9,653 research outputs found

    Episode of unusual high solar ultraviolet radiation over central Europe due to dynamical reduced total ozone in May 2005

    Get PDF
    In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions

    The reason why doping causes superconductivity in LaFeAsO

    Full text link
    The experimental observation of superconductivity in LaFeAsO appearing on doping is analyzed with the group-theoretical approach that evidently led in a foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause of both the antiferromagnetic state and the accompanying structural distortion in this material. Doping, like the structural distortions, means also a reduction of the symmetry of the pure perfect crystal. In the present paper we show that this reduction modifies the correlated motion of the electrons in a special narrow half-filled band of LaFeAsO in such a way that these electrons produce a stable superconducting state

    The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach

    Full text link
    As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    Zuschrift: Zur Stellung des Verkehrs in der Marktwirtschaft

    Full text link

    Environmental effects on neutron monitors

    Get PDF

    Latitude surveys with a calibration neutron monitor

    Get PDF

    Triplon mean-field analysis of an antiferromagnet with degenerate Shastry-Sutherland ground states

    Full text link
    We look into the quantum phase diagram of a spin-12\frac{1}{2} antiferromagnet on the square lattice with degenerate Shastry-Sutherland ground states, for which only a schematic phase diagram is known so far. Many exotic phases were proposed in the schematic phase diagram by the use of exact diagonalization on very small system sizes. In our present work, an important extension of this antiferromagnet is introduced and investigated in the thermodynamic limit using triplon mean-field theory. Remarkably, this antiferromagnet shows a stable plaquette spin-gapped phase like the original Shastry-Sutherland antiferromagnet, although both of these antiferromagnets differ in the Hamiltonian construction and ground state degeneracy. We propose a sublattice columnar dimer phase which is stabilized by the second and third neighbor antiferromagnetic Heisenberg exchange interactions. There are also some commensurate and incommensurate magnetically ordered phases, and other spin-gapped phases which find their places in the quantum phase diagram. Mean-field results suggest that there is always a level-crossing phase transition between two spin gapped phases, whereas in other situations, either a level-crossing or a continuous phase transition happens
    corecore