170 research outputs found

    Artemisinin Resistance and the Blame Game.

    Get PDF

    Tumor necrosis factor alpha antagonist drugs and leishmaniasis in Europe.

    Get PDF
    Leishmaniasis is endemic in Europe and the prevalence of latent infection in the Mediterranean region is high. Reports describing opportunistic leishmaniasis in European patients treated with tumor necrosis factor (TNF) alpha antagonist drugs are rapidly accumulating. For other granulomatous infections, risk of opportunistic disease varies by mode of TNF-alpha antagonism. This study explores whether this may also be the case for leishmaniasis. We ascertained the relative frequency of exposure to different TNF antagonist drugs among published cases of opportunistic leishmaniasis in Europe and compared this with the prescription of these drugs in Europe. We found that risk of opportunistic leishmaniasis is higher in patients receiving anti-TNF monoclonal antibodies (infliximab or adalimumab) compared with patients treated with the TNF-receptor construct etanercept. Clinicians may want to consider these observations, which suggest that etanercept should be favoured over anti-TNF monoclonal antibodies in individuals living in or visiting areas endemic for leishmaniasis until evidence from prospective research is available. A European adverse event reporting system is required to identify rare opportunistic infections associated with immunosuppressive and immunomodulatory biotherapies

    Need for optimized dosages in the design of comparative clinical trials of anti-malarial drugs.

    Get PDF
    We read with interest the publication on malaria treatment by Obonyo et al. (Malaria J 21:30, 2022). This commentary questions the methodology, especially the chosen time points of treatment outcome measures

    Higher IL-10 levels are associated with less effective clearance of Plasmodium falciparum parasites

    Get PDF
    The implications of high levels of the immune regulatory cytokine IL-10 in Plasmodium falciparum malaria are unclear. IL-10 may down-regulate pro-inflammatory responses and also exacerbate disease by inhibiting anti-parasitic immune functions. To study possible inhibiting effects on parasite clearance, IL-10 plasma levels were determined in 104 Tanzanian children, 1 to 4 years old, with acute uncomplicated P. falciparum malaria, and analysed for association with parasite densities during 3 days of anti-malarial treatment. Higher baseline IL-10 plasma levels were associated with statistically significantly higher parasite densities after 24, 48 and 72 h of treatment. These associations could not be explained by differences in initial parasitaemia, temperature, age, sex or type of treatment. Induction of high IL-10 production might be a direct or indirect mechanism whereby the parasite evades the immune response

    Clinical implications of Plasmodium resistance to atovaquone/proguanil: a systematic review and meta-analysis.

    Get PDF
    Background: Atovaquone/proguanil, registered as Malarone®, is a fixed-dose combination recommended for first-line treatment of uncomplicated Plasmodium falciparum malaria in non-endemic countries and its prevention in travellers. Mutations in the cytochrome bc1 complex are causally associated with atovaquone resistance. Methods: This systematic review assesses the clinical efficacy of atovaquone/proguanil treatment of uncomplicated malaria and examines the extent to which codon 268 mutation in cytochrome b influences treatment failure and recrudescence based on published information. Results: Data suggest that atovaquone/proguanil treatment efficacy is 89%-98% for P. falciparum malaria (from 27 studies including between 18 and 253 patients in each case) and 20%-26% for Plasmodium vivax malaria (from 1 study including 25 patients). The in vitro P. falciparum phenotype of atovaquone resistance is an IC50 value >28 nM. Case report analyses predict that recrudescence in a patient presenting with parasites carrying cytochrome b codon 268 mutation will occur on average at day 29 (95% CI: 22, 35), 19 (95% CI: 7, 30) days longer than if the mutation is absent. Conclusions: Evidence suggests atovaquone/proguanil treatment for P. falciparum malaria is effective. Late treatment failure is likely to be associated with a codon 268 mutation in cytochrome b, though recent evidence from animal models suggests these mutations may not spread within the population. However, early treatment failure is likely to arise through alternative mechanisms, requiring further investigation

    Antimalarial treatment in infants.

    Get PDF
    INTRODUCTION: Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age group. This review aims to summarize the available data on anti-malarial treatment in infants. AREAS COVERED: The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates, and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION: Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability, and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population

    Longitudinal Monitoring of Lactate in Hospitalized and Ambulatory COVID-19 Patients.

