3 research outputs found

    Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces

    Get PDF
    In the current work, a three-dimensional computational study regarding coupled heat and mass transfer during both the hydrogenation and dehydrogenation process in upscale cylindrical metal hydride reactors is presented, analysed and optimized. Three different heat management scenarios were examined at the degree to which they provide improved system performance. The three scenarios were: 1) plain embedded cooling/heating tubes, 2) transverse finned tubes and 3) longitudinal finned tubes. A detailed optimization study was presented leading to the selection of the optimized geometries. In addition, two different types of hydrides, LaNi5 and an AB2-type intermetallic were studied as possible candidate materials for using as the first stage alloys in a two-stage metal hydride hydrogen compression system. As extracted from the above results, it is clear that the case of using a vessel equipped with 16 longitudinal finned tubes is the most efficient way to enhance the hydrogenation kinetics when using both LaNi5 and the AB2-alloy as the hydride agents. When using LaNi5 as the operating hydride the case of the vessel equipped with 60 embedded cooling tubes presents the same kinetic behaviour with the case of the vessel equipped with 12 longitudinal finned tubes, so in that way, by using extended surfaces to enhance the heat exchange can reduce the total number of tubes from 60 to 12. For the case of using the AB2-type material as the operating hydride the performance of the extended surfaces is more dominant and effective compared to the case of using the embedded tubes, especially for the case of the longitudinal extended surfaces

    Efficient hydrogen storage and compressors by using metal hydrides.

    No full text
    Hydrogen gas is considered as the key "green" technology for its endless production-consumption procedure, known better as the "water-cycle". In this cycle, hydrogen is directly produced from water electrolysis and while forms water again, when combusted with oxygen, releasing energy. However, as the most lightweight gas, the volumetric density of hydrogen makes it inappropriate for use in most fuel applications. Hydrogen storage technologies that promote the compression of the gas, along with a solid state form of storage, based on the consumer needs, are a critical component to further development of a hydrogen fuel-based economy. Among the breakthrough hydrogen technologies, metal hydrides have drawn special attention due to their multiple properties. Their ability to react with hydrogen at various pressure and temperature conditions opened a whole new universe for storing energy in the form of hydrogen. Moreover, their unique capability to operate as thermal machines in order to compress hydrogen is of major importance and it will probably affect future hydrogen technologies. The research described in this thesis tries to reveal new metal hydrides with enhanced properties or to enrich knowledge on already investigated compounds. The research conducted was multidisciplinary in nature and all the involved detailed investigations tried to identify correlations between micro-structural and chemical properties with the thermodynamic properties of the metal hydrides. The research undertaken focused in three key research areas: (i) structural characterization by means of the X-Ray Diffraction (XRD) technique and Rietveld analysis, (ii) microstructural observation and microchemical characterization by SEM/EDX analysis and (iii) thermodynamic properties investigation by hydrogen absorption/desorption measurements. The interactions between these different properties can be complex, and they are not always resulting to data that can be easily exploited. In a more extensive manner, several Ti- or Zr-based intermetallic alloys have been synthesized from pure elements either using the arc-melting or the induction-levitation melting method. Both techniques are characterized as "Rapid Solidification Processes" with crucial influence on the crystal structure of the investigated compounds. The word "crucial" has been used in the last phrase since the rapid solidification of the liquid compounds result in fine, well-structured microstructures that are, as well as with the chemical properties, the key factor of their thermodynamic properties. All the compounds have been fully characterized by XRD and SEM/EDX, and they are mostly exhibiting the hexagonal C14 or the cubic C15 type Laves phases. More specifically, Zr-based compounds with Laves phase structures are considered advantageous hydrides for the large span of plateau pressures (0 - 1000 bar) they can exhibit when forming reversible metal hydrides. Since these intermetallic compounds are considered as low temperature hydrides, all hydrogen Pressure-Composition Isotherms (PCI) have been conducted in the range of 0 to ~100 oC. It has been shown that small compositional changes can affect the atomic structure that has a direct effect, in respect, on the thermodynamic properties. Thus, compounds with really close composition can have a very large difference in the equilibrium pressures in some given temperatures. Finally, the metal hydride hydrogen compression technology is presented in terms that metal hydrides with successive equilibrium pressures can be used in order to increase hydrogen pressure using only waste heat as driving force
    corecore