12,982 research outputs found

    Towards an understanding of the RHIC single electron data

    Full text link
    High transverse momentum (pTp_T) single non-photonic electrons which have been measured in the RHIC experiments come dominantly from heavy meson decay. The ratio of their pTp_T spectra in pp and AA collisions (RAA(pT)R_{AA}(p_T)) reveals the energy loss of heavy quarks in the environment created by AA collisions. Using a fixed coupling constant and the Debye mass (mDgTm_D\approx gT) as infrared regulator perturbative QCD (pQCD) calculations are not able to reproduce the data, neither the energy loss nor the azimuthal (v2)(v_2) distribution. Employing a running coupling constant and replacing the Debye mass by a more realistic hard thermal loop (HTL) calculation we find a substantial increase of the collisional energy loss which brings the v2(pT)v_2(p_T) distribution as well as RAA(pT)R_{AA}(p_T) to values close to the experimental ones without excluding a contribution from radiative energy loss.Comment: Accepted for publication in Physical Review

    A comprehensive population synthesis study of post-common envelope binaries

    Full text link
    We apply population synthesis techniques to calculate the present day population of post-common envelope binaries (PCEBs) for a range of theoretical models describing the common envelope (CE) phase. Adopting the canonical energy budget approach we consider models where the ejection efficiency, \alpha_{\rmn{CE}} is either a constant, or a function of the secondary mass. We obtain the envelope binding energy from detailed stellar models of the progenitor primary, with and without the thermal and ionization energy, but we also test a commonly used analytical scaling. We also employ the alternative angular momentum budget approach, known as the γ\gamma-algorithm. We find that a constant, global value of \alpha_{\rmn{CE}} \ga 0.1 can adequately account for the observed population of PCEBs with late spectral-type secondaries. However, this prescription fails to reproduce IK Pegasi, which has a secondary with spectral type A8. We can account for IK Pegasi if we include thermal and ionization energy of the giant's envelope, or if we use the γ\gamma-algorithm. However, the γ\gamma-algorithm predicts local space densities that are 1 to 2 orders of magnitude greater than estimates from observations. In contrast, the canonical energy budget prescription with an initial mass ratio distribution that favours unequal initial mass ratios gives a local space density which is in good agreement with observations, and best reproduces the observed distribution of PCEBs. Finally, all models fail to reproduce the sharp decline for orbital periods, P_{\rmn{orb}} \ga 1 d in the orbital period distribution of observed PCEBs, even if we take into account selection effects against systems with long orbital periods and early spectral-type secondaries.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Society. 18 pages, 10 figures. Work concerning the reconstruction of the common envelope phase presented in the previous version will now be submitted in a separate paper in the near futur

    Consequences of energy conservation in relativistic heavy-ion collisions

    Full text link
    Complete characterization of particle production and emission in relativistic heavy-ion collisions is in general not feasible experimentally. This work demonstrates, however, that the availability of essentially complete pseudorapidity distributions for charged particles allows for a reliable estimate of the average transverse momenta and energy of emitted particles by requiring energy conservation in the process. The results of such an analysis for Au+Au collisions at sqrt{s_{NN}}= 130 and 200 GeV are compared with measurements of mean-p_T and mean-E_T in regions where such measurements are available. The mean-p_T dependence on pseudorapidity for Au+Au collisions at 130 and 200 GeV is given for different collision centralities.Comment: 8 pages, 8 figures, Submitted to Phys. Rev.

    Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies

    Full text link
    The Polyakov-quark-meson (PQM) model, which combines chiral as well as deconfinement aspects of strongly interacting matter is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov loop potential are considered. The findings of the (2+1)-flavor model investigations are confronted to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the PQM model agrees well with the lattice data.Comment: 13 pages, 7 figures, 3 tables; minor changes, final version to appear in Phys. Rev.

