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Tesiaren nondik norakoak

Tesi lan honetan, tamaina handiko Orientazio Problemak (OP) ebazteko algoritmoak
garatu ditugu. OP optimizazio konbinatorioko problema bat da: herri multzo bat eta
hauen arteko distantzia emanik, herri bakoitzak bere saria duelarik, eta ibilbidearen
distantzia (edo denbora) osoaren murrizketa bat ezarririk, OPren helburua sarien batura
maximizatzen duen ibilbidea aurkitzean datza.

Problema honek, optimizazio konbinatorioko bi problema klasikorekin lotura estua du,
izan ere, Saltzaile Ibiltariaren Problemaren (TSP) eta Motxilaren Problemaren (KP)
arteko konbinazio bezala ikusi daiteke. Batetik, T'SPren helburua herri multzo bat eta
hauen arteko distantzia emanik, herri guztiak behin bakarrik bisitatzen duen ibilbide
laburrena aurkitzean datza. Bestetik, KPn objektu multzo bat emanik, bakoitzak bere
saria eta pisua duelarik, eta motxilak izan dezakeen gehienezko pisua ezarririk, helbu-
rua motxilan sartzen den eta sarien batura maximizatzen duten objektu azpimultzoa
aukeratzean datza.

Problemaren izenak orientazio lasterketa bezala ezagutzen den kirol batean du jator-
ria. Kirol honetako parte-hartzaileei mapa topografiko bat ematen zaie, kontrol gune
batzuk zehaztuta dituena eta helburua, denbora tarte batean, ahalik eta kontrol gune
gehienetatik pasatzea da. Lasterketaren hasierako eta bukaerako kontrol guneak aurre-
tiaz zehaztuta egoten dira, eta emandako denbora tartearen barruan bukaerara iristen ez
diren parte-hartzaileak jokoz kanpo gelditzen dira. Aldaerak aldaera, lasterketa modal-
itatearen arabera, kontrol guneek puntuazio desberdinak izan ditzakete.

Problemaren izenaren jatorria kirol bat baden arren, OPk aplikazio ugari ditu. Esate
baterako, lanaldi batean herri (saltoki) guztiak bisitatzeko denbora ez duen saltza-
ileak, bere lehentasunen arabera, lanaldirako ibilbide aproposena aukeratu behar du,
eta funtsean hori da OPren bidez ebazten dena. OP eta bere aldaerak aztertzen di-
tuzten lanek izan duten azken urteetako gorakada, problema hauek turismo bidaien
plangintzan duten erabileran dago oinarritua.

Hiri bat bisitatzera doan turistarentzat, ohikoa izaten da bisitaren luzapen-denboraren
mugarengatik, hirian aukeran dauden jarduera, ikuskizun eta gune guztiez gozatzeko
aukera ez izatea. Horrela, bisitariak eskuragai dauden jarduera guztietatik batzuk
bakarrik bisitatu ahal izango ditu. Bisita planifikatzeko, jarduera bakoitzari lehenta-
sun bat ezarri behar izaten da, eta bisita ahalik eta gustukoena izateko, lehentasun
hauek maximizatzen duen ibilbidea aurkitu behar da. Horretarako, jardueren lehenta-
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sunez eta duten denboraz gain, bidaiariek kontutan izan behar izaten dute jardueren
arteko distantzia eta ostatatuta dauden hotela. Errealitatean ibilbide gustukoena auk-
eratzearen problema konplexuagoa da (jardueren arteko denborak ez dira momentu oro
berdinak, jarduera batzuk ez daude eguneko 24 orduetan zabalik, lehentasunak aur-
reiritziak dira, egun bat baino gehiago izan ditzake bisita egiteko) eta OPren aldaerek
konplexutasun horri erantzuna ematen saiatzen dira. Hala ere, tesi honetan OPren
bertsio klasikoa aztertzen dugu, eta helburua ahalik eta tamaina handieneko problemak
aztertzeko teknika eta algoritmoak garatzea izan da.

OP problema hurrengo eran formulatu daiteke era sinple batean:

max 7 ibilbideak bisitatutako herrien sarien batura

h.b. 7 ibilbidea ziklo sinplea da,
7 ibilbidearen luzera ez da dy baina handiagoa,
7 ibilbideak 1 herria bisitatzen du

non dy zikloaren gehienezko luzera eta 1 hasierako herria (hotela) diren. Definitzeko
erreza den problema hau, praktikan, ebaztea zaila da. NP-hard problema bat da, izan
ere, ibilbide Hamiltondarra aurkitzearen NP-complete problema klasikoa, OPren kasu
partikularra da. Honez gain, herri multzo bat OPren soluzio bideragarriren baten parte
den zehaztea ere problema zaila da. Hau da, herri multzo bat emanik, herri guzti
hauetatik igarotzen den dy baino luzera txikiagodun ibilbiderik existitzen baden NP-
complete problema bat da, hau TSPren erabakitze bertsioa baita.

OP ebazteko, algoritmo heuristiko bat eta algoritmo zehatz bat garatu ditugu. Aldi
berean, ziklo problementzako algoritmo zehatzaren parte diren euskarri grafoen sinpli-
fikazio teknika eta azpizikloak identifikatzeko separazio algoritmoak. Izan ere, teknika
hauek, OP problemaz gain, soluzioa ziklo sinple bat duten edozein problema ebazteko
erabilgarriak dira.

Lanaren 2. kapituluan, EA4OP izena eman diogun, OPrentzako algoritmo meta-
heurisitko bat aurkeztu dugu. Zehazki, EA4OP algoritmo ebolutibo bat da, hau da, ibil-
bideen populazioa sortzen du eta populazio hau eboluzionatzen du populazioko soluzioen
kalitatea hobetze aldera.

Hasierako soluzioak sortzeko, lehenengo, soluzioan egongo diren herriak aukeratzen
ditugu Bernoulli banaketaren bidez, eta gero, herri horietatik pasatzen den ibilbidea
eraikitzen dugu. Hasierako herriak aukeratzeko, herri multzo osoaren TSP soluzio hur-
bildua aurkitzen dugu eta TSParen soluzioaren balioaren, v(7'SP), eta OPren distantzia
murrizketaren arteko erlazioaz baliatuz, herri bat hasierako soluzioan egoteko probabil-

itatea zehazten dugu, p = \/do/v(TSP).

EA4OPren ezaugarri nagusienetako bat, algoritmo azkar bat izateko xedez, soluzio ez
bideragarriekin lan egitea da. Hori dela eta, algoritmoaren garapenean, hasiera faseaz
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gain, bi fase bereizten dira: eboluzio fasea eta soluzio bideragarriak berreskuratzeko
fasea. Belaunaldiz belaunaldi gauzatzen den eboluzio faseak hiru eragile barnebiltzen
ditu: gurasoen aukeraketa, gurutzaketa eta mutazioa. Eboluzio fasean, populazioko
soluzioak ez-bideragarriak izan litezkeenez, belaunaldi kopuru baten ostean soluzio
bideragarriak berreskuratzen ditugu populazioko soluzioak moldatuz (ken eragilea), eta
ostean bilaketa lokal bat (gehi eragilea) aplikatzen diegu soluzio berri hauei.

Eragile genetikoen ikuspuntutik lan honen ekarpen nagusia OPrentzako, eta oroko-
rrean ziklo problementzako, gurutzaketa eragile berri bat garatzea izan da. FEragile
hau, TSPrentzako proposatutako Ertzen Birkonbinazio Gurutzaketan (Edge Recombi-
nation Crossover, Whitley et al. [1989]) oinarrituz orokortu dugu. Ziklo problementzako
gurutzaketa eragile berri honek bi aldetan jartzen du fokua: batetik, soluzio gura-
soetan bisitatzen diren erpin komunak, soluzio umean ere bisitatzea, eta bestetik, soluzio
umearen ibilbidean, soluzio gurasoetan erabiltzen diren ertzek lehentasuna izatea.

EA4OPren beste ekarpen bat problema handiak ebazteko aproposa den bilaketa lokala
da. OPn bilaketa lokal eraginkor eta erabiliena, ibilbidean ez dauden herriak ibilbidera
sartzeko (distantzia osoa kontuan izanik) prozedura da, baina hau oso astuna da. Izan
ere, kanpoko herri bakoitzerako, behin eta berriz, ibilbidean sartzeko posizio hober-
ena aurkitu behar da. Lan honetan, kanpoko herriak ibilbidean sartzeko aukerak mur-
rizten ditugu. Horretarako, k-d zuhaitzak erabiltzen ditugu, kanpoko herri bakoitzeko
ibilbidean dauden hiru herri hurbilenak bilatzeko, eta hauen ondoz-ondoan txertatzeko
aukera bakarrik hartzen dugu kontutan.

Esperimentuek erakusten dute, EA4OP algoritmoak literatuko algoritmoen heuris-
tikoek baino emaitzak hobeagoak lortzen dituela. Tamaina ertaineko problemetan (400
herri baino gutxiago), beste algoritmoekin konparatuz, EA4OP algoritmo lehiakorra dela
ikusi dugu,. Aldiz, EA4OP nagusitasuna argi gelditzen da tamaina handiko problemetan
(7393 herri arte), instantzia gehienetan algoritmo aurkariak baino emaitza hobeak eta
arinagoak lortuz.

Tesiaren 3. kapitulak eta 4. kapituluak OPrentzako algoritmo zehatza dute aztergai.
OPren soluzioak zikloak direnez, 3. kapituluan ziklo problementzako Branch-and-Cut al-
goritmoen parte diren prozedura komunak aztertzen ditugu. 4. kapituluan, OPrentzako
Branch-and-Cut algoritmoa garatu eta honen emaitza konputazionalak konparatzen di-
tugu.

Izan bitez G = (V, E), V erpinak eta E ertzak dituen grafo ez-zuzendua; Cq, G grafoko
ziklo sinpleen multzoa; eta RV eta R¥  V eta F bidez indexatutako bektore errealak.
Izan bedi (y,x)", 7 zikloaren bektore karakteristikoa, non y, = 1 edo x, = 1 baldin eta
v erpina edo e ertza, hurrenez hurren, zikloan bisitatuta badaude. G grafoaren Ziklo
Politopoa, Pg , G grafoko ziklo sinpleen bektore karakteristikoen inguratzaile konbexua
da, hau da, P§ = conv{(y,z)” € RV*F : 7 € Cg}. Ziklo problemen, eta bereziki
OPren, soluzioak Pg politopoaren erpinak dira. Branch-and-Cut algoritmoek, proble-
maren optimoa lortze aldera, PCG espazioa (edo problemari dagokion soluzio espazio)
modu eraginkor eta ordenatu batean arakatzea ahalbidetzen dute. Baina aurretiaz, Pg
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espazioa (konbexua) murrizketa linealen bidez (hiperplanoen ebakidura bezala) adierazi
behar da:

z(6(v)) — 2y» =0, veV

Yo — Ze 2 0, Yo eV, eed(v)

2(6(Q)) — 2yy — 2y > 2, veQCVI3IZIQIZV|[-3, weV -Q
z(F) > 3,

1>y, >0, YoeV

z. > 0, Vee E

T. €7 Vee E

non 0(Q) multzoa () multzoren muga zeharkatzen duten ertzek osatzen duten.

