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We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a
locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational
manifold of mixed states. In contrast to the pure-state setting, there is no canonical information geometry for
mixed states, and this leads to a family of possible trajectories—one for each information metric. We focus on
the case of the operationally motivated family of monotone Riemannian metrics and show further that, in the
particular case where the variational manifold is given by the set of fermionic Gaussian states, all of these possible
trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.
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I. INTRODUCTION

One of the main challenges in a quantum-mechanical
experiment is to overcome the interaction of a system with its
environment. Such interactions lead to decoherence and often
obscure coherent quantum phenomena. Recently, it has been
shown that this vice can be turned into a virtue: Dissipative
processes can be exploited as a possible resource for quantum
state engineering [1-3]. Several evolutions leading to non-
trivial fixed points have now been proposed, including states
with nontrivial topological properties [4]. Such dissipative
engineering has opened up a completely new world for us.

Motivated by the new possibilities offered by dissipative
engineering, there has been renewed interest in understanding
dissipative processes in more detail. However, this task is
complicated by the fact that, as for ground states, we can only
hope for analytic solutions in very special cases. Therefore, in
general, we must take recourse to numerical approximation
techniques in order to gain insight into the physics of a
dissipative system. Typically, the method of choice here
is a Monte Carlo sampling algorithm. Such methods have
led to many insights into the dissipative systems occurring
in quantum optics but have faced limitations when applied
to strongly interacting many-particle systems, particularly
fermions, due to the inevitable sign problem.

There is, however, another general approach available to
us, namely, the variational method. This method has been
very successfully applied in the pure-state case leading to
unparalleled insights into the equilibrium physics of strongly
interacting many-body systems. Furthermore, the elegant
time-dependent variational principle (TDVP) [5,6] allows the
locally optimal study of nonequilibrium unitary dynamics. The
power of this method is well known in the field of quantum
chemistry where its application to the class of Hartree-Fock
states is known as time-dependent Hartree-Fock theory [7].
This technique has also been exploited to great effect in
the context of one-dimensional (1D) quantum spin systems
in conjunction with powerful expressive variational classes,
such as matrix product states, a method synonymous with the
density-matrix renormalization group [8].

In contrast to the pure-state case, there is no operationally
unique way to formulate the variational method for mixed
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states because there is no distinguished measure of information
distance: There are infinite families of inequivalent distance
measures, including examples, such as the fidelity and the trace
distance. This has complicated the formulation of a mixed-
state TDVP, which requires knowledge of the geometry of
state space. However, recent results in our understanding of
the information geometry of mixed states allow us to revisit
this problem. (See, however, Refs. [9,10] for related variational
approaches to the von Neumann equation.)

Thus, in this article, we formulate the TDVP for mixed
states in the general case of distance measures arising
from monotone Riemannian metrics. We then show that this
method, when applied to the variational class of fermionic
Gaussian states evolving according to an arbitrary Markovian
completely positive trace-preserving (CPT) map p, = & (po)
are all equivalent to the application of Wick’s theorem (via
Gaussification). Finally, we apply this method to the 1D spinful
Hubbard model subject to a decoherence process.

II. A REVIEW OF THE TDVP FOR PURE STATES

In this section, we review the TDVP for pure quantum
states and explain why this approach cannot be immediately
applied to the mixed case. First, we present the necessary
notation. We denote, by M, (C), the set of all complex n x n
matrices with entries in C. The state space of an n-dimensional
quantum system is given by the set D, (here viewed as
a differentiable manifold) of all density operators defined
by D, = {p € M,(O)|p' = p, p >0, tr(p) = 1}. In order to
formulate a time evolution within this manifold, we have to
introduce the notion of tangent space. The tangent space 7, D,
to D, at any interior point p € D, can be identified with the
set {A € M, (C)|AT = A, tr(A) = 0} of traceless Hermitian
matrices (we assume that our processes never include any
part of the boundary of the manifold). The set D, can be
given the structure of a Riemannian manifold by choosing a
positive bilinear form M,(A,B) on T, D, for all p € D,. This
supplements us with the notion of a distance. Throughout,
we define a variational class to be a submanifold V of
D, parametrized according to V = {p(x)|x € R}, where the
dependence on the parameters x/ is assumed to be analytic.
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FIG. 1. (Color online) Time-dependent variational principle with
respect to a variational manifold of mixed states V = {p(x)|x € R}.
A mixed quantum state p(x) within a variational manifold V evolves
in time according to an arbitrary physical process described by a CPT
map p, = & (po). In general, such a process leads out of the tangent
space of the variational manifold at the point p(x). Hence, we have
to “project back” into V using an appropriate measure of distance.

