90 research outputs found

    Deconvolving the Wedge: Maximum-Likelihood Power Spectra via Spherical-Wave Visibility Modeling

    Get PDF
    Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfill this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvwuvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a ww-term correction. The spherical-harmonics coefficients represent the sky-brightness distribution and the visibilities in the uvwuvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally-smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics range wide-field imaging. Chromatic effects causing the so-called "wedge" are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥,k∥k_{\perp}, k_{\parallel}) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated LOFAR observations, finding an excellent reconstruction of the input EoR signal with minimal bias.Comment: 13 pages, 8 figures. Replaced to match accepted MNRAS version; few typos corrected & textual clarification added (no changes to results

    Reionization and cosmic dawn astrophysics from the Square Kilometre Array:impact of observing strategies

    Get PDF
    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the epoch of reionization (EoR) and the cosmic dawn (CD). The culmination of ongoing efforts will be the upcoming Square Kilometre Array (SKA), which will provide tomography of the 21-cm signal from the first billion years of our Universe. Using a galaxy formation model informed by high-z luminosity functions, here we forecast the accuracy with which the first phase of SKA-low (SKA1-low) can constrain the properties of the unseen galaxies driving the astrophysics of the EoR and CD. We consider three observing strategies: (i) deep (1000 h on a single field); (ii) medium-deep (100 h on 10 independent fields); and (iii) shallow (10 h on 100 independent fields). Using the 21-cm power spectrum as a summary statistic, and conservatively only using the 21-cm signal above the foreground wedge, we predict that all three observing strategies should recover astrophysical parameters to a fractional precision of 3c0.1-10 per cent. The reionization history is recovered to an uncertainty of \u394z 7e 0.1 (1\u3c3 ) for the bulk of its duration. The medium-deep strategy, balancing thermal noise against cosmic variance, results in the tightest constraints, slightly outperforming the deep strategy. The shallow observational strategy performs the worst, with up to an 3c10-60 per cent increase in the recovered uncertainty. We note, however, that non-Gaussian summary statistics, tomography, as well as unbiased foreground removal would likely favour the deep strategy

    The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    Full text link
    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from within the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. In this paper, we present a catalog of 19 newly discovered gravitational lenses, along with 9 other observed candidate systems that are either possible lenses, non-lenses, or non-detections. The survey efficiency is thus >=68%. We also present Gemini and Magellan IFU data for 9 of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent main-sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys (abridged).Comment: ApJ, in press. 20 pages, numerous figures, uses emulateapj. Replaced to include full-resolution spectro figures. Version with full-resolution imaging figures available at http://www.cfa.harvard.edu/~abolton/slacs1_hires.pdf (PDF) or at http://www.cfa.harvard.edu/~abolton/slacs1_hires.ps.gz (PS). Additional SLACS survey info at http://www.slacs.or

    SHARP -- VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars

    Get PDF
    We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 10^6 to 10^9 Msun. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of f_sub = 0.012^{+0.007}_{-0.004} (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1 sigma. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of m th > 5.58 keV (95 per cent confidence limits), which is consistent with a value of m_th > 5.3 keV from the recent analysis of the Ly-alpha forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.Comment: 14 pages, 7 figures, accepted for publication in MNRA

    Two-dimensional kinematics of SLACS lenses: I. Phase-space analysis of the early-type galaxy SDSS J2321-097 at z=0.1

    Get PDF
    We present the first results of a combined VLT VIMOS integral-field unit and Hubble Space Telescope (HST)/ACS study of the early-type lens galaxy SDSS J2321-097 at z=0.0819, extending kinematic studies to a look-back time of 1 Gyr. This system, discovered in the Sloan Lens ACS Survey (SLACS), has been observed as part of a VLT Large Programme with the goal of obtaining two-dimensional stellar kinematics of 17 early-type galaxies to z~0.35 and Keck spectroscopy of an additional dozen lens systems. Bayesian modelling of both the surface brightness distribution of the lensed source and the two-dimensional measurements of velocity and velocity dispersion has allowed us, under the only assumptions of axisymmetry and a two-integral stellar distribution function (DF) for the lens galaxy, to dissect this galaxy in three dimensions and break the classical mass--anisotropy, mass-sheet and inclination--oblateness degeneracies. Our main results are that the galaxy (i) has a total density profile well described by a single power-law rho propto r^{-gamma'} with gamma'=2.06^{+0.03}_{-0.06}; (ii) is a very slow rotator (specific stellar angular momentum parameter lambda_R = 0.075); (iii) shows only mild anisotropy (delta ~ 0.15); and (iv) has a dark matter contribution of ~30 per cent inside the effective radius. Our first results from this large combined imaging and spectroscopic effort with the VLT, Keck and HST show that the structure of massive early-type galaxies beyond the local Universe can now be studied in great detail using the combination of stellar kinematics and gravitational lensing. Extending these studies to look-back times where evolutionary effects become measurable holds great promise for the understanding of formation and evolution of early-type galaxies.Comment: 16 pages, 12 figures; accepted for publication in MNRAS; corrected typo

    H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts

    Get PDF
    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext\kappa_\mathrm{ext} for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the universe, determined by using the CFHTLenS as a control field. Aiming to constrain κext\kappa_\mathrm{ext} as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighing schemes for the galaxy counts, such as projected distance to the lens, redshift, and stellar mass. We then convert the measured under/overdensities into a κext\kappa_\mathrm{ext} distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext\kappa_\mathrm{ext} has a median value κextmed=0.004\kappa^\mathrm{med}_\mathrm{ext} = 0.004 and a standard deviation of σκ=0.025\sigma_\kappa = 0.025. The measured σκ\sigma_\kappa corresponds to 2.5%2.5\% uncertainty on the time delay distance, and hence the Hubble constant H0H_0 inference from this system. The median κextmed\kappa^\mathrm{med}_\mathrm{ext} value is robust to ∼0.005\sim0.005 (i.e. ∼0.5%\sim0.5\% on H0H_0) regardless of the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens, and a prior on the external shear obtained from mass modeling. The availability of a well-constrained κext\kappa_\mathrm{ext} makes \hequad\ a valuable system for measuring cosmological parameters using strong gravitational lens time delays.Comment: 24 pages, 17 figures, 6 tables. Submitted to MNRA