Ziklo problema baten optimoaren bilaketa egiteko, Branch-and-Cut algoritmoek, Pg
adierazpenaren azken baldintza (aldagai osoena) erlaxatzen dute, eta optimizatu os-
tean, balio ez osodun aldagairik izatekotan, bi azpi problemetan banatzen dute prob-
lema (branching). Honez gain, beste bi aspektu daude kontutan izan beharrekoak: (1)
politopoaren erlaxazio linealarekin lan egiterakoan, bilaketa espazioa handitzen da eta,
ondorioz, ebaketa gehigarriak erabiltzea komeni da, eta (2) Pg politopoaren adierazpe-
nean dagoen bigarren murrizketa familiak (azpizikloak ezabatzeko murrizketak, SEC)
kopuru esponentziala du. Bi aspektu hauek kontutan izanda, eta eraginkortasunari
begira, Branch-and-Cut algoritmoa, politopoaren adierazpen sinplifikatu batekin abi-
arazten da (SEC murrizketa familia esponentziala kenduta) eta algoritmoan zehar, behar
den heinean, ebaketa plano berriak (azpizikloak ezabatzeko murrizketak eta murrizketa
gehigarriak) gehitzen dira.

Ebaketa plano egokiak bilatzeko, algoritmoan zehar, behin eta berriz, problema erlax-
atuen soluzioekin lotutako euskarri grafoetan, G*, separazio problema bezala ezagutzen
direnak ebatzi behar dira. Separazio problema hauek ebaztea oso astuna da eta 3. kapit-
uluan, ziklo problemen separazio algoritmoak arintzeko, uzkurtze teknika garatu dugu.
Izan bitez G grafoa eta S C V azpimultzoa, orduan G|[S| grafoa G grafoaren uzkurketa

bat dela esaten da S multzoko erpin guztiak bakarra izango balira bezala kontsideratzen
badira.

Hala ere, ebaketak galdu daitezkeenez, edozein uzkurketak ez du balio separazio prob-
lemen aurreprozesu bezala. Azpimultzo uzkurgarriak aurkitzeko, hiru erregela seguru
(C1, C2 eta C3) orokortu ditugu Pg politopoarentzat. Behin ziklo politoporako bali-
ogarria den murrizketa familia bat zehaztuta, uzkurketa erregela zorrotzagoak garatu
daitezke murrizketa familia zehatz horrentzat. 3. kapituluan, SEC murrizketentzako
uzkurtze bi erregela berezi (S1 eta S2) aurkezten ditugu.

Uzkurketa tekniken eragina, SEC murrizketen banatze problemetan neurtu dugu. Hor-
retarako, lehenengo SEC murrizketen banatze algoritmoak aztertu ditugu, TSPtik oroko-
rtutako bi banatze algoritmo zehatz aurkeztuz. Esperimentuetan ikusi dugu uzkurtze
teknikek, bereziki S1 eta S2 erregelen konbinazioak, 50 aldiz azkartu dezaketela SEC
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murrizketen banaketa algoritmoa eta beraz oso eraginkorrak eta aproposak direla ziklo
problemen Branch-and-Cut algoritmoentzako.  Gainera, uzkurtze teknikez gain, ba-
nantze algoritmoak arintzeko teknika konkretuak (S3 erregela) erabiliz, banantze algor-
timo hauek 250 aldiz azkartu daitezkeela ikusi dugu.

4. kapituluan Branch-and-Cut algoritmo bat garatu dugu OPrentzat. Algoritmo ze-
hatz honek, literaturan aurretiaz argitaratutako lanak kontutan izateaz gain, hainbat
ekarpen barnebiltzen ditu, eta hori dela eta OPrentzako Birjorratutako Branch-and-Cut
(RB&C) algoritmoa izendatu dugu. Kontutan izan behar da OPrentzako azken algo-
ritmo zehatza (Fischetti et al. [1998]) duela bi hamarkada baino gehiago argitaratu zela.
Gure motibazioa TSP probleman erabilitako zenbait teknika OPrentzako orokortzea izan
da.

Honako ekarpen hauek ditu 4. kapituluan aurkeztutako gure algoritmo zehatzak.
Uzkurketa teknika darabilen, SEC eta Konektibitate Murrizketentzako (Connectivity
Constraints, CC) banaketa algoritmo bat proposatu dugu. Aurreko kapituluan ikusi-
tako uzkurketa teknikek eragin negatiboa dute CCn bilaketan, kontuan izan murrizketa
hauek orokorrean ez direla ziklo politoporako baliogarriak. Duten eragin negatibo hori
gutxitzeko asmoz, hiru prozedura proposatu ditugu CC gehigarriak bilatzeko.

Ziklo Politopoarako murrizketa gehigarri ezagunenak Blossom desberdintzak dira,
TSPtik orokortuak Bauer [1997] lanean. Blossom murrizketentzako bi banaketa algo-
ritmo heuristiko orokortu ditugu TSPn erabilitako Padberg-Hong (Padberg and Hong
[1980]) eta Grotschel-Holland (Grotschel and Holland [1991]) algoritmoetan oinar-
rituz. Esperimentalki ikusi dugu, proposatutako bi heuristikek, literaturan ziklo prob-
lementzako blossom murrizketeten emaitzak hobetzen dituztela, bai soluzio kalitateri
dagokionez baita algoritmoaren exekuzio denborari dagokionez ere.

RB&C algoritmoak Zutabe Sorrera (Column Generation) teknika darabil, honela bere
LP azpiproblemetan aldagaien azpimultzo bat bakarrik erabiltzen du. Ondorioz, algo-
ritmoaren urrats batzuetan baztertutako aldagaiak baloratu (pricing) behar dira, LP
azpiproblemara sartu behar ote diren erabakitzeko. Baztertutako aldagai bakoitza balo-
ratzeko, aldagaia parte den murrizketa guztiak hartu behar dira kontuan, eta hau bazter-
tutako aldagai guztientzako kalkulatzea oso garestia da. Baloratze prozedura arintzeko,
TSPrantzako Applegate et al. [2007] lanean proposatutako aldagaien baloratze teknikan
oinarritu gara, honela kalkulu errepikakorrak behin bakarrik egitea lortzen dugu, eta
garrantzitsuagoa dena, baztertutako aldagai gehienak zehazki baloratzea saihesten dugu.

RB&C algoritmoaren beste ekarpen bat banantze begizta hiru azpi-begiztatan ba-
nantzea da. Lehenengo begiztan banantze algoritmo arinak sartu ditugu. Bigarren
begiztan OPren ziklo izaerarekin lotutako banantze algoritmoak. Hirugarren eta azken
begiztan gainontzeko banantze algoritmoak. Esperimentalki ikusi dugu, banantze be-
gizta hiru azpi-begiztetan banatzeak RB&C algoritmoa azkartzen duela.

OP problemen kalitatezko behe-mugak azkar lortzeko helburuz, RB&C algoritmo
zehatzaren barnean, bi algoritmo heuristiko primal (primal heuristic) erabili ditugu.
Lehengoak, ertz aldagaien balio primalak erabiltzen ditu. Bigarrenak, berriz, erpin



aldagaien balio primaletan oinarrituz soluzio heuristikoen populazio bat sortzen du eta
ostean populazioa eboluzionatzen du 2. kapituluan aurkeztutako EA4OP algoritmoa
erabiliz. Lehenengo heuristika, bietan azkarrena, banantze begiztan erabiltzen da eta
bigarrena, bietan kalitate onena lortzen duena, adarkatzeen ostean. OP problemen goi-
mugak eguneratzeko kalkulua ere aurkeztu dugu.

Proposatutako RB&C algoritmoak primerako emaitzak lortu ditu egindako esperi-
mentuetan. Konparatutako OPren 258 instantzietatik 180tan lortutako soluzioa opti-
moa dela egiaztatzen du, horietatik 18 lehenengo aldiz egiaztatu direlarik. Instantzia
horietatik 245tan balio ezagun onena lortzen du, horietatik 76 balio berriak direlarik.
Eta, 249 instantzian goi kota ezagun onena lortzen du, horietatik 85 berriak direlarik.
Horrez gain, literaturako beste algoritmoekin buruz-buruko konparaketak egin ditugu
soluzioaren kalitatea eta algoritmoaren exekuzio denbora konparatuz. RB&C algorit-
moak tamaina ertaineko instantzietan emaitza lehiakorrak lortzen ditu, eta tamaina
handiko problemetan berriz, emaitzarik onenak lortzen ditu.

OP ebazteko softwarearen garapena tesi honen zati garrantzitsu bat izan da. Hori dela
eta, 5. kapituluan EA4OP eta RB&C algoritmoak instalatzeko eta erabiltzeko pausuak
azaltzen ditugu.

Laburbiltzeko, tesi lan honetan tamaina handiko OPren instantziak ebazteko algo-
ritmoak proposatu ditugu, heuristiko bat eta algoritmo zehatz bat, eta bi algoritmoek
primerako emaitzak lortzen dituztela ikusi dugu, bai soluzioen kalitatearen aldetik eta
bai azkartasunaren aldetik ere.



Thesis Summary

In this thesis, we have developed algorithms to solve large-scale Orienteering Problems
(OP). OP is a combinatorial optimization problem, where given a weighted complete
graph with vertex profits and a constant dy, the goal is to find the simple cycle which,
with a length lower than or equal to dy, maximizes the sum of the profits of the visited
vertices.

The OP can be seen as a combination of two classical combinatorial optimization
problems: the Travelling Salesperson Problem (TSP) and the Knapsack Problem (KP).
On the one hand, the purpose of the TSP is to find the shortest tour that visits each
vertex exactly once. On the other hand, in the KP, given a set of objects each having
its own reward and weight, and maximum weight of the knapsack, the problem consists
of finding the subset of items that fits in the knapsack and maximizes the sum of the
rewards.

The name of the problem originates from a sports game called orienteering. The
participants are given a topographical map with detailed checkpoints, each with an
associated score, and a time limit. The participants who visit the checkpoints that
maximize the total obtained score within the time limit are the winners of the game.

Although the name of the problem originates from a sport, OP has a wide variety
of applications. For example, a travelling salesperson without enough time to visit all
the cities during a period of work must choose, according to their preferences, the most
suitable route, and this is essentially what is decided by OP. The rise in recent years
of works studying the OP and its variants is probably based on the applicability of the
problem in tourism travel planning.

Commonly, a tourist visiting a city does not have time to enjoy all the activities and
places in the city. In order to plan a visit as satisfactory as possible, the tourist must
set a priority for each activity and find the tour that maximizes these priorities. For
this purpose, in addition to the preferences of activities, the traveler must take into
account the distance between the activities and lodging hotel. In reality, the problem
of choosing the favorite tour is more complex (the time between activities is not the
same at every moment, some activities are not open 24 hours a day, the preferences are
preconceptions, the visit might last multiple days, etc.) and the variants of OP try to
answer that complexity. However, in this thesis, we study the classical version of OP,
and the goal has been to develop techniques and algorithms to solve problems as large
as possible.

xi
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The OP problem can be formulated in the following simple way:

max total score of the vertices visited by 7

(
s.t. 7 is a simple cycle, (0.3b
7 has a length not greater than dy, (0.3¢
T visits the depot vertex (0.3d

where dy is the maximum length of the cycle. This problem, which is easy to define,
is difficult to solve in practice. It is an NP-hard problem since the classical problem of
finding a Hamiltonian tour is a particular case of the OP. Moreover, it is also difficult to
determine whether a subset of vertices is part of any feasible solution of the OP. That
is to say, given a subset of vertices, it is an NP-complete problem to determine if there
exists a cycle with a length lower than dy, since this is the decision version of the TSP.