We consider the time evolution of a quantum state p, =
p(x(2)) € D, in its most general form, i.e., p, = &;(pp), where
& is a CPT map. Assuming that & is differentiable with
respect to ¢ allows us to write the equation of motion as
0;0: = L(p;), where L is the infinitesimal generator of the
dynamics. For example, £ could describe a Hamiltonian or
dissipative evolution of a quantum system. An exact solution
to this evolution is, in general, hard to find, and so we aim at
finding an optimal approximation to this evolution within the
variational class V.

To this end, we first review the case of Hamiltonian time
evolution within the set of pure quantum states. Here, the
variational class of state vectors is represented as the set
{l¥(x))|x € RP}. The time-dependent Schrodinger equation
then reads i/9;|y(x)) = —i H|y(x)), where 9; = 3/dx/.
Note that, in general, the vector H |[y(X)) is not an element
of the tangent space to V at |{(x)), whereas, the left side
is a linear combination of vectors that span the tangent
space TjyxyV. Thus, in general, there is no exact solution
for %/. The best approximation is given by the solution to
the minimization of the information distance (here measured
using the fidelity) between the left- and the right-hand sides:
ming; |x/ 0;|¥(x)) +iH|y(x))|. The minimum can be found
by applying an orthogonal projection of i H|y¥(x)) onto the
tangent space as depicted in Fig. 1.

This discussion immediately reveals why the TDVP cannot
be directly applied to the mixed-state setting: The approxima-
tion of the right-hand side of %/ ip = L;(p) by a vector in the
tangent space requires a unique notion of information distance.
In the mixed-state case, there is no operationally unique answer
since there exist infinite families of inequivalent measures, and
hence, there is no canonical choice of Riemannian metric on
D,. However, in the next section, we explain a possible solution
to this problem.

III. FORMULATION OF THE TDVP FOR MIXED STATES

As we have explained above, there exists no canonical
choice of Riemannian metrics in the set of mixed quantum
states. However, it turns out that there are several families of
Riemannian metrics which naturally arise from information-
theoretic considerations. Here, the natural condition is that
the metric is monotone, meaning that the norm induced by
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the bilinear form M,y cannot increase under any CPT map
E,ie., Mg, (E(A),E(A)) < M,(A,A). The reasoning here is
that the distinguishability of two states infinitesimally close
to p can never be increased under the action of a channel.
Remarkably, Petz showed there is a one-to-one correspondence
between the set of monotone metrics and a special class
of superoperators 2, (built in terms of convex operator
functions) [11]: These lead to monotone metrics according
to M,(A,B) = (A,Q,(B)) = [ ATQ,(B)].

These monotone metrics now allow an operationally moti-
vated formulation of the TDVP for the dissipative dynamics
generated by 9,0, = L(p;) within a given variational class V.
The setup is identical to the pure-state case: We aim to find
the optimal trajectory p, € V generated by the vector field
coming from the optimal element A € T, V, which is closest
to L(p;) where we use the quadratic form M, (A, B) to measure
the distance. That is, we solve infacr, vy M, (A — L(p;),A —
L(p,)). An intuitive picture of this last equation is given in
Fig. 1: The evolution under £ takes us out of the variational
manifold V, and we want to project back into V to find the
state in the variational manifold that is the best approximation
to this evolution. Using the definition of M, , we find that this
is equivalent to solving

inf (A — L(p1),2, (A — L(p))). (1)

