9 research outputs found

    First report of microcephaly-capillary malformations syndrome in Russia

    Get PDF
    Background: Microcephaly-capillary malformation (MIC-CAP) syndrome is a newly described autosomal recessive syndrome characterized by microcephaly, multiple cutaneous capillary malformations, intractable epilepsy and profound developmental delay. We present the first description of MIC-CAP syndrome in Russia. Patient: We describe a 6-month-old girl with severe congenital microcephaly, intractable epilepsy (infantile spasms), multiple cutaneous capillary malformations and facial abnormalities. Genetic studies revealed the presence of new STAMPB gene mutations in the compound heterozygous state: c.273delA and the intron replacement c.204-5 CΒ >Β G. Conclusions: This report presents a case of MIC-CAP syndrome with earlier unreported new mutations of the STAMPB gene. Keywords: Microcephaly, Capillary malformations, Epilepsy, Deep developmental delay, STAMBP gen

    Active Sites in H-Mordenite Catalysts Probed by NMR and FTIR

    No full text
    Mordenites are widely used in catalysis and environmental protection. The catalytic properties of mordenite are largely determined by the composition of its crystal framework, i.e., the SiO2/Al2O3 molar ratio (MR), and the cationic form. In H-mordenites, the most important characteristic becomes the structure and distribution of acid sites, which depends on the number and distribution of Al tetrahedra in the framework. In the present work, the local structure of these centers in H-mordenite catalysts with a nominal MR varied from 9.9 to 19.8 was studied in detail using a combination of magic angle spinning nuclear magnetic resonance (MAS NMR) and Fourier transform infrared spectroscopy (FTIR). 27Al MAS NMR indicates the presence of extra-framework Al in most of the studied samples that results in a higher real MR of the zeolitic framework compared to the nominal value. Concentrations of Lewis and BrΓΈnsted acid sites, as well as of silanol groups were estimated by elemental analysis, NMR, and FTIR spectroscopy. The values of site concentrations obtained from band intensities of adsorbed CO and those of OH groups are compared with the amount of framework and extra-framework aluminum. The advantages and restrictions of different methods of active site characterization are discussed

    Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry

    No full text
    The research presents a comparative metabolomic study of extracts of Vigna unguiculata seed samples from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources. Analyzed samples related to different areas of use in agricultural production, belonging to different cultivar groups sesquipedalis (vegetable accessions) and unguiculata (grain accessions). Metabolome analysis was performed by liquid chromatography combined with ion trap mass spectrometry. Substances were localized in seeds using confocal and laser microscopy. As a result, 49 bioactive compounds were identified: flavonols, flavones, flavan-3-ols, anthocyanidin, phenolic acids, amino acids, monocarboxylic acids, aminobenzoic acids, fatty acids, lignans, carotenoid, sapogenins, steroids, etc. Steroidal alkaloids were identified in V. unguiculata seeds for the first time. The seed coat (palisade epidermis and parenchyma) is the richest in phenolic compounds. Comparison of seeds of varieties of different directions of use in terms of the number of bioactive substances identified revealed a significant superiority of vegetable accessions over grain ones in this indicator, 36 compounds were found in samples from cultivar group sesquipedalis, and 24 in unguiculata. The greatest variety of bioactive compounds was found in the vegetable accession k-640 from China

    Polyphenols from <i>Maackia amurensis</i> Heartwood Protect Neuronal Cells from Oxidative Stress and Prevent Herpetic Infection

    No full text
    Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1β€³S,2β€³S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1–14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential

    A First-in-Class Ξ²-Glucuronidase Responsive Conjugate for Selective Dual Targeted and Photodynamic Therapy of Bladder Cancer

    No full text
    In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a Ξ²-glucuronidase-responsive linker. Upon activation by Ξ²-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy

    Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

    Get PDF
    Leber?s hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit?encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits
    corecore