To solve the OP, we have developed a heuristic algorithm and an exact algorithm. At
the same time, and as part of the development of the exact algorithm for OP, we have
generalized for cycle problems the support graph shrinking techniques and procedures
to speed up the separation algorithms for subcycle elimination constraints developed for
the TSP. These techniques, beyond the OP problem, are useful in solving any problem
in which the solution is a simple cycle.

In Chapter 2, we have introduced the so-called EA4OP metaheuristic algorithm for
OP. The EA4OP is an evolutionary algorithm, i.e., the algorithm creates a population
of cycle solutions and evolves it to improve the quality of solutions in the population.
To generate the initial solutions, we first choose the vertices that will be in each solution
using the Bernoulli distribution, and then we build the route that passes through them.
To select the initial vertices, we find an approximate TSP solution for the whole set of
cities, and by using the relation between the value of the TSP solution, v(T'SP), and
the distance constraint of the OP, we specify the probability (p = +/do/v(T'SP)) of
including each city in the initial solution.

One of the key characteristics of EA4OP is to work with unfeasible solutions. Hence, in
the development of the algorithm, apart from the beginning phase, there are two phases:
the evolutionary phase and the feasible solution recovery phase. The evolutionary phase
carried out from generation to generation, involves three operators: parent selection,
crossover, and mutation. In the EA4OP algorithm, we recover the feasible solutions after
a number of generations (the d2d parameter) first by improving the route length and
then by modifying the solutions in the population (drop operator). Once the solutions in
the population are feasible we apply a local search (add operator) to these new solutions.

From the point of view of genetic operators, the main contribution of this work has
been the development of a new crossover for OP, which in a wider context is also valid for
any cycle problem. We have generalized this operator based on the Edge Recombination
Crossover proposed for TSP (Whitley et al. [1989]). We are interested in inheriting two
main characteristics from the parents related to the vertices and the edges. Regarding
the visited vertices, the crossover maintains all the vertices that are common to both
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parent solutions, including, with some probability, the vertices that belong to only one
parent, and excluding the vertices that do not belong to any parent solution. Regarding
the route length, the crossover uses as many edges of the parents as possible in order to
pass on the maximum amount of information and decrease length quality losses in the
new child solution.

Another contribution in the EA4OP is the developed local search to handle large
problems. The most widely used local search in OP is the procedure of introducing
non-visited vertices to the route, but this is a very time-consuming procedure, since for
every non-visited vertex, one must find the cheapest insertion position in the route. In
this work, we reduce the possible insertion positions, for this purpose we use k-d trees,
to search for each non-visited vertices the three nearest vertices in the route, and we
only consider the possibility of inserting the non-visited vertex next to the three nearest
ones in the route.

The experiments show that the EA4OP algorithm improves the results of the state-
of-the-art heuristics. In medium-sized problems (fewer than 400 vertices) we found that
EA4OP is a competitive algorithm obtaining similar results of the literature approaches.
However, the superiority of the EA4OP is clearly seen for large-sized problems (up to
7393 vertices), where in most of the cases the EA4OP obtains better quality solutions
in shorter execution times than competitor algorithms.

In chapters 3 and 4 we study exact algorithms for the OP. As the solutions of OP are
cycles, in Chapter 3 we analyze the common procedures that are part of the Branch-and-
Cut algorithms for cycle problems. In Chapter 4, we develop a specific Branch-and-Cut
algorithm for OP and compare the computational results with the approaches in the
literature.

Let G = (V,E) be an undirected graph with no loops and denote by Cg the set
of simple cycles in the graph G, and by RY and R the space of real vectors whose
components are indexed by elements of V' and E, respectively. Then, the cycle polytope
Pg of the graph G is the convex hull of the characteristic vectors of all the cycles of the
graph, that is to say, PS := conv{(y,z)” € RV*F : 7 € Cg}. The solutions of the cycle
problem, and particularly of the OP, are the vertices of the Pg . The Branch-and-Cut
algorithms provide an efficient and orderly way to search the Pg space. In order to use
the B&C approach, the polytope Pg must be characterized by means of a system of
linear constraints:

z(0(v)) — 2y» =0, veV

Yo — Te > 0, Yo eV, e€d(v)

z(0(Q)) — 2yy — 2y > —2, veQRQCVI<IQISIVI=-3, weV -Q
z(E) > 3,

1>y, >0, YveV

ZTe > 0, Vee E

Te € 7 Vee E

where §(Q) is the set of edges in the coboundary of Q.
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For the purpose of searching the optimal solution of a cycle problem, Branch-and-
Cut algorithms relax the last constraint family in the expression of PCG (the integrality
constraints), and after optimizing the relaxed system, in case the solution has non-integer
values, it divides the problem into two subproblems (branching). There are two aspects
to take into consideration: (1) when working with the linear relaxation of the polytope,
the search space gets bigger, and therefore additional valid cuts are needed in order
to explore efficiently the problem space, and (2) the second constraint family in the
expression of the polytope PY, the so-called Subcycle Elimination Constraints (SEC),
has an exponential amount of constraints. Thus, the Branch-and-Cut algorithm starts
with a simplified expression of the polytope (by excluding the SEC constraint family)
and adds, when required, new cutting-planes (SECs and additional valid constraints)
throughout the algorithm.

In order to find the appropriate cuts to add, it is needed to repeatedly solve the
separation problems in the graphs associated with the solutions of the subproblems. In
Chapter 3, we have developed the shrinking technique to speed up the algorithms to
solve these separation problems. Given a graph G and a subset S of vertices, we denote
by G[S] = (V[S], E[S]) the graph obtained by shrinking the set S into a single vertex.

However, since violated cuts might vanish with an arbitrary shrinking, not all the
subsets are safe to shrink. Based on the definition given in [Padberg and Rinaldi, 1990b]
for safe shrinking for the P:% p, an analog definition can be formulated for safe shrinking
for the Pg . We have obtained three safe shrinking rules (C1, C2, and C3) for the
valid inequalities of the cycle polytopes. Depending on the inequality, more aggressive
contractions can be employed as a preprocess of separation algorithms. In Chapter 3,
we have also obtained two special shrinking rules (S1 and S2) for SECs.

We measure the impact of shrinking techniques on SEC separation problems. In the
experiments, we have found that the shrinking techniques, in particular the combination
of S1 and S2 rules can speed up the SEC reduction algorithm by 50 times, and are there-
fore very efficient and convenient for the Branch-and-Cut algorithms for cycle problems.
We have also seen that using separation algorithm specific acceleration techniques (rule
S3), in addition to shrinking, the speed up of the separation could be boosted 250 times.

In Chapter 4 we develop a Branch-and-Cut algorithm for the OP. This proposed al-
gorithm, in addition to considering the previously published works in literature, brings
multiple contributions together, hence the name of revisited Branch-and-Cut (RB&C)
for OP. It must be noted that the last exact algorithm for the classical OP was pub-
lished more than two decades ago (Fischetti et al. [1998]). Our motivation has been to
generalize some of the succsesful techniques used in the TSP to OP.

We have proposed a joint separation algorithm for SECs and Connectivity Constraint
(CC), which efficiently uses the shrinking technique by reducing the adverse effects of
the shrinking for CCs.

The best known additional valid inequalities for the polytope cycle are the Blossom
inequalities, generalized from TSP in Bauer [1997]. We have generalized two heuristic
separation algorithms for blossoms based on the algorithms given by Padberg-Hong
(Padberg and Hong [1980]) and Groétschel-Holland (Grotschel and Holland [1991]) for
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TSP. Experimentally, we have seen that the two proposed heuristics improve the results
of blossom separation heuristics in literature, both in terms of solution quality and in
regard to the execution time of the RB&C algorithm.

During the B&C algorithm, only a subset of edges is included in the working linear
relaxation. At certain points of the algorithm, we need to price the excluded edge
variables, and add to the working problem: 1) to guarantee that the working relaxation
is an upper bound of the problem or branched subproblem and 2) to recover, whenever
it is possible, a feasible problem after feasibility breaking cuts have been added. Taking
into account that usually only a small subset of variables is included in the relaxation,
and that the excluded variables could participate in multiple cuts, the pricing phase
could constitute a bottleneck in the B&C algorithm. We have developed a technique,
inspired by that used in Applegate et al. [2007], which enables us to avoid repetitive
calculations and to skip the exact calculation of the reduced cost of some variables.

Another contribution of the RB&C is the proposed separation loop for the OP that
takes into consideration the different contributions and separation costs of the valid
inequalities. The separation loop to find the violated cuts is accomplished in three
subloops. In the inner loop, we consider two basic, but fast, separation algorithms. In
the middle loop, we consider the separations of cuts which are related to the cycle essence
of the OP. In the outer loop, we consider the rest of the cuts.

With the goal of obtaining good lower-bounds for the OP problems, we have used two
primal heuristic algorithms: one heuristic uses the primal edge values, and the other
heuristic uses the primal vertex values. Moreover, the second generates a population of
heuristic solutions based on primal vertex values and then evolves the population using
the EA4OP algorithm presented in Chapter 2. The first heuristic, the quickest of the
two, is used in the separation loop, and the second heuristic, which attains the best
quality solutions of the two, is used at the beginning of a branch node. We have also
presented a calculation to update the upper-bounds during the branching phase.

The experiments have shown that the RB&C algorithm for OP is a much more efficient
approach than the state-of-the-art B&C algorithm. It finds the optimality certification
of the solutions in 180 out of 258 instances, from which 18 are new. Of these benchmark
instances, in 245 best-known solution value is obtained, from which 76 are new values.
And, in 249 instances, it obtains the best-known upper-bound values, from which 85 are
new. In addition, we have made one-by-one comparisons with other algorithms in the
literature comparing the quality of the solution and the execution time of the algorithm.
In the case of medium-sized instances, the RB&C is able to obtain competitive results,
while in the case of large-sized instances, it achieves the best results.

The development of OP software has been an important part of this thesis. In Chap-
ter 5, we explain the steps to install and use the EA4OP and RB&C algorithms.

To summarize this thesis, we have proposed algorithms to solve large-scale OP in-
stances, a heuristic and an exact algorithm, and experimentally show that both algo-
rithms achieve outstanding results, both in terms of the quality of solutions and in
terms of speed.
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Introduction

Nothing is more challenging than a problem which is easy to understand but difficult to
solve. Combinatorial Optimization, which optimizes discrete problems that emerge in a
variety of fields, is in itself a field full of challenges. Such is the difficulty of these prob-
lems that Karp [1972] showed that many combinatorial problems are computationally
intractable within the current computational paradigm. However, the need to solve rele-
vant real-world problems has attracted many researchers to develop efficient algorithms.

The Travelling Salesperson Problem and the Knapsack Problem are two well-known
combinatorial optimization problems. They are both easy to define, but difficult to
solve. The research carried out for these two problems is a source of inspiration to solve
other combinatorial problems. In this dissertation, we study the Orienteering Problem, a
problem that can be seen as a combination of these two classical problems. Particularly,
our objective is to develop algorithms to solve large Orienteering Problems.

1.1 The Orienteering Problem

The Orienteering Problem (OP), also called the Selective Travelling Salesperson Prob-
lem or the Maximum Collection Problem, is a routing problem proposed in the 80s,
see Tsiligirides [1984] and Golden et al. [1987]. The name of the problem originates
from a sports game, where the participants are given a topographical map with detailed
checkpoints, each with an associated score, and a time limit. The participants who visit
the checkpoints that maximize the total obtained score within the time limit, are the
winners of the game.