    The internal structure and formation of early-type galaxies: the gravitational--lens system MG2016+112 at z=1.004

    Full text link
    [Abridged] We combine our measurements of the velocity dispersion and the surface brightness profile of the lens galaxy D in the system MG2016+112 (z=1.004) with constraints from gravitational lensing to study its internal mass distribution. We find that: (i) dark matter accounts for >50% of the total mass within the Einstein radius (99% CL), excluding at the 8-sigma level that mass follows light inside the Einstein radius with a constant mass-to-light ratio (M/L). (ii) the total mass distribution inside the Einstein radius is well-described by a density profile ~r^-gamma' with an effective slope gamma'=2.0+-0.1+-0.1, including random and systematic uncertainties. (iii) The offset of galaxy D from the local Fundamental Plane independently constrains the stellar M/L, and matches the range derived from our models, leading to a more stringent lower limit of >60% on the fraction of dark matter within the Einstein radius (99%CL). Under the assumption of adiabatic contraction, the inner slope of the dark matter halo before the baryons collapsed is gamma_i<1.4 (68 CL), marginally consistent with the highest-resolution cold dark matter simulations that indicate gamma_i~1.5. This might indicate that either adiabatic contraction is a poor description of E/S0 formation or that additional processes play a role as well. Indeed, the apparently isothermal density distribution inside the Einstein radius, is not a natural outcome of adiabatic contraction models, where it appears to be a mere coincidence. By contrast, we argue that isothermality might be the result of a stronger coupling between luminous and dark-matter, possibly the result of (incomplete) violent relaxation processes. Hence, we conclude that galaxy D appears already relaxed 8 Gyr ago.Comment: 8 pages, 4 figures, ApJ, in press, minor change

    CASCO: Cosmological and AStrophysical parameters from Cosmological simulations and Observations -- I. Constraining physical processes in local star-forming galaxies

    Full text link
    We compare the structural properties and dark matter content of star-forming galaxies taken from the CAMELS cosmological simulations to the observed trends derived from the SPARC sample in the stellar mass range [109,1011] M⊙[10^{9}, 10^{11}]\,\textrm{M}_{\odot}, to provide constraints on the value of cosmological and astrophysical (SN- and AGN-related) parameters. We consider the size-, internal DM fraction-, internal DM mass- and total-stellar mass relations for all the 1065 simulations from the IllustrisTNG, SIMBA and ASTRID suites of CAMELS, and search for the parameters that minimize the χ2\chi^{2} with respect to the observations. For the IllustrisTNG suite, we find the following constraints for the cosmological parameters: Ωm=0.27−0.05+0.01\Omega_{\textrm{m}} = 0.27_{-0.05}^{+0.01}, σ8=0.83−0.11+0.08\sigma_{8} = 0.83_{-0.11}^{+0.08} and S8=0.78−0.09+0.03S_{8} = 0.78_{-0.09}^{+0.03}, which are consistent within 1σ1\sigma with the results from the nine-year WMAP observations. SN feedback-related astrophysical parameters, which describe the departure of outflow wind energy per unit star formation rate and wind velocity from the reference IllustrisTNG simulations, assume the following values: ASN1=0.48−0.16+0.25A_{\textrm{SN1}} = 0.48_{-0.16}^{+0.25} and ASN2=1.21−0.34+0.03A_{\textrm{SN2}} = 1.21_{-0.34}^{+0.03}, respectively. Therefore, simulations with a lower value of outflow wind energy per unit star formation rate with respect to the reference illustrisTNG simulation better reproduce the observations. Simulations based on SIMBA and ASTRID suites predict central dark matter masses substantially larger than those observed in real galaxies, which can be reconciled with observations only by requiring values of Ωm\Omega_{\textrm{m}} inconsistent with cosmological constraints for SIMBA, or simulations characterized by unrealistic galaxy mass distributions for ASTRID.Comment: 24 pages, 10 figures, 9 tables. Accepted by MNRAS for publication; Added a reference to sec. 4.

    SEAGLE--II: Constraints on feedback models in galaxy formation from massive early type strong lens galaxies

    Get PDF
    We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of {\Lambda}CDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with M⋆M_\star > 101110^{11} M⊙M_\odot with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius (≈\approx 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. -d log({\rho})/d log(r) ≈\approx 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.Comment: re-submitted to MNRAS, bug fixed, conclusions unchanged, updated appendices and references, 23 pages, 10 Figures, 6 Table

    H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H0H_0

    Get PDF
    We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033-4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope\textit{Hubble Space Telescope} imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be 4784−248+399 Mpc4784_{-248}^{+399}~\mathrm{Mpc}, an average precision of 6.6%6.6\%. This translates to a Hubble constant H0=71.6−4.9+3.8 km s−1 Mpc−1H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}, assuming a flat Λ\LambdaCDM cosmology with a uniform prior on Ωm\Omega_\mathrm{m} in the range [0.05, 0.5]. This work is part of the H0H_0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).Comment: Version accepted by MNRAS. 29 pages including appendix, 17 figures, 6 tables. arXiv admin note: text overlap with arXiv:1607.0140
    • …
    corecore