AeT,V

Parametrizing A = vfaj p:, wWe can rewrite this infimum as
infyegp v/ G,v — v'1, —17'v + ¢o. The solution is given by

v=G,"l, 2
(Gp)jr = (9jp(x(1)), 2, (I p(X(1)))), 3)
() = (8, p(x(1)), 2, (L(p(xX(1)))), 4)

where G, is the pullback metric or Gram matrix. This solution
gives us the optimal trajectory (locally in time) within ) via
integration of the equation of motion,

dpr = v/ (t,p)0;pr. 5

This equation of motion is the first main contribution of our
article. Equations (2)—(5) can be applied to any variational
manifold subject to any physical process. In the next section,
we apply this framework to a concrete example that is relevant
in many-body physics.

IV. THE TDVP FOR FERMIONIC GAUSSIAN STATES

The understanding of fermionic quantum systems is of
central interest in many fields of physics. Fermions are the
building blocks of matter and, thus, central to some of the
most fascinating effects known in the theory of many-body
physics, such as superconductivity or the quantum Hall
effect. However, most problems of interest do not have
a closed analytic solution, and we have to use numerical
approximation techniques and appropriate variational wave
functions to obtain insight into these systems. In the following,
we introduce the class of fermionic Gaussian states (fGSs) that
has been successfully applied to solve fermionic many-body
problems in the pure-state setting. We show then how the
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TDVP can be applied using this class of states as our variational
class V¢ and give a numerical example in the last section.

In the following, we describe fermionic systems in terms
of N fermionic mode operators a; obeying the canonical

anticommutation relations {a}:,al} = &y;. We use the equiv-
alent representation in terms of 2N Hermitian Majorana
operators ¢yj_j = aj. +a; and ¢; = (—i)(a; —a;), which
obey {cy,c;} = 28. We take, as our variational manifold,
the set of fGSs. Fermionic Gaussian states are those states
whose density operator can be expressed as an exponential
of a quadratic function of the Majorana operators p =
k exp[—5c” Kc], where K = —KT € R*¥>2V Al informa-
tion about the state is encoded in the real and antisymmetric
covariance matrix (CM) I'y; = %tr([ck,q]p) due to Wick’s
theorem: i’tr[pcj, ---c;,, 1 =Py ;) where 1< ji <

© < jop 2M and ', j,, is the corresponding 2p x 2p
submatrix of I'. Pi(T";, jzp)z =det(T'j,, .. j,,) s called the
Pfaffian (see, e.g., Ref. [12] for further details).

The class of fGSs is a natural generalization of the
variational classes used in Hartree-Fock and BCS theories.
Thus, it is combining and extending the most successful tools
in the description of fermionic many-body systems and, hence,
allows for a description of a wide class of fermionic phases
of matter, such as superfluids, Mott, and spin-ordered phases.
Recently, it has also been shown that fGSs with topological
order can be engineered in a cold-atom implementation via
a local dissipative process [4]. Thus, f{GSs have proven to be
a powerful class capable of capturing fermionic phases with
highly nontrivial properties. Every pure fGS is the ground state
of a quadratic Hamiltonian. Furthermore, fGSs remain Gaus-
sian under the evolution according to a quadratic Hamiltonian
or a dissipative process with linear Lindblad operators. Using
this, fGSs have allowed the approximation of the ground and
thermal states of, the time evolution [13] of, as well as the
excitation spectra [14] of interacting fermionic systems.

The main ingredient used in all studies exploiting fGSs is a
process known as Gaussification, i.e., the approximation of any
N-body correlation function in terms of a product of single-
particle correlation functions via Wick’s theorem (see above):

Definition 1. Let o be a fermionic quantum state. Then,
its Gaussification pg = G(o) € Vg is defined via the relation
I'(pg) = I'(0), which is equivalent to the application of
Wick’s theorem to o.

In the following, we show that the process of Gaussification
is locally optimal in time within the variational class of fGSs
for all @ metrics since every monotone metric can be written
as a convex combination of them [11].

