150 research outputs found

    Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane

    Get PDF
    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37C. Overall solvent productivity of fermentation connected with continuous product removal by pervaporation was 2.34 g l(-1) h(-1). The supported ionic liquid membrane (SILM) was impregnated with 15 wt% of a novel ionic liquid (tetrapropylammonium tetracyano-borate) and 85 wt% of polydimethylsiloxane. Pervaporation, accomplished with the optimized SILM, led to stable and efficient removal of the solvents butan-1-ol and acetone out of a C. acetobutylicum culture. By pervaporation through SILM, we removed more butan-1-ol than C. acetobutylicum was able to produce. Therefore, we added an extra dose of butan-1-ol to run fermentation on limiting values where the bacteria would still be able to survive its lethal concentration (15.82 g/l). After pervaporation was switched off, the bacteria died from high concentration of butan-1-ol, which they produced

    First demonstration of broadcasting high capacity data in large-core POF-based in-home networks

    Get PDF
    We report a novel low-cost in-home broadcasting system using a 1-mm core graded-index plastic optical fibre split network reaching up to 35 meters. We demonstrated broadcasting 2.5Gbit/s data to four end-users employing discrete multi-tone modulatio

    Plastic Optical Fiber Technology for Reliable Home Networking: Overview and Results of the EU Project POF-ALL

    Get PDF
    The rising performance of broadband connections for residential users, particularly in conjunction with fiber to the home, will present a new challenge for telecom operators in the short and medium terms: how to deliver the high bit rate digital signals with high quality-of-service to all consumer devices scattered inside the building of final users? Among the many different solutions for the home network, we review in this article the use of polymer optical fibers for short-reach and high-capacity optical communications for residential customer premises. POF is an easy-to-install, low-cost, and eye-safe solution for these networks, with the potential of being future-proof. In this article the state of the art in POF technology is presented by summarizing significant results achieved in the European project POF-ALL. Data transmission rates of more than 1 Gb/s over 50+ m and 100 Mb/s over 200+ m of standard step-index POF have been show

    Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection

    Get PDF
    Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we delineate pathways of intra- and extracellular siderophore biosynthesis and show that A. fumigatus synthesizes a developmentally regulated fourth siderophore, termed hydroxyferricrocin, employed for conidial iron storage. By inactivation of the nonribosomal peptide synthetase SidC, we demonstrate that the intracellular siderophores are required for germ tube formation, asexual sporulation, resistance to oxidative stress, catalase A activity, and virulence. Restoration of the conidial hydroxyferricrocin content partially rescues the virulence of the apathogenic siderophore null mutant ΔsidA, demonstrating an important role for the conidial siderophore during initiation of infection. Abrogation of extracellular siderophore biosynthesis following inactivation of the acyl transferase SidF or the nonribosomal peptide synthetase SidD leads to complete dependence upon reductive iron assimilation for growth under iron-limiting conditions, partial sensitivity to oxidative stress, and significantly reduced virulence, despite normal germ tube formation. Our findings reveal distinct cellular and disease-related roles for intra- and extracellular siderophores during mammalian Aspergillus infection

    One-pot bio-synthesis: N-acetyl-d-neuraminic acid production by a powerful engineered whole-cell catalyst

    Get PDF
    Whole cell biocatalysis is an important tool for pharmaceutical intermediates synthesis, although it is hindered by some shortcomings, such as high cost and toxicity of inducer, mass transfer resistance caused by cell membrane and side reactions. Whole-cell catalysis using N-acetyl-d-glucosamine 2-epimerase (EC 5.1.3.8) and N-acetyl-d-neuraminic acid (Neu5Ac) aldolase (EC 4.1.3.3) is a promising approach for the production of Neu5Ac, a potential precursor of many anti-viral drugs. A powerful catalyst was developed by packaging the enzymes in an engineered bacterium and using a safe temperature-induced vector. Since the mass transfer resistance and the side reactions were substantially reduced, a high Neu5Ac amount (191 mM) was achieved. An efficient method was also presented, which allows one-pot synthesis of Neu5Ac with a safe and economic manner. The results highlight the promise of large-scale Neu5Ac synthesis and point at a potential of our approach as a general strategy to improve whole-cell biocatalysis

    Endothelial Cells in Co-culture Enhance Embryonic Stem Cell Differentiation to Pancreatic Progenitors and Insulin-Producing Cells through BMP Signaling

    Get PDF
    Endothelial cells (ECs) represent the major component of the embryonic pancreatic niche and play a key role in the differentiation of insulin-producing β cells in vivo. However, it is unknown if ECs promote such differentiation in vitro. We investigated whether interaction of ECs with mouse embryoid bodies (EBs) in culture promotes differentiation of pancreatic progenitors and insulin-producing cells and the mechanisms involved. We developed a co-culture system of mouse EBs and human microvascular ECs (HMECs). An increase in the expression of the pancreatic markers PDX-1, Ngn3, Nkx6.1, proinsulin, GLUT-2, and Ptf1a was observed at the interface between EBs and ECs (EB-EC). No expression of these markers was found at the periphery of EBs cultured without ECs or those co-cultured with mouse embryonic fibroblasts (MEFs). At EB-EC interface, proinsulin and Nkx6.1 positive cells co-expressed phospho-Smad1/5/8 (pSmad1/5/8). Therefore, EBs were treated with HMEC conditioned media (HMEC-CM) suspecting soluble factors involved in bone morphogenetic protein (BMP) pathway activation. Upregulation of PDX-1, Ngn3, Nkx6.1, insulin-1, insulin-2, amylin, SUR1, GKS, and amylase as well as down-regulation of SST were detected in treated EBs. In addition, higher expression of BMP-2/-4 and their receptor (BMPR1A) were also found in these EBs. Recombinant human BMP-2 (rhBMP-2) mimicked the effects of the HMEC-CM on EBs. Noggin (NOG), a BMP antagonist, partially inhibited these effects. These results indicate that the differentiation of EBs to pancreatic progenitors and insulin-producing cells can be enhanced by ECs in vitro and that BMP pathway activation is central to this process
    corecore