    Constraints on radiative decay of the 17-keV neutrino from COBE Measurements

    Full text link
    It is shown that, for a nontrivial radiative decay channel of the 17-keV neutrino, the photons would distort the microwave background radiation through ionization of the universe. The constraint on the branching ratio of such decays from COBE measurements is found to be more stringent than that from other considerations. The limit on the branching ratio in terms of the Compton yy parameter is Bγ<1.5×107(τν1011sec)0.45(y103)1.11h1B_\gamma < 1.5 \times 10^{-7} ({\tau_\nu \over 10^{11} sec})^{0.45} ({y \over 10^{-3}})^{1.11} h^{-1} for an Ω=1,Ωb=0.1\Omega=1, \Omega_b=0.1 universe.Comment: 7 pages. (figures will be sent on request) (To appear in Phys. Rev. D.

    Uses of a small field value which falls from a metastable maximum over cosmological times

    Full text link
    We consider a small, metastable maximum vacuum expectation value b0b_0 of order of a few eV, for a pseudoscalar Goldstone-like field, which is related to the scalar inflaton field ϕ\phi in an idealized model of a cosmological, spontaneously-broken chiral symmetry. The b field allows for relating semi-quantitatively three distinct quantities in a cosmological context. (1) A very small, residual vacuum energy density or effective cosmological constant of ~ lambda b_0^4 ~ 2.7 x 10^{-47}GeV^4, for lambda ~ 3 x 10^{-14}, the same as an empirical inflaton self-coupling. (2) A tiny neutrino mass, less then b_0. (3) A possible small variation downward of the proton to electron mass ratio over cosmological time. The latter arises from the motion downward of the bb field over cosmological time, toward a nonzero limiting value as tt \to \infty. Such behavior is consistent with an equation of motion. We argue that hypothetical b quanta, potentially inducing new long-range forces, are absent, because of negative, effective squared mass in an equation of motion for bb-field fluctuations.Comment: version accepted for publication in Mod.Phys.Lett.

    Gravitational waves from an early matter era

    Get PDF
    We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as LIGO and LISA. We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for Advanced LIGO or 0.005 for LISA, otherwise numerical calculations of the non-linear evolution on sub-Hubble scales are required.Comment: 23 pages, 2 figure

    Scattering of Dirac and Majorana Fermions off Domain Walls

    Full text link
    We investigate the interaction of fermions having both Dirac and left-handed and right-handed Majorana mass terms with vacuum domain walls. By solving the equations of motion in thin-wall approximation, we calculate the reflection and transmission coefficients for the scattering of fermions off walls.Comment: 6 pages, 1 figure, some typos corrected, one reference added, major revisions, title changed, version accepted for publication in Phys. Rev.

    Large-amplitude isothermal fluctuations and high-density dark-matter clumps

    Full text link
    Large-amplitude isothermal fluctuations in the dark matter energy density, parameterized by \Phi\equiv\delta\rhodm/\rhodm, are studied within the framework of a spherical collapse model. For \Phi \ga 1, a fluctuation collapses in the radiation-dominated epoch and produces a dense dark-matter object. The final density of the virialized object is found to be \rho_F \approx 140\, \Phi^3 (\Phi+1) \rhoeq, where \rhoeq is the matter density at equal matter and radiation energy density. This expression is valid for the entire range of possible values of Φ\Phi, both for Φ1\Phi \gg 1 and Φ1\Phi \ll 1. Some astrophysical consequences of high-density dark-matter clumps are discussed.Comment: 15 pages plus 3 figures (included at the end as a uuencoded postscript file), LaTeX, FNAL--PUB--94/055--

    Interpretation of the variability of the <i>β</i> Cephei star <i>λ</i> Scorpii. I. The multiple character

    Get PDF
    We derive accurate values of the orbital parameters of the close binary β Cephei star λ Scorpii. Moreover, we present the first determination of the properties of the triple system to which λ Scorpii belongs. Our analysis is based on a time series of 815 high-resolution spectra, covering a timespan of 14 years. We find a close orbit of 5d.9525days (e=0.26) and a wide orbit of approximately 1082d days (e=0.23). The orbital parameters of the triple star and a spectrum synthesis lead us to conclude that the system is composed of two early-type B stars and a low-mass pre-main-sequence star rather than containing an ultra-massive white dwarf as claimed before. Our proposed configuration is compatible with population synthesis. The radial velocity variations of the primary allow us to confirm the presence of at least one pulsation mode with frequency 4.679410 c d-1 which is subject to the light-time effect in the triple system. A detailed analysis of the complex line-profile variations is described in a subsequent paper
    corecore