Theorem 1. Let &, be an arbitrary (differentiable) Markovian
CPT map defining a time evolution on the space of density
matrices via p; = &(pp). Then, the optimal approximation
of this time evolution within the variational manifold of
Gaussian states Vg with respect to any (convex combination
of) monotone metrics of «-norm type,

Qo) = 3(0 " %0p* " + p*lop™®) (6)

is obtained via Gaussification.

Theorem 1 is the second main result of this article. To
prove it, we obtain a Gaussification of the time evolution
of p according to the generator £ of the CPT map &,
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as follows. Let p(z + 8t) = p(t) + 8t L(p), where &t is an
infinitesimal time step. The operator p(t + 6¢) — p(¢) is not
necessarily a member of the tangent space 7,);. However,
the Gaussified operator G(p(t + 8t)) — p(¢) is, and it is,
therefore, a linear combination of the tangent vectors 9; p, i.e.,
G(o(t +81)) = p(t) + 8t 3, v/d;p, where v/ € R. Since, by
definition, Gaussification implies I'(G(p)) = I'(p), we obtain,
from the linearity of the map I', the following defining
condition for the expansion parameters v/:

tr[cx, ci, L(p)] = Z vjtr[cklckzajp]. 7
J

Now, we show that an application of the TDVP projection with
respect to any « norm also leads to Eq. (7). For the proof of
this statement, we need the following:

Corollary 1. Let p € Vg be a fGS of N modes, and let
T,V denote the tangent space of p. Then, B = {9, j,0 =
(SZ%)’1 (icj ¢j)}i<ji<jr<on is a Hermitian basis for the tangent
space T,Vg. [Here, (ji, j2) denotes a multi-index.]

Proof. We first claim that, if {Q,}?Y, is a set of linearly
independent operators, then so is { Qg(Qa)}ii’ 1~ This follows
immediately from the fact that Q, is a positive superoperator
so that B is a set of linearly independent vectors.

Next, we show that dim(B) = dim(7,V¢). To this end,
we determine a basis of 7,V by applying the most general
infinitesimal Gaussian transformation on p [12]. These are
of the form p = WpW'/ttfWoW1], where W = ei¢Zucta
with Zy = Xy +iYu, Xu,Yu € R, and e <« 1. This
leads directly to the tangent vectors Ag) = [p,crc] and
A,(j) = i{p,cxc;} — 2Ty p. In order to determine the number
of linearly independent tangent vectors, we work in the
basis & = ), Oyc;, where 00T =1 so that p is in
its standard form p = ]_[;V:, %(]1 +iAjCrj_1C2;), where
Aj € (—1,1) (i.e., p has no pure subspace). Then, the tangent
vectors are readily calculated. For all 1 <k <l < N, we
obtain A(zllf,)zl = —2i(MCoCo—1 + MiCox—1C2)Put> A(21:?2l_1 =
2i (Ao Cor — AkCor—1C21—1)Pxis A(zl,f)_u,_, = 2i(ACok—1Cy +
AkCoxCo1—1) P, and Aé’;),lyzl = 2i(—=AiCop—1Co—1 + A CoxCoy)
P> where pu = [T, 4, %(]1 +iAjCyj—1C2j). Furthermore, we
find that A5, = 2i @y — MhiCo1Eo—1)pir: Asy_y =
2i(CorCor—1 + AkAiCok—1C21)Pri, A<21k)_l’21_l = 2i(Cok—1C—1 —
AMcACoxCo) P,  and A(zlk)_m; = 2i(Cop—1Co + MAiCorCo—1)
Pri-  Thus, we obtain, for all Xg; e(—1,1),
the four linearly independent basis vectors
[Cop—182—10kt» 1Co—1C2 Prts 1CoCo—1 P, and iCop_Cor . If
k =1, we obtain A% | 5, = 2i(1 — A2)éy_1Cupx, Whereas,
A(lef)fllk = 0. Thus, the dimension of the tangent space is
dim(T,Vs) =4N(N —1)/2+ N =2N(2N — 1) = dim(B).