    Get PDF
    Hypoxemia is readily detectable by assessing SpO2 levels, and these are important in optimizing COVID-19 patient management. Hyperlactatemia is a marker of tissue hypoxia, particularly in patients with increased oxygen requirement and microvascular obstruction. We monitored peripheral venous lactate concentrations in hospitalized patients with moderate to severe COVID-19 (n = 18) and in mild ambulatory COVID-19 patients in home quarantine (n = 16). Whole blood lactate decreased significantly during the clinical course and recovery in hospitalized patients (P = 0.008). The blood lactate levels were significantly higher in hospitalized patients than ambulatory patients (day 1: hospitalized versus ambulatory patients P = 0.002; day 28: hospitalized versus ambulatory patients P = < 0.0001). Elevated lactate levels may be helpful in risk stratification, and serial monitoring of lactate may prove useful in the care of hospitalized COVID-19 patients

    A dose-dependent plasma signature of the safety and immunogenicity of the rVSV-Ebola vaccine in Europe and Africa.

    Get PDF
    The 2014-2015 Ebola epidemic affected several African countries, claiming more than 11,000 lives and leaving thousands with ongoing sequelae. Safe and effective vaccines could prevent or limit future outbreaks. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSV-ZEBOV) vaccine has shown marked immunogenicity and efficacy in humans but is reactogenic at higher doses. To understand its effects, we examined plasma samples from 115 healthy volunteers from Geneva who received low-dose (LD) or high-dose (HD) vaccine or placebo. Fifteen plasma chemokines/cytokines were assessed at baseline and on days 1, 2 to 3, and 7 after injection. Significant increases in monocyte-mediated MCP-1/CCL2, MIP-1β/CCL4, IL-6, TNF-α, IL-1Ra, and IL-10 occurred on day 1. A signature explaining 68% of cytokine/chemokine vaccine-response variability was identified. Its score was higher in HD versus LD vaccinees and was associated positively with vaccine viremia and negatively with cytopenia. It was higher in vaccinees with injection-site pain, fever, myalgia, chills, and headache; higher scores reflected increasing severity. In contrast, HD vaccinees who subsequently developed arthritis had lower day 1 scores than other HD vaccinees. Vaccine dose did not influence the signature despite its influence on specific outcomes. The Geneva-derived signature associated strongly (ρ = 0.97) with that of a cohort of 75 vaccinees from a parallel trial in Lambaréné, Gabon. Its score in Geneva HD vaccinees with subsequent arthritis was significantly lower than that in Lambaréné HD vaccinees, none of whom experienced arthritis. This signature, which reveals monocytes' critical role in rVSV-ZEBOV immunogenicity and safety across doses and continents, should prove useful in assessments of other vaccines

    Host genetic factors determining COVID-19 susceptibility and severity.

    Get PDF
    The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) poses an unprecedented challenge to humanity. SARS-CoV-2 infections range from asymptomatic to severe courses of COVID-19 with acute respiratory distress syndrome (ARDS), multiorgan involvement and death. Risk factors for disease severity include older age, male sex, increased BMI and pre-existing comorbidities. Ethnicity is also relevant to COVID-19 susceptibility and severity. Host genetic predisposition to COVID-19 is now increasingly recognized and whole genome and candidate gene association studies regarding COVID-19 susceptibility have been performed. Several common and rare variants in genes related to inflammation or immune responses have been identified. We summarize research on COVID-19 host genetics and compile genetic variants associated with susceptibility to COVID-19 and disease severity. We discuss candidate genes that should be investigated further to understand such associations and provide insights relevant to pathogenesis, risk classification, therapy response, precision medicine, and drug repurposing

    Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type

    Get PDF
    The loss of chloroquine due to selection and spread of drug resistant Plasmodium falciparum parasites has greatly impacted malaria control, especially in highly endemic areas of Africa. Since chloroquine removal a decade ago, the guidelines to treat falciparum malaria suggest combination therapies, preferentially with an artemisinin derivative. One of the recommended partner drugs is amodiaquine, a pro-drug that relies on its active metabolite monodesethylamodiaquine, and is still effective in areas of Africa, but not in regions of South America. Genetic studies on P. falciparum parasites have shown that different pfcrt mutant haplotypes are linked to distinct levels of chloroquine and amodiaquine responses. The pfcrt haplotype SVMNT (termed after the amino acids from codon positions 72-76) is stably present in several areas where amodiaquine was introduced and widely used. Parasites with this haplotype are highly resistant to monodesethylamodiaquine and also resistant to chloroquine. The presence of this haplotype in Africa was found for the first time in 2004 in Tanzania and a role for amodiaquine in the selection of this haplotype was suggested. This commentary discusses the finding of a second site in Africa with high incidence of this haplotype. The >50% SVMNT haplotype prevalence in Angola represents a threat to the rise and spread of amodiaquine resistance. It is paramount to monitor pfcrt haplotypes in every country currently using amodiaquine and to re-evaluate current combination therapies in areas where SVMNT type parasites are prevalent
    corecore