THE PROBLEM

Given a weighted complete graph with vertex profits and a constant dg, the goal is to
find the simple cycle which, with a length not greater than dy, maximizes the sum of
the profits of the visited vertices.
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Traditionally, the solution of the OP must visit a given edge or vertex of the graph.
In the early works for OP, the solutions of the problem were paths starting and finishing
in two given vertices. Finding a path whose ends are fixed is equivalent to finding a
cycle which transverses the edge associated to starting and finishing vertices. In recent
publications, it has become common to fix a vertex instead of an edge. Throughout all
the dissertation, a feasible cycle solution for the OP must visit a given vertex, called the
depot vertex. The OP can be modelled as follows:

max total score of the vertices visited by 7 (1.1a)
s.t. 7 is a simple cycle, (1.1b)
7 has a length lower than dy, (1.1¢)
T visits the depot vertex (1.1d)

The OP can be seen as a combination of the Knapsack Problem (KP) and the Travel-
ling Salesperson Problem (TSP). Given a set of items with an assigned weight and profit
and a constant wg, the goal in KP is to find the subset of items which, with a total weight
lower than or equal to wy, maximizes the sum of the profits of subset items. In the KP,
the feasibility of a subset is checked in linear time. In the OP, however, the feasibility of
a solution is checked by solving a TSP-decision problem. A subset of vertices is feasible if
there exists a cycle (Hamiltonian in the subgraph obtained by the vertices) whose length
does not exceed dy, finding such a cycle is an NP-complete problem. This simple but
non-trivial combination of two NP-hard problems makes the OP an interesting problem
to study.

In Figure 1.1 we show the TSP solution (left) and the OP solution (right) for the
instance pr76 of TSPLIB published in Reinelt [1991]. For the OP, the depot node is
represented in green and the distance limitation is half of the TSP solution value on the
left. The scores of the nodes are randomly generated as explained in Table 1.1.

The OP is classified as one of the three generic problems in TSPs with profits, see Feil-
let et al. [2005]. The TSPs with profits have two opposite criteria: one that motivates the
salesperson to travel and another that imposes a constraint in the route length, e.g., the
route must have a minimum length or the route length must be not greater than a given
value. The other two problems of TSPs with profits are the Profitable Tour Problem
(PTP) (Dell’Amico et al. [1995]) and the Price Collecting TSP (PCTSP) (Balas [1989]).
In the PTP the goal is to maximize the difference between the total collected profit and
the cost of the tour. Particularly, the PCTSP is closely related to the OP. In both
problems, the solutions are simple cycles that contain a given depot vertex. The two
problems differ in two aspects. First, the Knapsack constraint of the problem in the
PCTSP is defined among the collected vertex profits rather than in the length of the
route as in the OP. Secondly, the objective function in PCTSP is to minimize the route
length while in the OP it is to maximize the collected vertex profits. See Angelelli et al.
[2014D] for the study on the complexity and approximation algorithms for TSPs with
profits.
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Figure 1.1: On the left, the TSP solution of pr76. On the right, the OP solution for pr76-Gen2-50

1.1.1 Complexity

NP-HARD PROBLEM

The Orienteering Problem is an NP-hard problem since the existence of a polynomially
bounded algorithm for it implies the existence of a polynomially bounded algorithm for
well-known NP-complete problems, and hence for all NP-complete problems (Golden
et al. [1987]).

In order to see that a polynomially bounded algorithm for the OP implies the existence
of a polynomially bounded algorithm for NP-complete problems, it can be seen that a
NP-complete problem is equivalent to some particular cases of the OP.

Given an undirected graph G, let us assign weight one to every edge and score one to
every vertex, and let |V| be the cycle length constraint of the OP. Then if the OP value
is equal to |V, there exists a Hamiltonian tour for the graph G. The Hamiltonian cycle
problem, a known NP-complete problem which consists of determining the existence of
a cycle that visits all the vertices in a graph exactly once, has a polynomially bounded
algorithm if there exists such an algorithm for the OP.

It can also be seen that there exists a polynomially bounded algorithm for the TSP-
decision problem if there exists such an algorithm for the OP. Given an undirected
weighted graph G and a constant dy, let us assign score one to every vertex. Then, if
the solution value of OP is equal to |V|, there exists a tour for the graph G with length
equal to or lower than dy.
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BRUTE FORCE SEARCH ALGORITHM

In a worst case scenario, using a brute force approach for the OP, we will need to evaluate
all the simple cycles of the graph. If this is the case, for each non-empty subset of vertices,
all the permutations of vertices in the subset need to be evaluated. Although the number
of simple cycles might seem to be much larger than the number of Hamiltonian cycles,
they are both comparable. Let n be the number of vertices of a graph and k£ the number
of vertices in a simple cycle. Then, the number of simple cycles is:

n

n - 1 "1 =1
S (Me=nY —— =Y — <ty —=nl 1.2
(k) B R R~ T T~ T R (12)

k=1

Hence, the brute force search algorithm for the OP has the same time complexity, O(n!),
as the brute force search algorithm for the TSP. However, its complexity is much bigger
than the time complexity of the brute force algorithm for KP, which is O(2").

1.2 Variants of the OP

Many practical problems have been modeled where the OP plays a crucial role. Some
examples are travelling salesperson without enough time to visit all the cities (Tsiligirides
[1984]), the home fuel delivery problem (Golden et al. [1987]), the tourist trip design
problem (Vansteenwegen and Van Oudheusden [2007]; Souffriau et al. [2008]; Wang et al.
[2008]), and the mobile-crowdsourcing problem (Yuen et al. [2011]).

In order to address these real-world problems, many variants of the OP have been
proposed in the literature:

- Team OP (TOP): the goal is to determine M paths, each limited by a maximum
length constraint, in order to maximize the total score. See Chao et al. [1996b],
Boussier et al. [2007], Poggi et al. [2010], Dang et al. [2013], Keshtkaran et al.
[2015], Bianchessi et al. [2018].

- OP with Time Windows (OPTW): each node has an assigned time window which
determines when a node can be visited. See Vansteenwegen et al. [2009], Labadie
et al. [2011], Gunawan et al. [2017].

- Arc OP (AOP): the profits are located in the arcs. See Archetti et al. [2016], Archetti
et al. [2014a], Riera-Ledesma and Salazar-Gonzélez [2017].

- Time Dependent OP (TDOP): the travel time between two nodes depends on the
departure time. See Verbeeck et al. [2014].

- OP with Stochastic Profits (OPSP): the profits associated with the nodes are
stochastic with a known distribution. See Ilhan et al. [2008].

- OP with Stochastic Travel and Service Times (OPSTS): the travel and service
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times are stochastic. See Campbell et al. [2011].

Generalized OP (GOP): each node has an assigned set of scores with respect to a
set of attributes. See Geem et al. [2005] and Wang et al. [2008].

- Probabilistic OP: each node is available to visit with a certain probability. See
Angelelli et al. [2017].

- Multi-agent OP: individual agents are self-interested in maximizing their score.
However, the nodes have a capacity and can only receive a limited number of
agents at the same time. See Chen et al. [2014].

Clustered OP (COP): the nodes are clustered in groups. The score associated with
each group is obtained when all the nodes in a particular cluster are visited. See
Angelelli et al. [2014a].

In recent years, there has been a considerable increase in the publications related to
OP. In Figure 1.2 we show the trend of the number of publications in which the OP is
studied or used, according to Scopus.

Documents by year
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Figure 1.2: Trend of Orienteering Problem related publications. Source Scopus.

1.3 Benchmark instances for OP

Several benchmark instances have been proposed in the OP literature, which go from
a few dozen of nodes in the early years to several thousands of nodes in more recent
publications.

In the benchmark instances of the early works, it was common to use different starting
and finishing nodes. In Tsiligirides [1984], the first paper dealing with the OP, three
instances were presented, each with 21, 31 and 32 nodes. In Ramesh et al. [1992] 9
sets of nodes, with 10, 20, 30, 40, 50, 60, 80, 100, and 150 nodes, were generated using
random scores and arc costs. In Chao et al. [1996a], two new sets of nodes were proposed,
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a square-shaped one with 66 nodes and a diamond-shaped one with 64 nodes.

In the last few decades, the OP approaches have been tested in instances where the
starting and finishing nodes for the solution cycles are the same. Although the first set
of instances of this kind is used in Laporte and Martello [1990], which consists of ran-
domly generated instances involving from 10 to 90 nodes (the instances have not been
published), the most influential benchmark instances for the OP are those proposed in
Fischetti et al. [1998]. These instances are based on the well-known TSPLIB reposi-
tory of benchmark instances for the TSP, see Reinelt [1991]. In this paper, the authors
describe three methods of generating scores for OP instances from TSPLIB. In gener-
ation 1 (Genl) all the vertices have score one. In generation 2 (Gen2), the scores are
generated pseudorandomly as described in Table 1.1. In generation 3 (Gen3) the scores
are proportional to the distance to the depot vertex. For all of these three generations
the distance limitation is set as half of the TSP solution, dyp = [0.5 - v(T'SP)]. In this
thesis, we have extended the set of benchmark instances to larger size problems. So far,
instances up to 400 nodes of the TSPLIB had been evaluated in the OP literature; we
also considered the ones involving up to 7397 nodes. The benchmark instances set is
summarized in Table 1.1.

Table 1.1: Generations for instances based on TSPLIB.

# medium # large

Generation Score for the ith node, i € [n]
n < 400 n > 400

Genl 1 0.5 45 41
Gen2 1+ (7141 (i —1)+73) mod 100 0.5 45 41
Gen3 1+ L99 . dLZ'/IIlanE[n] dl,jJ 0.5 45 41

All the instances used for the computational experiments are available in https:
//www.github.com/bcamath-ds/0PLib.

1.4 Review of the literature approaches for the OP

Since the publication of Golden et al. [1987], dozens of heuristic and exact approaches
have been proposed to solve the OP. A review of the early approaches for the OP, prior
to 1996, can be found in Chao et al. [1996a]. In the last decade, with the upsurge
of variants and applications of the OP, new surveys have been published about the
approaches, variants and applications of the OP. These recent surveys are Vansteenwegen
et al. [2011], Gunawan et al. [2016] and Vansteenwegen and Gunawan [2019].

With the aim of setting a good starting point to introduce the contribution in this
dissertation, we provide a background of the approaches proposed for the OP in the
literature and describe the most important heuristic and exact approaches proposed
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thus far. In Table 1.2 we summarize the most influential heuristic approaches for the
classical OP, while in Table 1.3 we summarize the exact algorithms developed for the
OP. We have excluded from the lists the publications that do not compare the proposed
algorithm with the benchmark instances in the literature or solve a different version to
the classical problems, e.g., use an alternative objective function.

We name the benchmark instances using numbers to simplify the tables: [1] Tsiligirides
[1984], [2] Laporte and Martello [1990], [3] Ramesh et al. [1992], [4] Chao et al. [1996a],
[5] Fischetti et al. [1998] and [6] Gendreau et al. [1998b].

Regarding the heuristic approaches, we focus the summary on the used approach
framework, solution initialization technique (Initialization), cycle length improvement
heuristic (Length) and local search procedures (Local Search). We classify the initial-
ization approaches into two groups: the constructive ones and the selective ones. By
constructive, we mean techniques that add nodes, and paths, to the solution step by
step. By selective, we refer to techniques that first determine the nodes in the initial
solution and thereafter construct the cycle, or path, that transverses the selected nodes.

In Table 1.2, in order to simplify the alternative local search procedures, we follow the
notation used in Keller [1989]. By (a,d), we mean that a nodes have been added and d
nodes have been dropped from the solutions simultaneously. The most widely used local
search is (1,0) where the added node is inserted with the cheapest insertion criteria.
Since all these local search heuristics are inappropriate for the aim of solving large
problems, we do not delve deeper in the specific proposed local search procedures. The
primary reason why these local search procedures are not useful for large OP problems
is that they are computationally expensive.

