567 research outputs found

    Electronic Multiscale Hybrid Materials: Sinter-Free Inks, Printed Transparent Grids, and Soft Devices

    Get PDF
    Hybrid electronic materials combine the excellent electronic properties of metals and semiconductors with the mechanical flexibility, ease of processing, and optical transparency of polymers. This talk will discuss hybrids that combine organic and inorganic components at different scales. Metallic and semiconductor nanoparticle cores are coated with conductive polymer shells to create “hybrid inks” that can be inkjet-printed and form conductive leads without any sintering step. Transparent electrodes are printed using ultrathin metal nanowires with core diameters below 2 nm. The chemically synthesized wires spontaneously form percolating structures when patterned with a soft stamp; this rapidly yields optically transparent grid electrodes, even on demanding soft substrates. These new hybrid electronic materials enable the fabrication of soft electronics, including flexible sensors on polymer foils, radio-frequency identification (RFID) antennae on cardboard, and soft human–machine interfaces. Selected devices will be covered at the end of the talk

    A time-dependent variational principle for dissipative dynamics

    Get PDF
    We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contrast to the pure-state setting there is no canonical information geometry for mixed states and this leads to a family of possible trajectories --- one for each information metric. We focus on the case of the operationally motivated family of monotone riemannian metrics and show further, that in the particular case where the variational manifold is given by the set of fermionic gaussian states all of these possible trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.Comment: Published versio

    Identification of excitons, trions and biexcitons in single-layer WS2

    Get PDF
    Single-layer WS2_2 is a direct-gap semiconductor showing strong excitonic photoluminescence features in the visible spectral range. Here, we present temperature-dependent photoluminescence measurements on mechanically exfoliated single-layer WS2_2, revealing the existence of neutral and charged excitons at low temperatures as well as at room temperature. By applying a gate voltage, we can electrically control the ratio of excitons and trions and assert a residual n-type doping of our samples. At high excitation densities and low temperatures, an additional peak at energies below the trion dominates the photoluminescence, which we identify as biexciton emission.Comment: 6 pages, 5 figure

    Modelling Vibrational Dissociation of [H2–HCO]+

    Get PDF
    The [H2–HCO]+ complex is likely to be one of the most important complexes in interstellar space, as it is a complex of the most abundant interstellar species. In the current work, we investigate the interaction energy and potential surface of the complex using a range of computational methods. The dynamics of the complex are investigated by incorporating an external time-dependent field into Car-Parrinello molecular dynamics (CPMD) and inducing a vibrationally activated dissociation. This excitation method is compared to a normal-mode excitation from the equilibrium structure. The results agree well with the available experimental data: an excitation to the first vibrationally-excited state of either of the high-frequency HCO+ modes (Îœ2, Îœ3) causes a dissociation of the complex on picosecond timescales
    • 

    corecore