Finally, we show that the operators 9;;,, j,)0 are Hermitian.
This follows immediately from the fact that £27((9;,, ,) o)) =
Q7(d(j,.j»yp) and that Q7 is invertible. ]

With Corollary 1 in hand, we now directly apply the TDVP
projection in our special basis, following Eq. (2). We see that

(G )i ). thr ko) = (8017000 25 (Beky ko 0)) = 1[0 iy €k, ks ]
Up)iji. i = (30100525 (L(p))) = t[ L(p)ex, e, |
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FIG. 2. (Color online) (a) Antiferromagnetic (AF) order in the
ground state p, of the Hubbard model for u = 4, u = —2. The steady
state p, shows a ferromagnetic (FM) order. (b) Comparison of the
real-time evolution (time 7 in units of 1/«) of the dissipative process
with the Gaussified version. We present the difference in the CM and
the two states dT'(r) = [Tyg0 — Ty ll2. dp(t) = llp6(1) = p(0)]la-
(c) Purity, p, = tr[p2], for solid: the exact and dashed: the Gaussified
evolution pg. (d) Evolution of the particle number n for the two spin
states o, = 1, for the real (p), and for the Gaussified (o) process.

and we arrive at Eq. (7). This proves the equivalence of Gaus-
sification and the application of the TDVP to the variational
class of Gaussian states.

V. EXAMPLE

In the following, we apply our approach to the one-
dimensional spinful Hubbard model with repulsive inter-
actions subject to a magnetic field. The evolution of the
system is described by a Lindblad equation d;p = —i[H,p] +

kY, jepil = Ljlje,p} where

H=1J Zai,gsax-&-l,m +u an,Tnx,i +u an,(rsa

X,0% X X,05

Jx = ainax,i.
Starting from the ground state of the Hubbard Hamiltonian, we
expect that the external noisy magnetic field modeled by the
operators j, drives the system to a completely spin-polarized
state. The time scale of this process depends on the ratio
between the decoherence strength « and the parameters of
the Hubbard Hamiltonian.

We consider a system of L = 4 sites with periodic boundary

conditions at half filling and consider an interaction u = 4, a
chemical potential © = —2, and x = 1 where we take the
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hopping J to be the energy scale. The unique ground state
po has AF order [see Fig. 2(a) (squares)]. We implement a
real-time evolution p(¢) of the dissipative process, arriving at
a unique steady state py, which is completely spin polarized
(FM order) [Fig. 2(a) (circles)] and is given by Hi:l aIT|0).
In order to measure how well the Gaussified evolution given
by pg(t) approximates the exact dynamics, we present the
deviation dI'(t) = [T,y — T'pyll2 of the CM of the real and
Gaussified process and the distance between the two states
dop(t) = ||pc(t) — p()|l> in Fig. 2(b). We find that, as one
might expect, on short time scales, the Gaussified dynamics
takes a different path from the exact evolution but quickly
coincides with the exact evolution for intermediate and long
time scales. This can be explained by the fact that the ground
state of the Hubbard model is not a Gaussian state so that the
initial state for the Gaussified evolution is a long distance from
the ground state.

In order to obtain more insight into the Gaussified evolution,
we compare the time dependence of some physical quantities
with the exact evolution. In Fig. 2(c), we present the purity
Dp = tr[ p2] for the exact evolution (solid) and the Gaussified
process (dashed). We see that we end up in a pure state with
only spin-up particles [Fig. 2(d)] in the limit # — oo in both
cases.

VI. SUMMARY

To summarize, we have extended the time-dependent vari-
ational principle to the mixed-state setting, providing locally
optimal (in time) equations that allow for an approximation of
any Lindblad dynamics, given a variational manifold of mixed
states and some information metric. In the case of fermionic
Gaussian states, we have proven that all « metrics lead to the
same dynamics in the space of density matrices, which can
equivalently be obtained via an application of Wick’s theorem
at each time step (Gaussification). Thus, this method can easily
be applied to large systems in any dimension and geometry,
providing a powerful numerical tool for a variational study of
dissipative dynamics for mixed quantum states.
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