In the Length column we specify the heuristic used to optimize the cycle length of
the solutions. These heuristics are: k-opt (Lin [1965]; Lin and Kernighan [1973]) and
GENIUS (Gendreau et al. [1992]).

Note that all the proposed heuristics in the literature thus far share the property of
working with feasible solutions. In these algorithms, whenever an unfeasible solution is
obtained, the solution is amended to convert it to a feasible one.

Regarding the exact approaches for the OP, the most competitive approach thus far
was proposed by Fischetti et al. [1998] two decades ago. To our knowledge, no exact
algorithm for the classical OP has been published after this work. The first exact algo-
rithm, a Branch-and-Bound (B&B) algorithm, was published in Laporte and Martello
[1990] where bounds for the problem were provided based on the Knapsack relaxation of
the OP. In Ramesh et al. [1992], new bounds for the B&B were obtained by Lagrangian
relaxation. In Leifer and Rosenwein [1994] a Branch-and-Cut (B&C) algorithm was
proposed, which included logical, connectivity, and cover cuts for the first time. In Gen-
dreau et al. [1998b] a B&C was proposed for a variant of the OP which considers multiple
depot nodes. The B&C approach in Fischetti et al. [1998] outperformed the previous
ones in middle-sized OP instances by considering column generation, new valid inequal-
ities (cycle cover and path inequalities), problem-specific separation algorithms, and an
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efficient primal heuristic.

1.5 Objectives of the thesis

The algorithms published so far in the literature were developed with small and medium-
sized instances in mind. The main objective of the thesis is to design algorithms to solve
large-sized OPs. With that aim, we plan to develop:

(i) A heuristic algorithm that, with low computational time, obtains solutions with
acceptable quality:

i. Minimize the need to check and recover the feasibility of solutions.

ii. Initialize the solutions considering the relation between the distance constraint
and the TSP solution value.

iii. Improve the solutions with a local search procedure that scales for large-sized
problem.

(ii) General techniques for Branch-and-Cut algorithms to solve large cycle problems:
i. Safe shrinking of support graphs.
ii. Techniques to speed up exact subcycle elimination separation algorithms.

(iii) A Branch-and-Cut algorithm able to obtain optimality certification in a wider set
of instances than previous methods and to improve the known lower and upper
bounds in the literature.

As a by-product of the previous goals we also pursue to:
(iv) Implement the algorithms and make the software publicly available.
(v) Create a repository with TSPLIB-based large-sized OP instances.

The rest of the thesis is organized as follows. In Chapter 2 an evolutionary algorithm
is developed. We extend from the TSP the Edge Recombination crossover and a k-d
tree-based local search is proposed. Chapter 3 introduces the cycle polytope and the
shrinking technique. Three safe shrinking rules for the cycle polytope and two subcycle-
safe shrinking rules are obtained. We extend efficient exact algorithms and procedures
for the subcycle separation problem. In Chapter 4, a Branch-and-Cut algorithm is
developed. In each of these three chapters, a section with computational experiment
is included. In Chapter 5, we detail the structure, the installation and the use of the
implemented software. In the appendices, pseudocodes and detailed experimental results
are presented.
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Table 1.3: Exact Approaches for the OP.

Publication Approach Contributions Benchmark
Laporte and Martello [1990] B&B KP bounds 2]
Ramesh et al. [1992] B&B Lagrangian relaxation (3]
Leifer and Rosenwein [1994] B&C Logical, Connectivity, 1]
Edge Cover
Fischetti et al. [1998] B&C Cycle Cover (5]

Path Inequalities
Column Generation
Primal Heuristics
Gendreau et al. [1998b] B&C Vertex Cover [6]
Alternative Obj

Primal Heuristics




CHAPTER 2

EA4OP: An Evolutionary Algorithm for the OP

OUTLINE

In this chapter, we present an Evolutionary Algorithm for the OP. The key character-
istic of the algorithm is to maintain unfeasible solutions during the search. Further-
more, it includes a novel heuristic for node inclusion in the route, an adaptation of the
Edge Recombination crossover developed for the Travelling Salesperson Problem, spe-
cific operators to recover the feasibility of solutions when required, and the use of the
Lin-Kernighan heuristic to improve the route lengths.

2.1 Introduction

There are several Evolutionary Algorithms (EA) proposed in the literature to solve
OP and TOP Tasgetiren [2001]; Bouly et al. [2010]; Ferreira et al. [2014]; Marinakis
et al. [2015]; Ostrowski et al. [2017], among others. In all of these approaches the
solutions are initialized with constructive methods which add a new node to the route
while the distance limitation constraint is satisfied and codified based on the visiting
sequence of nodes. The tour lengths are improved using the 2-opt heuristic and general
purpose genetic operators are adapted for the evolutionary part. Particularly, all of
them use an adaptation of the single-point crossover or its generalization, the n-point
crossover. Approaches Bouly et al. [2010]; Ferreira et al. [2014]; Marinakis et al. [2015]
and Tasgetiren [2001], have been tested in the benchmark instances proposed by Chao
et al. [1996a] (40 instances involving up to 66 nodes) and Tasgetiren [2001] (49 instances
involving up to 33 nodes). Approach Ostrowski et al. [2017] has been tested in 90
TSPLib-based instances and 15 VRP-based instances proposed by Fischetti et al. [1998].

We propose a population-based evolutionary optimisation technique whose main char-
acteristic is to maintain unfeasible solutions during the search process. Essentially the
algorithm follows the steady-state genetic algorithm schema Whitley et al. [1989] with
the difference that, at some generations, we perform a tour-improving procedure followed

11
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by node dropping and adding strategies, for feasibility conversion and path tightening
respectively. The pseudocode is described in Algorithm 1.

Our approach, in addition to the common parameters of any genetic algorithm (pop-
ulation size, mutation probability), uses a specific parameter, d2d, that controls the
frequency of the feasibility and improving phase.

Algorithm 1: Evolutionary Algorithm

1 Build initial population (2.3.1);

2 Tour improvement (2.3.3);

3 Drop operator (2.3.4);

4 Add operator (2.3.5);

5 i=0;

6 while stopping criteria are not satisfied OR mod(i,d2d) # 0 ) do
7 i=i+1;

8 if mod(i,d2d) # 0 then

9 Select two parents (2.3.2);

10 Crossover (5);
11 Mutation (14);

12 if child better than worst in the population then
13 Insert the child in the place of the worst individual;
14 end
15 else

16 Tour improvement (2.3.3);
17 Drop operator (2.3.4);
18 Add operator (2.3.5);
19 end
20 end

2.2 Solution Codification

A solution to the problem can be seen as a sequence defined by a subset of nodes (route).

CODIFICATION
In order to codify that solution, a permutation of the whole set of nodes has been
considered, m = (m1,...,7,). In this permutation, 7; represents the next node visited

after vertex ¢ in the route. The nodes in the route form a cycle in the permutation and
a node which is not in the route is codified as a fixed point, i.e, 7(i) = i.

Figure 2.1 shows a solution of an OP whose associated codification is the follow-
ing permutation, 7 = (6,2,3,4,8,7,5,1). Note that the nodes in the solution route
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{1,6,7,5,8,1} form a cycle in the permutation 7, while those nodes off the route {2, 3,4}
are fixed points in the permutation.

@ G 7= (6,2,3,4,8,7,5,1)

De—1  ®

Figure 2.1: Example of a solution in an eight-node graph and its corresponding codification as a
permutation.

Note that not every possible permutation is a valid solution of the problem: first, the
route length limitation constraint may not be satisfied; secondly, sub-routes may also
appear. However, this route codification has been chosen for implementation reasons. On
one hand, a fixed length codification was desirable; on the other hand, some operations
over the solutions, such as checking if a node is contained in the route, can be efficiently
implemented using this codification. A similar codification was previously proposed for
the Prize Collecting TSP Balas [1989].

2.3 Components
2.3.1 Imitial population

Algorithm 2 shows a pseudocode for generating npop individuals for the initial popu-
lation. An individual is generated in two steps. In the first step, a subset of nodes is
randomly chosen, where each node is sampled with probability p. In the second step, a
route passing through the subset of nodes is randomly created and codified as described
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in Section 2.2.

Algorithm 2: Initial population

1 for i =1 to npop do
2 v1 node is included in the subset of nodes;

3 for j =2 ton do

4 v; node is included in the subset of nodes with probability p;
5 end

6 Construct a tour by randomly ordering the selected nodes;

7 end

The probability p is a parameter of the algorithm, where n - p determines the expected
number of visited nodes of each generated individual. In addition, note that the obtained
initial individuals could be unfeasible.

2.3.2 Genetic Operators

In this section we will describe the genetic operators - parent selection, crossover and
mutation - that are used to evolve the population. While the chosen parent selection
operator is a general purpose selection procedure, the crossover and mutation operators
have been specifically developed or adapted for the OP problem.

Parents selection

Our selection operator is a kind of hybridisation between tournament and roulette wheel
selection, see Algorithm 3. In the first step, ncand candidates are uniformly at random
selected from the population. In the second step, the roulette wheel selection is carried
out, based on the individual fitness (i.e., its objective function or total score), where a
correction is performed (subtraction of the minimum fitness) in order to point out the
fitness quality differences between candidates.

Algorithm 3: Parents selection

1 Select uniformly at random ncand candidates from the population,
C={hL,...,Incand} C {1,...,npop};

2 Compute m := minr,cc(f1,), where fr, is the objective function value of I; € C;

3 Compute r; := fr, —m+1,71=1,...,ncand,

4 Compute p; := ﬁ, I, € C;

5 Sample twice with the distribution (p1, ..., Pneand) to obtain two parents;
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Crossover operator

The crossover produces a new child solution from a given pair of parents solutions by
using an adaptation of the well-known Edge Recombination operator Whitley et al.
[1989].

CROSSOVER GOALS

In the OP, we are interested in inheriting two main characteristics from the parents
related with the nodes and the edges. Regarding the visited nodes, we want to maintain
all the nodes that are common to both parent solutions, to include, with a probability,
the nodes that belong to only one parent, and to exclude the nodes that do not belong
to any parent solution. Regarding the route length, we want to use as many edges of
the parents as possible in order to pass on the maximum amount of information and
decrease length quality losses in the new child solution.

The original ER crossover Whitley et al. [1989] was designed for problems where the
solution space consists of Hamiltonian cycles; now we have extended it for a larger set of
sequencing/ordering problems, where the solution space consists of simple cycles which
do not necessarily contain all the nodes. This generalisation does not use the information
of the associated cost of the edges and, therefore, it is possible to produce unfeasible
solutions for the OP.

The operator uses the so-called edge map, which is a summary of parental information,
to guide the procedure. The edge map contains, for each common node of the parental
graph, its degree, connected nodes and intermediate paths. Representing the route of
the first and second parent as the graphs G; = (V1, E1) and Gy = (Va, Ey) respectively,
the parental graph consists of all vertices and edges arising in the solutions of the two
parents, i.e., PG = (V1 UV, E1 U Es). A node u is a common node of the parental
graph if that vertex belongs simultaneously to both parents, u € Vi N V5. A node u is
a connected node of a node v if u and v are common nodes and there exists a path
over the parental graph connecting both nodes which does not contain a third common
node. The degree of a common node is the number of nodes which are connected to it.
An intermediate path between two common nodes u and v is any path from u to v,
which is inside the parental graph with no more common nodes.

