48 research outputs found

    Time Resolved Stroboscopic Neutron Scattering of Vortex Lattice Dynamics in Superconducting Niobium

    Full text link
    Superconducting vortex lattices, glasses and liquids attract great interest as model systems of crystallization and as a source of microscopic information of the nature of superconductivity. We report for the first time direct microscopic measurements of the vortex lattice tilt modulus c44 in ultra-pure niobium using time-resolved small angle neutron scattering. Besides a general trend to faster vortex lattice dynamics for increasing temperatures we observe a dramatic changeover of the relaxation process associated with the non-trivial vortex lattice morphology in the intermediate mixed state. This changeover is attributed to a Landau-branching of the Shubnikov domains at the surface of the sample. Our study represents a showcase for how to access directly vortex lattice melting and the formation of vortex matter states for other systems.Comment: 14 pages, 14 figure

    Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration

    Get PDF
    Low spatial frequency (SF) processing has been shown to be impaired in people with schizophrenia, but it is not clear how this varies with clinical state or illness chronicity. We compared schizophrenia patients (SCZ, n534), first episode psychosis patients (FEP, n522), and healthy controls (CON, n535) on a gender/facial discrimination task. Images were either unaltered (broadband spatial frequency, BSF), or had high or low SF information removed (LSF and HSF conditions, respectively). The task was performed at hospital admission and discharge for patients, and at corresponding time points for controls. Groups were matched on visual acuity. At admission, compared to their BSF performance, each group was significantly worse with low SF stimuli, and most impaired with high SF stimuli. The level of impairment at each SF did not depend on group. At discharge, the SCZ group performed more poorly in the LSF condition than the other groups, and showed the greatest degree of performance decline collapsed over HSF and LSF conditions, although the latter finding was not significant when controlling for visual acuity. Performance did not change significantly over time for any group. HSF processing was strongly related to visual acuity at both time points for all groups. We conclude the following: 1) SF processing abilities in schizophrenia are relatively stable across clinical state; 2) face processing abnormalities in SCZ are not secondary to problems processing specific SFs, but are due to other known difficulties constructing visual representations from degraded information; and 3) the relationship between HSF processing and visual acuity, along with known SCZ- and medication-related acuity reductions, and the elimination of a SCZ-related impairment after controlling for visual acuity in this study, all raise the possibility that some prior findings of impaired perception in SCZ may be secondary to acuity reductions

    Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis

    Get PDF
    Rationale: An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. Objectives: The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. Methods: A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21–45 Hz) was investigated (n=13 pairs+4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n=15). Results: In the resting state, there was a significant condition Γ— frequency interaction (p=0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21–27 Hz] and increased low gamma [27–45 Hz]). There was also a condition Γ— frequency Γ— location interaction (p=0.006), such that the reduction in 21–27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27–45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r=0.429, p=0.042). In the motor task, there was a main effect of THC to increase 65–130-Hz ERS (p=0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85–130-Hz band (p=0.02) and not the 65–85-Hz band. Conclusions: The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state

    Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue

    Get PDF
    Human memory and marginal zone B cells share some features including CD27 expression and somatic hypermutation, but their lineage relationship is still unclear. Here the authors use mass cytometry and sequential clustering methods to show that, despite their shared features, memory and marginal zone B cells represent distinct lineage choices

    From drugs to deprivation: a Bayesian framework for understanding models of psychosis

    Get PDF

    Improving 3D EM data segmentation by joint optimization over boundary evidence and biological priors

    No full text
    We present a new automated neuron segmentation algo-rithm for isotropic 3D electron microscopy data. We cast the problem into the asymmetric multiway cut framework. The latter combines boundary-based segmentation (cluster-ing) with region-based segmentation (semantic labeling) in a single problem and objective function. This joint formulation allows us to augment local boundary evidence with higher-level biological priors, such as membership to an axonic or dendritic neurite. Joint optimization enforces consistency between evidence and priors, leading to correct resolution of many difficult boundary configurations. We show experi-mentally on a FIB/SEM dataset of mouse cortex that the new approach outperforms existing hierarchical segmentation and multicut algorithms which only use boundary evidence

    3D Segmentation of SBFSEM Images of Neuropil by a Graphical Model over Supervoxel Boundaries

    No full text
    The segmentation of large volume images of neuropil acquired by serial sectioning electron microscopy is an important step toward the 3D reconstruction of neural circuits. The only cue provided by the data at hand is boundaries between otherwise indistinguishable objects. This indistinguishability, combined with the boundaries becoming very thin or faint in places, makes the large body of work on regionβˆ’based segmentation methods inapplicable. On the other hand, boundaryβˆ’based methods that exploit purely local evidence do not reach the extremely high accuracy required by the application domain that cannot tolerate the global topological errors arising from false local decisions. As a consequence, we propose a supervoxel merging method that arrives at its decisions in a nonβˆ’local fashion, by posing and approximately solving a joint combinatorial optimization problem over all faces between supervoxels. The use of supervoxels allows the extraction of expressive geometric features. These are used by the higherβˆ’order potentials in a graphical model that assimilate knowledge about the geometry of neural surfaces by automated training on a gold standard. The scope of this improvement is demonstrated on the benchmark dataset E1088 (Helmstaedter et al., 2011) of 7.5 billion voxels from the inner plexiform layer of rabbit retina. We provide C++ source code for annotation, geometry extraction, training and inferenc
    corecore