31 research outputs found

    How to assess the role of Pt and Zn in the nephrotoxicity of Pt anti-cancer drugs?: An investigation combining μXRF and statistical analysis. Part II: Clinical application

    Get PDF
    International audienceIn this contribution, an approach developed previously for mice is used for human biopsy. In the case of patient 1, Pt detection is performed 6 days after the last oxaliplatin infusion, while for patient 2, the biopsy was performed more than 15 days after his first platin infusion and several dialysis. Even for these biological samples, experiments show that synchrotron mediated mXRF is a suitable tool to detect Pt in kidney biopsy, and thus probably for any organ exposed to Pt. Therefore, mXRF could also be of major interest to decipher the mechanism beyond Pt induced neurotoxicity, ototoxicity on human biopsy. Pharmacoavailability of chemotherapies is a major concern because some treatment failures are explained by poor tumor penetration of the active molecule. mXRF could be an elegant way to map the distribution of Pt inside cancerous cells at the micrometer scale. Pt and Zn are only two of the numerous trace elements that mXRF can detect; heavy metal intoxication diagnosis and the toxicity mechanism probably could also benefit from this innovative technique

    Inhibition of epidermal growth factor receptor signalling reduces hypercalcaemia induced by human lung squamous-cell carcinoma in athymic mice

    Get PDF
    The purpose of this study was to evaluate the role of the epidermal growth factor receptor (EGFR) in parathyroid hormone-related protein (PTHrP) expression and humoral hypercalcaemia of malignancy (HHM), using two different human squamous-cell carcinoma (SCC) xenograft models. A randomised controlled study in which nude mice with RWGT2 and HARA xenografts received either placebo or gefitinib 200 mg kg−1 for 3 days after developing HHM. Effectiveness of therapy was evaluated by measuring plasma calcium and PTHrP, urine cyclic AMP/creatinine ratios, and tumour volumes. The study end point was at 78 h. The lung SCC lines, RWGT2 and HARA, expressed high levels of PTHrP mRNA as well as abundant EGFR protein, but very little erbB2 or erbB3. Both lines expressed high transcript levels for the EGFR ligand, amphiregulin (AREG), as well as, substantially lower levels of transforming growth factor-α (TGF-α), and heparin binding-epidermal growth factor (HB-EGF) mRNA. Parathyroid hormone-related protein gene expression in both lines was reduced 40–80% after treatment with 1 μM of EGFR tyrosine kinase inhibitor PD153035 and precipitating antibodies to AREG. Gefitinib treatment of hypercalcaemic mice with RWGT2 and HARA xenografts resulted in a significant reduction of plasma total calcium concentrations by 78 h. Autocrine AREG stimulated the EGFR and increased PTHrP gene expression in the RWGT2 and HARA lung SCC lines. Inhibition of the EGFR pathway in two human SCC models of HHM by an anilinoquinazoline demonstrated that the EGFR tyrosine kinase is a potential target for antihypercalcaemic therapy

    Cognac: a framework for documenting and verifying the design of Cobol systems

    No full text
    For any non-trivial software project, architectural drift is a well-known problem. Over time, the design rules and guidelines governing the software project are no longer obeyed, resulting in that the software becomes more difficult to maintain. While there exist numerous tools — such as code checkers, architecture and design checkers, and source code query languages — that aid in alleviating this problem none of these approaches are tailored towards supporting one of the main languages still in use today in industry, namely Cobol. In this paper we present Cognac, an extension of the IntensiVE tool that allows for documenting and verifying design rules in Cobol systems. Next to discussing the architecture of Cognac, we present a validation of our tool on an industrial, large-scale Cobol system. 1

    Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare disorder with variable disease progression. To date, mutations in more than 20 different genes have been found. At present, PCD subtypes are described according to the ultrastructural defect on transmission electron microscopy (TEM) of the motile cilia. PCD with normal ultrastructure (NU) is rarely reported because it requires additional testing. Biallelic mutations in DNAH11 have been described as one cause of PCD with NU.The aim of our study was to describe the clinical characteristics of a large population of patients with PCD, in relation to the ultrastructural defect. Additionally, we aimed to demonstrate the need for biopsy and cell culture to reliably diagnose PCD, especially the NU subtype
    corecore