The ER crossover operator builds the child route as follows (see Algorithm 4): first,
the edge map is constructed, and the starting node vy is assigned to be the current
node. Each time the current node is reassigned, it is removed from the edge map, and
the degree of each non-visited common node is recomputed. At each step we will decide
which the next common node to visit is by selecting from the set of the non-visited
connected nodes of the current node the one that has the lowest degree, where ties are
broken randomly. If we reach a node whose all connected common nodes are already
visited, we will choose the next node randomly from the set of non-visited common
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Figure 2.2: Example of a crossover. (a) Parental graph. The route of the first parent is repre-
sented by dotted line, the route of the second parent with dashed line. The common
nodes are filled in gray. (b) Child after the crossover.

nodes. A intermediate path between the current node and next node is randomly chosen
and its nodes incorporated to the route. The process finishes when there are no more
common nodes left to visit.

Note that the operator does not make sense when there is a unique common node, vy,
or when the solution routes are equal. In any of these cases, the crossover procedure is
skipped, and one of the parent solutions is cloned.

In Figure 2.2, two parents solutions are shown (a) and the child (b) produced after
the ER crossover application. Table 2.1 shows the associated edge-map and Figure 2.3
shows some illustrative steps of the operator. The algorithm starts at common starting
node 1. Both of its connected nodes, 4 and 9, have degree two - we have already removed
the node 1 from the edge map-, so the algorithm will make a random choice. Assume
that the common node 4 is chosen, and again randomly we choose one of the possible
paths to reach the node 4, in this case we assume that the path chosen is (1,2,4), see
first step in Figure 2.3. The candidates for the next common node are 6 and 10. Both
have degree 2 so randomly choose one, assume that 6 is chosen. There is a unique path
to choose that goes from 4 to 6, the one that passes through node 5, see second step. In
the last step, all the common nodes have been visited so the algorithm will join node 11
and 1.
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Table 2.1: Example of an edge map

Common Node Connected Nodes Degree Intermediate paths
1 4 9 (1,4), (1,2,4)
9 (1,9), (1,8,9)
1 (4,1), (4,2,1)
4 6 3 (4,5,6)
10 (4,10)
(6,5,4)
6 3 (6,7), (6,3,7)
11 (6,11)
. 6 9 (7,6), (7,3,6)
12 (7,12), (7,13,12)
1 (9,1), (9,8,1)
9 10 3 (9,10)
12 (9,15,16,12)
(10,4)
10 3 (10,9)
11 (10,11), (10,14,11)
6 (11,6)
11 10 3 (11,10), (11,14,10)
12 (11,12)
7 (12,7), (12,13,7)
12 9 3 (12,16,15,9)
11 (12,11)
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Figure 2.3: Illustration of the crossover operator. The left and center figures show the results of
two consecutive steps of the crossover algorithm, while the right figure represents the
last step before closing the route.

Algorithm 4: ER crossover operator

=

Initialize current node to vy;

2 while there are non-visited common nodes do
3 Remove all the occurrences of current node from the connected nodes of edge
map;
4 if at least one connected node of the current node is not visited then
Update next node as the connected node with the smallest degree, ties are
broken randomly;
6 Choose randomly an intermediate path between current node and next node.
Insert the path after the current node;
Rename the next node as the current node;
else
9 if there are non-visited common nodes then
10 Select randomly a non-visited common node and insert it on the route
after the current node;
11 Call it the current node;
12 end
13 end
14 end

Mutation operator

At each generation, after the crossover operator has been applied, a mutation is per-
formed, see Algorithm 5. To perform the mutation, we will choose a node uniformly
at random from {vs,...,v,}. If the node is on the route, the node is dropped and its
adjacent nodes are connected. If the node is not on the route, it is inserted in the best
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place - using the same heuristic explained later in the add operator 2.3.5.

Algorithm 5: Mutation operator

Select uniformly at random a node from {va,...,v,};
if the node is on the route then
‘ Remove the node from the route and connect the adjacent nodes;
else
‘ Insert the node on the route, using the heuristic explained in Section 2.3.5;
end

(=B N VI

2.3.3 Tour improvement operator

The feasibility of a solution closely depends on the order of the visiting nodes. A set of
nodes could belong to a feasible or an unfeasible solution, depending just on the ordering
of them on the route. The aim of this operator is to decrease the length of the routes as
much as possible. In this manner, first, unfeasible solutions are attempted to convert to
feasible solutions, second, the lengths of the feasible solutions are decreased in order to
insert new nodes during the add operator 2.3.5.

Finding the shortest route for a subset of nodes is equivalent to solving a TSP for
that set of nodes. In the extensive literature that has the TSP, there is a vast quantity
of heuristic approaches that can be used for the OP. We are particularly interested in
those local search techniques that provide a high quality solution in a reasonable time
due to the fact that the tour improvement is applied many times during the algorithm.
In this work we have considered the Lin-Kernighan heuristic Lin and Kernighan [1973];
Applegate et al. [2007].

2.3.4 Drop operator

Improving the tour length might not be enough to convert an unfeasible solution to a
feasible one, it could still continue violating the route length limitation constraint. In
this case, in order to obtain a feasible solution, it is necessary to delete nodes from the
solution until it fits the distance limitation.

To that end, we sort the nodes contained in the route considering both the cost in
terms of length and the fitness gain for visiting each node. Namely, we want to drop the
nodes that concurrently have a low contribution to the fitness and are costly to visit. Let
us define the value for sorting the visited nodes as drop(v;) = m where v;,
and v;,, nodes are the previous and next nodes to v;, respectively (see the drop operator
in Algorithm 6 and the example in Figure 2.4).

Thereby, at each step of the drop operator the node with the lowest drop value is
removed from the solution. The algorithm stops once it obtains a feasible solution.
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~ 3.93
~ 3.62
~ 22.45
~ 2.618

Figure 2.4: Drop operator example. After evaluating the drop value of each node, the node 8 is
removed from the tour.

Algorithm 6: Drop operator

1 while NOT distance limitation constraint is satisfied do

2 Order nodes according to drop index and remove the one with the lowest value;
Update route length and fitness;

3 end

2.3.5 Add operator

Once the individual has been made feasible, we apply an improvement mechanism to it.
It consists of the addition of new nodes to the current route. This operator is applied
for node inclusion while the distance limitation constraint is satisfied, see Algorithm 7.

When dealing with node insertion, we have to set some criteria in order to select the
most suitable node to add to the route and, then, to decide where the insertion should
be made.

Before defining the insertion criteria, let us define an associated value, addcost(v;),
for each non-visited node, v;, that approximates the increase of the route length when
inserting it to the route. A common heuristic that appears in the literature in order to
calculate the addcost value is to evaluate the cost of each possible insertion in the route
and to take the minimum value Campos et al. [2014]; Silberholz and Golden [2010].

CHEAPEST INSERTION APPROACH
If m represents the number of visited nodes in a solution, then the computational cost of
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selecting the candidate to insert at each step when using the cheapest insertion approach
is O((n —m) -m) < O(n?). Using the information calculated in the first step, i.e., the
insertion position and the addcost of each non-visited candidate, it is possible to decrease
the computational cost of selecting a candidate for the rest of the steps. This way we
have O((n —m) - m) for the first step and O(n — m) for the rest of the steps.

Although the previous method is quadratic, a faster node insertion method is still
desirable, since a large amount of queries of this type are made during the algorithm.
Therefore, we propose a new heuristic method for node insertion, one that speeds up
the process at the expense of the quality of the addcost approximation.

To evaluate the inserting cost of a non-visited node, we start by finding the three
nearest visited nodes. If two of these three nearest nodes are adjacent in the route, the
addcost value is the cost of inserting the candidate node between these two nodes (see
Figure 2.5). When there are more than two pairwise adjacent nodes in the 3-nearest set,
the addcost value is determined by the choice that minimises the adding cost. Otherwise,
if none of the three nearest nodes are adjacent to each other, calculate the cost of inserting
the candidate node between the contiguous nodes of the three nearest nodes. There are
six different options, so we choose the one with the minimum value for the addcost.

Because of the design of the proposed minimum cost insertion heuristic, when the
distance matrix is given by spatial points, the computational cost can be decreased
using a data structure to accelerate the proximity queries. In our case, we have used a
k-d tree, which is built once in the whole algorithm.

Finally, the addvalue is defined to set the inserting preference of a non-visited node
using the addcost and the score of the node. The inserting preference of a non-visited
node depends whether the insertion is feasible or not. When the insertion is feasible,
i.e., the current length plus the addcost value is not greater than the route length limit,
the inserting preference is defined as addvalue(v;) = s;/addcost(v;). When the insertion
is not feasible, the inserting preference of the node is set to 0. If the maximum value of
addvalue is positive, the node which maximizes the addvalue is inserted in the route,
and the process is repeated. The add operator stops when adding any of the non-visited
nodes leads to an unfeasible solution, i.e., when all the addvalues are 0.

K-D TREE BASED 3-NEAREST INSERTION APPROACH

When the nodes are spatial points, for the insertion approach, we use k-d trees for
semidynamic point sets [Bentley, 1990]. The k-d tree is build in O(nlogn) time. For
each non-visited node, the k-d tree is updated (undelete and delete the node) in O(1)
time and the three nearest nodes are found in O(log(n)). Therefore, the total cost of
finding the best position in the route for all the non-visited nodes in the first step is
O((n —m)log(n)) < O(nlogn).



22 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

Figure 2.5: Example of an evaluation of the cost of inserting a node in the route. Node vs is the
node to evaluate and the rest of nodes are part of the route (solid line). In this case,
the best position for the node v3 in the route is between the adjacent nodes vy and
V5.

In Figure 2.5 we represent the calculation of the heuristic to obtain the addcost of the
non-visited node vs. First, we search the three nearest nodes from v3 on the route, in
this case v1, vo and vs. Given that v; and vs are adjacent in the route, we assign to vs
the increase of the distance route if v is added between v, and wvs, i.e., addcost(vs) =
di3+d3s —dyps.

2.3.6 Stopping criteria

There are two main stopping criteria for our evolutionary algorithm. The first one is
based on the distribution of the population fitness. Specifically, the algorithm stops
when a certain proportion of the solutions has the same fitness as the best solution of
the population. The second one is a limitation on the execution time.

These criteria are evaluated after the feasibility of the solutions is checked and the add
operator is performed, particularly, when the generation number is a multiple of d2d.

2.4 Computational results for EA4OP

This section presents the results of the computational experiments carried out for testing
the evolutionary algorithm explained in the previous section. The proposed approach
has been compared with the exact branch-and-cut algorithm (B&C) Fischetti et al.
[1998] and three state-of-the-art heuristics: GRASP with Path Relinking (GRASP-PR)
Campos et al. [2014], tabu search (TS) Gendreau et al. [1998a] and the two-parameter
interactive algorithm (2-P IA) Silberholz and Golden [2010]. Results for TS are not
reported because they were not competitive compared with the rest of the approaches,
but they are available upon request from the authors. The benchmark instances have
been generated from those obtained from TSPLib repository. We have split up the
instances into two groups: medium-sized instances, up to 400 nodes and large-sized
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Algorithm 7: Add operator

TU R W N =

N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

while NOT stop do

for node v; not in route do

Get the three nearest nodes in the route for v;, Vi = {vi, v, vi};

if at least two nodes of Vs are adjacent in the route then

Find the pair (vprey, Unext) Where Uprey, Unest € V3 that are adjacent in
the route that minimizes dprev,i + dinest — dprev,next;

else

Define:;
Vs ={(vi,v,.,.), (V5,05 ), (V3,05 )} U
{(v1,,.,,v1), (v, ., v3), (V5 . v5) b
Find the pair (vprey, Unest) € V5 that minimizes

dprev,i + di,ne:ct - dprev,nea}t;

end
addCOSt(Ui) = dprev,i + di,next - dpre'u,next;
if route length + addcost(v;) < dy then
‘ addvalue(v;) = s;/addcost(v;);
else
‘ addvalue(v;) = 0;
end

end

Select the node, v;, which maximizes addvalue;

if addvalue(v;) > 0 then
Include the selected node in the route;
Update route length and fitness;

else

‘ Stop;
end

end
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ones, up to 7397 nodes. As detailed in the literature, three generations are classified
according to the definition of scores. A fourth generation has been created with the
most difficult instances for the exact methodology.

