935 research outputs found

    Societal Structure and Stability in Low-Income Families in Arkansas

    Get PDF
    Societal structure is not built to support a single-parent household positively. This can be shown by research measuring children’s development in poverty, the median household income of single parents, and food insecurities and obesity of children in poverty. The first goal of this research is to investigate the patterns of struggle that single-parent families experience in low-income households. These patterns of struggle in low-income households will include poverty, race/ethnicity, and child development (e.g., education). The second goal is to investigate the policies in place to help single-parent families and why they are inefficient in assisting them. These goals helped narrow down previous research findings that brought to the surface the disadvantages single-parent families experience, why stability is critical for child development, and how poverty can impact upbringing (e.g., food insecurities)

    Distinct roles of interferon alpha and beta in controlling chikungunya virus replication and modulating neutrophil-mediated inflammation

    Get PDF
    Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-β (IFN-β knockout [IFN-β-KO] mice or mice treated with an IFN-β-blocking antibody) or IFN-α (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-α-blocking antibody). Mice lacking either IFN-α or IFN-β developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-α sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-β-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-β had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-β-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-α limiting early viral replication and dissemination and IFN-β modulating neutrophil-mediated inflammation

    The Impact of Patient Navigation on the Delivery of Diagnostic Breast Cancer Care in the National Patient Navigation Research Program: A Prospective Meta-Analysis.

    Get PDF
    Patient navigation is emerging as a standard in breast cancer care delivery, yet multi-site data on the impact of navigation at reducing delays along the continuum of care are lacking. The purpose of this study was to determine the effect of navigation on reaching diagnostic resolution at specific time points after an abnormal breast cancer screening test among a national sample. A prospective meta-analysis estimated the adjusted odds of achieving timely diagnostic resolution at 60, 180, and 365 days. Exploratory analyses were conducted on the pooled sample to identify which groups had the most benefit from navigation. Clinics from six medical centers serving vulnerable populations participated in the Patient Navigation Research Program. Women with an abnormal breast cancer screening test between 2007 and 2009 were included and received the patient navigation intervention or usual care. Patient navigators worked with patients and their care providers to address patient-specific barriers to care to prevent delays in diagnosis. A total of 4675 participants included predominantly racial/ethnic minorities (74 %) with public insurance (40 %) or no insurance (31 %). At 60 days and 180 days, there was no statistically significant effect of navigation on achieving timely diagnostic care, but a benefit of navigation was seen at 365 days (aOR 2.12, CI 1.36-3.29). We found an equal benefit of navigation across all groups, regardless of race/ethnicity, language, insurance status, and type of screening abnormality. Patient navigation resulted in more timely diagnostic resolution at 365 days among a diverse group of minority, low-income women with breast cancer screening abnormalities. Trial registrations clinicaltrials.gov Identifiers: NCT00613275, NCT00496678, NCT00375024, NCT01569672

    A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions

    Get PDF
    <p>Abstract</p> <p/> <p>Prostate cancer metastasizes to bone in the majority of patients with advanced disease leading to painfully debilitating fractures, spinal compression and rapid decline. In addition, prostate cancer bone metastases often become resistant to standard therapies including androgen deprivation, radiation and chemotherapy. There are currently few models to elucidate mechanisms of interaction between the bone microenvironment and prostate cancer. It is, thus, essential to develop new patient-derived, orthotopic models. Here we report the development and characterization of PCSD1 (Prostate Cancer San Diego 1), a novel patient-derived intra-femoral xenograft model of prostate bone metastatic cancer that recapitulates mixed osteolytic and osteoblastic lesions.</p> <p>Methods</p> <p>A femoral bone metastasis of prostate cancer was removed during hemiarthroplasty and transplanted into <it>Rag2<sup>-/-</sup>;γ<sub>c</sub><sup>-/- </sup></it>mice either intra-femorally or sub-cutaneously. Xenograft tumors that developed were analyzed for prostate cancer biomarker expression using RT-PCR and immunohistochemistry. Osteoblastic, osteolytic and mixed lesion formation was measured using micro-computed tomography (microCT).</p> <p>Results</p> <p>PCSD1 cells isolated directly from the patient formed tumors in all mice that were transplanted intra-femorally or sub-cutaneously into <it>Rag2<sup>-/-</sup>;γ<sub>c</sub><sup>-/- </sup></it>mice. Xenograft tumors expressed human prostate specific antigen (PSA) in RT-PCR and immunohistochemical analyses. PCSD1 tumors also expressed AR, NKX3.1, Keratins 8 and 18, and AMACR. Histologic and microCT analyses revealed that intra-femoral PCSD1 xenograft tumors formed mixed osteolytic and osteoblastic lesions. PCSD1 tumors have been serially passaged in mice as xenografts intra-femorally or sub-cutaneously as well as grown in culture.</p> <p>Conclusions</p> <p>PCSD1 xenografts tumors were characterized as advanced, luminal epithelial prostate cancer from a bone metastasis using RT-PCR and immunohistochemical biomarker analyses. PCSD1 intra-femoral xenografts formed mixed osteoblastic/osteolytic lesions that closely resembled the bone lesions in the patient. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study metastatic disease in the bone and to develop novel therapies for inhibiting prostate cancer growth in the bone-niche.</p

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in the cell lines of the NCI60 panel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.</p> <p>Methods</p> <p>We screened the NCI60 panel in search of cell lines that express low levels of MRN proteins, or that fail to arrest in S-phase in response to the topisomerase I inhibitor SN38. The NCI COMPARE program was used to discover compounds that preferentially target cells with these phenotypes.</p> <p>Results</p> <p>HCT116 cells were initially identified as defective in MRN and S phase arrest. Transfection with Mre11 also elevated Rad50 and Nbs1, and rescued the defective S-phase arrest. Cells of the NCI60 panel exhibited a large range of protein expression but a strong correlation existed between Mre11, Rad50 and Nbs1 consistent with complex formation determining protein stability. Mre11 mRNA correlated best with protein level suggesting it was the primary determinant of the overall level of the complex. Three other cell lines failed to arrest in response to SN38, two of which also had low MRN. However, other cell lines with low MRN still arrested suggesting low MRN does not predict an inability to arrest. Many compounds, including a family of benzothiazoles, correlated with the failure to arrest in S phase. The activity of benzothiazoles has been attributed to metabolic activation and DNA alkylation, but we note several cell lines in which sensitivity does not correlate with metabolism. We propose that the checkpoint defect imposes an additional mechanism of sensitivity on cells.</p> <p>Conclusions</p> <p>We have identified cells with possible defects in the MRN complex and S phase arrest, and a series of compounds that may preferentially target S phase-defective cells. We discuss limitations of the COMPARE program when attempting to identify compounds that selectively inhibit only a few cell lines.</p

    Fluorescent excimers and exciplexes of the purine base derivative 8-phenylethynyl-guanine in DNA hairpins

    Get PDF
    The ground- and excited-state electronic interactions between the nucleobase analog 8-(4′-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40–80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay
    corecore