX2 (p < 0.0001) in laryngeal tumors and improved overall survival of laryngeal cancer patients (p = 0.045). Chromatin immunoprecipitation, demethylation experiments, and reporter gene assays revealed that the region of methylation loss can function as a CCAAT/enhancer binding protein alpha (CEBPA)-responsive enhancer element regulating TREX2 expression. Conclusions: The data highlight a regulatory role of TREX2 DNA methylation for gene expression which might affect incidence and survival of laryngeal cancer. Altered TREX2 protein levels in tumors may affect drug-induced DNA damage repair and provide new tailored therapies

    The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    No full text
    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of >1000-fold in resistance between normal and NER-deficient cells (IC50 values for cells with deficiency in ERCC6: 0.15 mu M, XPC: 0.18 mu M, and normal cells: >180 mu M). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. (C) 2012 Elsevier Inc. All rights reserved
    corecore