The solution quality and the computational cost have been analysed. The solutions
have been measured in terms of the quality gap (gap), defined as the relative difference
in percentage between the best known or optimal solution (opt) and the solution of the
corresponding algorithm (best), i.e., gap = 100 - %pbf‘% The computational cost in
seconds is measured via time consumption.

The computational experiments are reported as follows. The validation of the pro-
posed algorithm components is carried out in Section 2.4.2. Section 2.4.3 shows the
performance of the evolutionary algorithm versus the exact B&C and two state-of-art
heuristics: GRASP-PR and 2-P TA. The detailed numerical results are available in Ap-
pendix B.1.

2.4.1 Parameter and heuristic selection

In order to perform the parameter and heuristic selection, we have selected five medium-
sized instances of generation 2, involving the largest amount of nodes without repeating
the “family” (gil262, a280, 1in318, pr299 and rd400). We have chosen instances from
generation 2 precisely because, contrary to the other generations, here the scores are
pseudo-randomly generated.

Solution initialization parameters

As explained in Section 2.3.1, an initial solution is generated in two steps: the first
one consists of randomly selecting a subset of nodes to be visited; the second one con-
sists of constructing the tour involving the selected nodes, i.e., giving an order in the
selected subset of nodes. It is desirable that the average number of selected nodes in
a solution, n - p, is close to the number of nodes in the optimal solution. A straight-
forward choice is to select p as the proportion between the distance limit and the TSP
solution, i.e., p = do/v(TSP). However, the results achieved by the B&C in Fischetti
et al. [1998] show that the optimal solution tends to visit a higher number of nodes
than expected. Therefore, we have decided to overestimate the number of initial nodes
using p = /do/v(T'SP). To approximate the TSP value, Lin-Kerninghan heuristic has
been used and this computational time has been considered in the global time of the
algorithm.

In order to get an idea of the influence of the parameter p on the population ini-
tialization and on EA4OP, we have tested three different choices of p: o2, o and \/a
where o = do/v(T'SP). The rest of the parameters have been set as detailed in Section
2.4.1. The experiments show that the best mean gap either for the initialization or for
the EA4OP is obtained using p = /a. Furthermore, in the initialization, the closest
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solutions to the optimum in terms of visited number of nodes are obtained using the pa-
rameter value mentioned. However, it is interesting to note that the higher the value of
p used, the longer the time that is needed to initialize the population, due to the higher
amount of nodes included in TSP problems that are solved during the initialization, see
details in supplementary material.

Genetic operator parameters

The parameters value selection for the algorithm (ncand, npop, d2d and pmut) has been
performed using non-parametric statistical tests: Friedman test for multiple (more than
two) mean comparisons, Wilcoxon signed-rank test for two mean comparisons and Finner
post-hoc test for pairwise comparisons Garcia et al. [2010]. For all of these tests, 0.05
has been used as significance level.

Taking into account that, depending on the target (gap or time), the selected values for
the parameters might differ, gap has been prioritized over time. Therefore, the analysis
is performed in two steps: in the first step, a Friedman test on the gap is carried out for
each parameter. If it does not find significant differences for the parameter values, all of
the values are considered for the next step. Otherwise if it finds significant differences
between the achieved gaps by the different values, we continue with Finner post-hoc
tests to select the values that obtain the best gaps. Those values which are not signif-
icantly different from the best gap are considered for the second step. If all values have
significant differences with the best, this is the value chosen and the procedure finishes
here for that parameter. In the second step, previously selected values are considered
and the procedure detailed for the gap is repeated now for the time. In the case that
there are several parameter values with no significant differences with the value that
obtains the best mean time, the value with the lowest mean gap is chosen.

For each parameter, the following set of values has been considered: ncand € {5, 7, 10},
npop € {10, 20, 50, 100}, pmut € {0.01, 0.05, 0.1} and d2d € {5, 10, 20, 50} where
d2d < npop. For each parameter a univariate analysis has been conducted, except for
npop and d2d - for which a bivariate analysis has been carried out. The values (npop,
d2d)=(100, 5) and (100, 10) have been excluded from the analysis because those config-
urations require an excessive amount of time. Each combination of the parameters has
been run 10 times.
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Table 2.2 details the mean gaps, the mean times and the p-values of the tests obtained
during the selection procedure. For instance, based on this information, we have set
pmut parameter to 0.01. In the first step, using Friedman test we obtained that there
are no significant differences in terms of gap between the values of pmut, therefore, all
the values were considered for the next step. Regarding the time, Friedman test gave
that there exist significant differences between the pmut values, so we proceed with the
Finner post-hoc test. Finally, parameter value 0.01 is selected since comparing the gap
between pmut values with no significant differences in terms of computation times it
obtains the lowest gap. After the statistical tests, the following parameter values were
chosen for the computational experiments: ncand = 10, npop = 100, d2d = 50 and
pmut = 0.01.

Tour improvement operator

Preliminary experiments in the 5 instances of the previous training set with 2-opt, 3-opt
and Lin-Kernighan approaches showed that the Lin-Kernighan technique as TSP local
search was the most suitable. We appreciated that the solutions obtained for the OP
using this method were better than with the rest of the techniques, while the time needed
to accomplish the search was not substantially larger.

Stopping criteria

As explained in Section 2.3.6, there are two stopping criteria. The first one, which is
based on the distribution of the fitness, stops the algorithm when the first quartile of
the population’s fitness is the same as the best solution fitness. The second one, which
is a time limitation, stops the algorithm when the execution time exceeds 5 hours.

2.4.2 EA40OP components validation

In this section, we verify that all the components in the EA4OP are necessary to obtain
high quality solutions. We have implemented three algorithms in order to evaluate the
contribution of the components in the EA4OP algorithm.

- Algorithm 3.3.1: This algorithm builds a large random population and applies
the drop and add operators to each individual. We have considered the average
number of solutions used by the EA4OP to set the size of the population, npop, for
Algorithm 3.3.1, for each instance and generation. As we are using a steady-state
algorithm, the amount of solutions used in a run of the EA4OP is equal to the
initial population size plus the number of iterations. Algorithm 3.3.1 is used to
evaluate the contribution of the evolution process of our algorithm.

- Algorithms 3.3.2 and Algorithm 3.3.3: In these algorithms, we consider a EA40OP
but without the crossover. Instead of selecting two parents and crossing them,
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we select only one parent using the procedure of the parents selection operator
and applying the mutation operator. Two different versions of this algorithm
have been tested, both of which differ in the relaxation of the stopping criteria.
Algorithm 3.3.2 stops when all the solutions of the population have the same
fitness. Since Algorithm 3.3.2 obtains lower computation times than EA4OP, we
have also considered Algorithm 3.3.3, which is similar to Algorithm 3.3.2 but stops
when the computation time reaches the mean time used by EA4OP. Algorithms
3.3.2 and 3.3.3 are used to evaluate the contribution of the ER crossover operator.

In order to perform the comparison of these algorithms, all of them have been con-
figured with the same parameters used in EA4OP ( ncand = 10, npop = 100, d2d = 50
and pmut = 0.01), except the parameter npop for Algorithm 3.3.1, which has been ex-
plained above. These algorithms have been run in five medium-sized and five large-sized
instances of each generation, which have been selected using the same criteria as in
Section 2.4.1.

Table 2.3: Comparison between the results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3

and EA4OP.
Algorithm 3.3.1  Algorithm 3.3.2  Algorithm 3.3.3 EA40P
Generation  Size Gap Time Gap Time Gap Time Gap  Time

Genl Medium  13.75 10.40 10.71 1.81  9.63 4.64 1.76 4.54

Large 15.19 15468.30 10.07 1527.96 7.44  5501.40 0.00 5500.71
Gen? Medium 13.20 11.96  9.01 1.75 8.43 5.05 1.21 4.93

Large 16.33 16887.87 10.80 1721.30 5.93 6397.23 0.00 6397.06
Gen3 Medium 14.58 12.46  11.32 1.95 10.08 5.45 3.69 5.04

Large 17.15 17635.65 10.94 1719.08 7.95 6241.82 0.00 6241.36

Medium  2.16 6.89 1.28 1.79 1.24 5.66 0.07 5.14
Gen4

Large 16.75 17095.59 10.82 1490.95 7.23  3498.83 0.00 3498.29

The results are summarized in Table 2.3. They show that building a large random
population needs a large amount of time while it does not obtain competitive results
in terms of solution quality. This large amount of time is due to the requirements for
making a random population feasible. It can be concluded that the proposed evolution
speeds up the generation of individuals. Furthermore, it is essential to obtain high
quality solutions.

Table 2.3 also shows that in most of the instances Algorithm 3.3.3 improves the gap
results of Algorithm 3.3.2, however they are still not competitive with those obtained by
EA40OP. Therefore, it can be assumed that the proposed adaptation of the ER crossover
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operator has an important contribution in the EA4OP.

In view of these results, we assume that the contribution of the evolutionary part
and, specifically, the proposed adaptation of the ER crossover are essential in the overall
algorithm.

2.4.3 Comparison with state-of-the-art algorithms

The experiments have been run on a workstation with Intel(R) Xeon(R) CPU E5-2609
v3 @ 1.90GHz processor using a single thread and a maximum of 4 GB RAM. For the
experiments of this chapter, we have defined a new generation method (generation 4)
involving instances with dg # [0.5-v(T'SP)]. With that in mind, we have considered the
instances with scores of generation 2 and created all the cases with dy = [ - v(T'SP)],
where « € {0.05, 0.10, ..., 0.45, 0.55, ..., 0.95}. From these 18 cases we have chosen
the most difficult instance for the B&C in Fischetti et al. [1998]. When all the problems
finish before the time limitation for the B&C, we choose the a whose solution takes
the longest time. Otherwise, when at least one problem reaches the time limitation, we
choose the @ whose solution takes the longest separation time at the end of the time
limitation for the B&C .

The evolutionary algorithm for OP (EA4OP) was implemented in C language. We
have reused the code from the Concorde TSP solver for the routines related to dynamic
k-d trees and the Lin-Kernighan TSP method. The source code has been published with
a GPLv3 license, except the third-party code mentioned above, which has an academic
license. The code is available at https://github.com/bcamath-ds/compass.

For comparison purposes, the following algorithms have been tested: the exact B&C
algorithm from Fischetti et al. [1998] and two heuristics: GRASP-PR Campos et al.
[2014] and 2-P IA Silberholz and Golden [2010]. For each heuristic, 10 runs have been
performed at each instance, while the exact algorithm has been run once. All the ex-
periments have been performed under the same conditions: the same machine, the same
language (C) and the same compiler (gcc 4.8.5) with the same flags (-O3).

