29 research outputs found
Double-containment coil with enhanced winding mounting for transcranial magnetic stimulation with reduced acoustic noise
Objective: This work aims to reduce the acoustic noise level of transcranial
magnetic stimulation (TMS) coils. TMS requires high currents (several thousand
amperes) to be pulsed through the coil, which generates a loud acoustic impulse
whose peak sound pressure level (SPL) can exceed 130 dB(Z). This sound poses a
risk to hearing and elicits unwanted neural activation of auditory brain
circuits. Methods: We propose a new double-containment coil with enhanced
winding mounting (DCC), which utilizes acoustic impedance mismatch to contain
and dissipate the impulsive sound within an air-tight outer casing. The coil
winding is potted in a rigid block, which is mounted to the outer casing by its
acoustic nodes that are subject to minimum vibration during the pulse. The rest
of the winding block is isolated from the casing by an air gap, and sound is
absorbed by foam within the casing. The casing thickness under the winding
center is minimized to maximize the coil electric field output. Results:
Compared to commercial figure-of-eight TMS coils, the DCC prototype has 10-33
dB(Z) lower SPL at matched stimulation strength, whilst providing 22% higher
maximum stimulation strength than equally focal commercial coils. Conclusion:
The DCC design greatly reduces the acoustic noise of TMS while increasing the
achievable stimulation strength. Significance: The acoustic noise reduction
from our coil design is comparable to that provided by typical hearing
protection devices. This coil design approach can enhance hearing safety and
reduce auditory co-activations in the brain and other detrimental effects of
TMS sound.Comment: 8 pages, 5 figure
Multi-locus transcranial magnetic stimulation—theory and implementation
Background: Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method: a magnetic field pulse from a TMS coil can excite neurons in a desired location of the cortex. Conventional TMS coils cause focal stimulation underneath the coil centre; to change the location of the stimulated spot, the coil must be moved over the new target. This physical movement is inherently slow, which limits, for example, feedback-controlled stimulation. Objective: To overcome the limitations of physical TMS-coil movement by introducing electronic targeting. Methods: We propose electronic stimulation targeting using a set of large overlapping coils and introduce a matrix-factorisation-based method to design such sets of coils. We built one such device and demonstrated the electronic stimulation targeting in vivo. Results: The demonstrated two-coil transducer allows translating the stimulated spot along a 30-mmlong line segment in the cortex; with five coils, a target can be selected from within a region of the cortex and stimulated in any direction. Thus, far fewer coils are required by our approach than by previously suggested ones, none of which have resulted in practical devices. Conclusion: Already with two coils, we can adjust the location of the induced electric field maximum along one dimension, which is sufficient to study, for example, the primary motor cortex. (C) 2018 The Author(s). Published by Elsevier Inc.Peer reviewe
An optically pumped magnetic gradiometer for the detection of human biomagnetism
We realise an intrinsic optically pumped magnetic gradiometer based on non-linear magneto-optical rotation. We show that our sensor can reach a gradiometric sensitivity of 18 fT cm−1√Hz−1 and can reject common mode homogeneous magnetic field noise with up to 30 dB attenuation. We demonstrate that our magnetic field gradiometer is sufficiently sensitive and resilient to be employed in biomagnetic applications. In particular, we are able to record the auditory evoked response of the human brain, and to perform real-time magnetocardiography in the presence of external magnetic field disturbances. Our gradiometer provides complementary capabilities in human biomagnetic sensing to optically pumped magnetometers, and opens new avenues in the detection of human biomagnetism
Coil optimisation for transcranial magnetic stimulation in realistic head geometry
Background: Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. Objective: To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. Methods: We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. Results: We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. Conclusion: The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. (C) 2017 Elsevier Inc. All rights reserved.Peer reviewe
The effect of experimental pain on short-interval intracortical inhibition with multi-locus transcranial magnetic stimulation
Chronic neuropathic pain is known to alter the primary motor cortex (M1) function. Less is known about the normal, physiological effects of experimental neurogenic pain on M1. The objective of this study is to determine how short-interval intracortical inhibition (SICI) is altered in the M1 representation area of a muscle exposed to experimental pain compared to SICI of another muscle not exposed to pain. The cortical representation areas of the right abductor pollicis brevis (APB) and biceps brachii (BB) muscles of 11 subjects were stimulated with a multi-locus transcranial magnetic stimulation device while the resulting motor-evoked potentials (MEPs) were recorded with electromyography. Single- and paired-pulse TMS was administered in seven conditions, including one with the right hand placed in cold water. The stimulation intensity for the conditioning pulses in the paired-pulse examination was 80% of the resting motor threshold (RMT) of the stimulated site and 120% of RMT for both the test and single pulses. The paired-pulse MEP amplitudes were normalized with the mean amplitude of the single-pulse MEPs of the same condition and muscle. SICI was compared between conditions. After the cold pain, the normalized paired-pulse MEP amplitudes decreased in APB, but not in BB, indicating that SICI was potentially increased only in the cortical area of the muscle subjected to pain. These data suggest that SICI is increased in the M1 representation area of a hand muscle shortly after exposure to pain has ended, which implies that short-lasting pain can alter the inhibitory balance in M1.Peer reviewe
TMS with fast and accurate electronic control : Measuring the orientation sensitivity of corticomotor pathways
Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. Objective: We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. Methods: We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custommade electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3 degrees steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. Results: The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. Conclusion: The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. (C) 2022 The Authors. Published by Elsevier Inc.Peer reviewe
Transcranial magnetic stimulation set-up for small animals
Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.Peer reviewe
Transcranial magnetic stimulation input–output curve slope differences suggest variation in recruitment across muscle representations in primary motor cortex
Measurement of the input–output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects
Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study
Short-interval intracortical inhibition (SICI) has been studied with paired-pulse transcranial magnetic stimulation (TMS) by administering two pulses at a millisecond-scale interstimulus interval (ISI) to a single cortical target. It has, however, been difficult to study the interaction of nearby cortical targets with paired-pulse TMS. To overcome this limitation, we have developed a multi-locus TMS (mTMS) device, which allows controlling the stimulus location electronically. Here, we applied mTMS to study SICI in primary motor cortex with paired pulses targeted to adjacent locations, aiming to quantify the extent of the cortical region producing SICI in the location of a test stimulus. We varied the location and timing of the conditioning stimulus with respect to a test stimulus targeted to the cortical hotspot of the abductor pollicis brevis (APB) in order to study their effects on motor evoked potentials. We further applied a two-coil protocol with the conditioning stimulus given by an oval coil only to the surroundings of the APB hotspot, to which a subsequent test stimulus was administered with a figure-of-eight coil. The strongest SICI occurred at ISIs below 1 ms and at ISIs around 2.5 ms. These ISIs increased when the conditioning stimulus receded from the APB hotspot. Our two-coil paired-pulse TMS study suggests that SICI at ISIs of 0.5 and 2.5 ms originate from different mechanisms or neuronal elements.Peer reviewe
Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation
Background: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion: The developed mTMS system enables electronically targeted brain stimulation within a cortical region. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe