4 research outputs found

    Algorithms for Large Orienteering Problems

    Get PDF
    In this thesis, we have developed algorithms to solve large-scale Orienteering Problems. The Orienteering Problem is a combinatorial optimization problem were given a weighted complete graph with vertex profits and a maximum distance constraint, the goal is to find the simple cycle which maximizes the sum of the profits of the visited vertices. To solve the Orienteering Problem, we have developed an evolutionary algorithm and an Branch-and-Cut algorithm. One of the key characteristics of the evolutionary algorithm is to work with unfeasible solutions. From the point of view of genetic operators, the main contribution has been the development of the Edge Recombination Crossover for the Orienteering Problem, which in a wider context it is also valid for any cycle problem. Another contribution has been the developed local search to handle large problems. The Branch-and-Cut algorithm includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. At the same time, we have generalized for cycle problems the support graph shrinking techniques and procedures to speed up the exact separation algorithms for subcycle elimination constraints. The experiments carried out in large-sized instances, up to 7393 nodes, show that both algorithms achieve outstanding results, both in terms of the quality of solutions and in terms of the execution time.BERC.2014-2017 SEV-2013-0323 PID2019-104933GB-I00 MTM2015-65317-

    On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms

    Get PDF
    In this paper, we extend techniques developed in the context of the Travelling Salesperson Problem for cycle problems. Particularly, we study the shrinking of support graphs and the exact algorithms for subcycle elimination separation problems. The efficient application of the considered techniques has proved to be essential in the Travelling Salesperson Problem when solving large size problems by Branch-and-Cut, and this has been the motivation behind this work. Regarding the shrinking of support graphs, we prove the validity of the Padberg–Rinaldi general shrinking rules and the Crowder–Padberg subcycle-safe shrinking rules. Concerning the subcycle separation problems, we extend two exact separation algorithms, the Dynamic Hong and the Extended Padberg–Grötschel algorithms, which are shown to be superior to the ones used so far in the literature of cycle problems. The proposed techniques are empirically tested in 24 subcycle elimination problem instances generated by solving the Orienteering Problem (involving up to 15,112 vertices) with Branch-and-Cut. The experiments suggest the relevance of the proposed techniques for cycle problems. The obtained average speedup for the subcycle separation problems in the Orienteering Problem when the proposed techniques are used together is around 50 times in medium-sized instances and around 250 times in large-sized instances.PID2019-104933GB-I00/AEI/10.13039/501100011033 PID2019-104966GB-I00/AEI/10.13039/501100011033 IT-1252-19 GIU20/05

    An efficient evolutionary algorithm for the orienteering problem

    Get PDF
    This paper deals with the Orienteering Problem, which is a routing problem. In the Orienteering Problem, each node has a profit assigned and the goal is to find the route that maximizes the total collected profit subject to a limitation on the total route distance. To solve this problem, we propose an evolutionary algorithm, whose key characteristic is to maintain unfeasible solutions during the search. Furthermore, it includes a novel solution codification for the Orienteering Problem, a novel heuristic for node inclusion in the route, an adaptation of the Edge Recombination crossover developed for the Travelling Salesperson Problem, specific operators to recover the feasibility of solutions when required, and the use of the Lin-Kernighan heuristic to improve the route lengths. We compare our algorithm with three state-of-the-art algorithms for the problem on 344 benchmark instances, with up to 7397 nodes. The results show a competitive behavior of our approach in instances of low-medium dimensionality, and outstanding results in the large dimensionality instances reaching new best known solutions with lower computational time than the state-of-the-art algorithms.MTM2015-65317-P, TIN2016-78365-R, IT-609-13, IT-928-16, UFI BETS 201

    A revisited branch-and-cut algorithm for large-scale orienteering problems

    Get PDF
    The orienteering problem is a route optimization problem which consists of finding a simple cycle that maximizes the total collected profit subject to a maximum distance limitation. In the last few decades, the occurrence of this problem in real-life applications has boosted the development of many heuristic algorithms to solve it. However, during the same period, not much research has been devoted to the field of exact algorithms for the orienteering problem. The aim of this work is to develop an exact method which is able to obtain the optimum in a wider set of instances than with previous methods, or to improve the lower and upper bounds in its disability. We propose a revisited version of the branch-and-cut algorithm for the orienteering problem which includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. Our proposal is compared to three state-of-the-art algorithms on 258 benchmark instances with up to 7397 nodes. The computational experiments show the relevance of the designed components where 18 new optima, 76 new best-known solutions and 85 new upper-bound values were obtained
    corecore