For a fair comparison in terms of computational time, the results of the B&C algorithm
have been obtained with CPLEX 12.5.0 instead of the original LP solver CPLEX 3.0.
Note that the papers Campos et al. [2014] and Silberholz and Golden [2010] considered
the results published in Fischetti et al. [1998].

New optimal solutions have been obtained with the updated execution of the B&C
algorithm for all the instances that stopped after 5 hours in Fischetti et al. [1998]:
two in generation 1 (ts225, pr226), four in generation 2 (pr266, pr299, 1in318, rd400)
and four in generation 3 (prl44, pr299, lin318, rd400). The optimal solution for score
generation 2 are 6662, 9182, 10923 and 13652, respectively, while in the paper, the
mentioned solutions after 5 hours of computation were 6615, 9161, 10900 and 13648,
respectively. However, the bounds published for score generation 1 and 3 in the original
paper are higher than the values obtained with the updated software. We conjecture
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that, incidentally, upper bounds were published instead of the best known solutions. For
the instances of generation 1, results 125 and 134 appeared in the original paper, and
solutions 124 and 126 are now reported, respectively. For the ones of generation 3, old
results 3809, 10358, 10382 and 13229 are different from new results 3745, 10343, 10368
and 13223.

The parameters used in the compared heuristic algorithms where those reported by
default in the respective papers. However, we have increased two B&C parameters
to take advantage of the resources of the current machines. We have experimentally
checked that the updated parameters improve the results of the originals parameters.
The parameters considered in the runs are as follows:

- B&C: In the cutting plane phase, 200 variables (instead of 100) can be added at
each round of pricing up. Additionally, we resort to branching whenever the upper
bound did not improve by at least 0.001 in the last 20 (instead of 10) cutting-plane
iterations of the current branching node.

- 2-P IA: number of iterations without improvement before termination is 4500, num-
ber of nodes to choose from each iteration of route initialization and the number
of nodes removed from each iterative change are 4.

- GRASP-PR: greediness parameter is 0.2, number of solutions is 100, constructive
methods combine C1 and C2.

Next, the summary results and a comparative analysis is shown for medium-sized
instances and large-sized instances. The detailed numerical results can be seen in B.1.

Comparison for medium-sized instances

The TSPLib instances of medium dimensionality contain 45 problems with 48 to 400
nodes. The Table 2.4 summarises the average quality gap (Gap) and time consumption
(Time) for the four generations according to the size ranges, the best results between
heuristics are highlighted in bold.

Note that all the instances can be solved up to optimality by B&C. However, the
execution time is extremely high for this exact approach. In terms of gap, GRASP-PR
performed better in generations 1, 3 and 4, while 2-P TA obtained better averages in
generation 2, as reported in Tables B.12, B.14, B.16 and B.18.

COMPARISON WITH HEURISTICS IN MEDIUM-SIZED INSTANCES

Taking into account all the medium-sized instances, GRASP-PR obtains the best average
gap. In terms of Time, 2-P TA obtains the best results in all the generations. However,
EA4OP shows competitive results, obtaining similar execution times to those of 2-P TA
in the smallest instances and better time results in the biggest instances.
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B&C 2-P TA GRASP-PR EA40P
Range # Gap Time Gap Time Gap Time Gap Time
0,50] 12 * 13.97 0.05 0.10 * 016 0.06 0.25

50,100] 56 * 6724 024 0.36 0.10 066 0.25 0.58

(

(

(100,150] 44 * 297.23 0.67 0.77 0.38 2.03 0.67 1.54
(150,200] 24 * 213.34 252 1.90 1.12 440 0.50 2.85
(200,250] 20 * 897.83 2.40 2.45 1.05 10.06 0.74 547
(250,300] 16 * 730.80 3.58 4.33 2.66 11.61 2.18 3.71
(300,350] 4 * 4854.90 3.04 746 342 1990 0.75 7.42
(350,400] 4 * 1429.30 3.80 13.05 4.56 19.35 1.17 17.68
All 180 * 42732 1.31 1.67 0.80 4.32 0.63 2.23
*

: optimal solution achieved

Table 2.4: Algorithms comparison by range in medium-sized instances.

Table 2.6 shows the performance of EA4OP versus 2-P IA and GRASP-PR. The
table summarizes the following information: Gap, number of instances in which an
algorithm’s solution is higher than the other one’s; Time, number of instances in which
an algorithm’s execution time is lower than the other one’s; Pareto, number of instances
in which an algorithm dominates the other algorithm. Pareto efficiency criterion states
that a solution dominates the other one if it obtains better results in at least one of the
objectives while not degrading any of the others (in our case the objectives are gap and
time). Ties are computed in an additional column.

In terms of Gap, EA4OP obtained better solutions than 2-P TA in all four genera-
tions, whereas in terms of Time and Pareto, 2-P IA obtains better solutions in all four
generations. When we compare EA40OP with GRASP-PR, in terms of Gap and Pareto,
EA4OP is better than GRASP-PR in all four generations. In terms of Time, EA4OP
obtains better results in generations 1 and 3, and little worse results in generations 2
and 4.

Comparison for large-sized instances

The TSPLib instances of large dimensionality contain 41 problems within 417 and 7397
nodes. Table 2.5 summarises the quality of solutions (Gap) and execution time (Time)
for the four generations according to the size ranges. The number of solved instances is
detailed in an extra column for B&C and GRASP-PR. The average gap was calculated
excluding the missing solutions, whereas the average times were calculated considering
18000 seconds for problems in which the time limit was reached. The best results between
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heuristics are highlighted in bold.

Most of these instances (130 of 164) can not be solved up to optimality by B&C.
Furthermore, B&C finished unexpectedly for 52 of the instances, not obtaining any
solution. Globally, EA4OP obtained better solutions than B&C in 96 of the 164 cases.

COMPARISON WITH HEURISTICS IN LARGE-SIZED INSTANCES

Compared with the rest of the heuristic algorithms, EA4OP obtained better quality
solutions in all the generations. Additionally, in this large-sized instance set, EA4OP
shows the best performance in execution time compared with the rest of the heuristics
in all the generations.

Note that GRASP-PR was not able to return any solution in 22 instances after the
execution time was exceeded.

Table 2.7 shows that in large-sized instances EA4OP obtains much better solutions in
terms of quality, time and Pareto efficiency, compared with 2-P TA and GRASP-PR for
all the generations.
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2.5 Conclusions

We have presented an efficient evolutionary algorithm for the OP. Essentially, the algo-
rithm follows the steady-state genetic algorithm schema. It differs in that the proposed
method maintains unfeasible solutions during the search and considers specific operators
to recover it when required. An Edge Recombination crossover has been adapted for
the OP, a novel method for node inclusion has been proposed and the Lin-Kerninghan
heuristic has been used to improve route lengths.

The computational experiments have shown that several characteristics are essential
in the effectiveness of the EA4OP. Probably the most relevant feature is the use of un-
feasible solutions during the search process. It allows us to obtain high quality solutions
without being penalized in terms of computational time, as shown in Section 2.4.1. Fur-
thermore, the parameter d2d helps to strike a balance between the solution quality and
the computational time.

To our knowledge, the initialization technique of the solutions used in the EA4OP is
also novel for the OP. In the proposed initialization, the solutions are built based on the
relation between the distance limit and the TSP value of the whole set of nodes (the Lin-
Kerninghan approximation of this value). This relation is used to estimate the amount
of nodes in the optimal solution and then the solutions are built randomly based on this
information. This initialization might be useful, mainly, for population-based algorithms
for the variations of the OP to provide diversity to the initial population.

We consider the adaptation of the ER crossover as a contribution to the solution of
the OP and routing problems in general. In addition to the problems that consist of
permutations, this adaptation also allows us to deal with a wider range of problems
whose solution space consists of simple cycles. Moreover, as shown in Section 2.4.2, the
proposed crossover turns out to be an effective technique to mix solutions in the OP.

Another contribution that we find remarkable for routing problems is the proposed
approach to find the minimum cost insertion in the add operator. When the distance
matrix is given by spatial points, its design allows the use of a data structure, i.e., k-d
tree, that strongly reduces the computational cost, improving the overall results.

All in all, the EA4OP proves to be an efficient algorithm for the OP. Not only does
the EA4OP obtain competitive results in medium-sized instances in comparison to the
state-of-the-art algorithms, but it also achieves outstanding results in terms of quality
in an even lower execution time.

We have tested the EA4OP in 344 instances based on TSPLib. We have found the
EA4OP competitive in medium-sized instances (up to 400 nodes). Comparing the
EA4OP in terms of Pareto efficiency, we have found that from the 180 instances of
the medium-sized set, EA4OP gets 43 Pareto optimums while 2-P TA does so for 72
instances. Also, EA4OP obtains 81 Pareto optimums, while the GRASP-PR does so for
42 instances. As for the medium-sized instances, B&C has been run again with an up-
dated LP solver in a modern machine, and 10 new optimal solutions were found: two in
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generation 1, four in generation 2 and four in generation 3 (for these instances, execution
in Fischetti et al. [1998] stopped because the time limit was reached).

The computational results on large-sized instances (up to 7397 nodes) are excellent for
the EA4OP in terms of quality and time. Moreover, the EA4OP algorithm found higher
solutions than the ones returned by the exact approach after five hours of computation.
Additionally, the execution time is lower than the ones of the rest of the compared
techniques. Particularly, from the 164 instances of the large-sized set, EA4OP obtained
the Pareto optimum in 118 instances, while the 2-P IA, which turns out to be the most
competitive heuristic algorithm, did it for 5 instances.

Ordering the algorithms in terms of average quality gap, we have obtained the fol-
lowing results: for medium-sized instances, B&C (0.00%), EA4OP (0.63%), GRASP-
PR (0.80%) and 2-P TA (1.31%); and for large-sized instances, EA4OP (0.76%), B&C
(4.21%), 2-P A (5.73%) and GRASP-PR (5.54%).

Ordering the algorithms in terms of average time consumption, we have obtained
the following results: for medium-sized instances, 2-P IA (1.67 sec), EA4OP (2.23 sec),
GRASP-PR (4.32 sec) and B&C (427.32 sec); and for large-sized instances, EA4OP
(990.42 sec), 2-P TA (1899.47 sec), GRASP-PR (5226.42 sec) and B&C (13343.85 sec).

In order to obtain better quality solutions or decrease time consumption, it would
be interesting to advance developing new operators or adapt the ones developed for
other routing problems. Additionally, it could be revelant to build better quality initial
populations. Giving a different a priori probability to each node might contribute to this
aim. Furthermore, it would be challenging to consider the very large-sized instances, in
particular, 26 TSPLib instances left with nodes from 11849 to 85900. Another point
of particular interest would be the application of the EA4OP to solve classical variants
of OP (such as the team OP, the OP with time windows or the time dependent OP)
as well as recent ones (such as the stochastic OP, the generalized OP, the arc OP, the
multi-agent OP or the clustered OP).



CHAPTER 3

Shrinking and Separation Algorithms for Cycle Problems

OUTLINE

In this chapter, we study the shrinking of support graphs and the exact algorithms
for subcycle elimination separation problems. The efficient application of the considered
techniques has proved to be essential in the solution of large-sized Travelling Salesperson
Problem, and this has been the motivation behind this work. Regarding the shrinking
of support graphs, we prove the validity of the Padberg-Rinaldi general shrinking rules
and the Crowder-Padberg subcycle-safe shrinking rules. Concerning the subcycle sep-
aration problems, we extend two exact separation algorithms, the Dynamic Hong and
the Extended Padberg-Grotschel algorithms, which are shown to be superior to the ones
used so far in the literature of cycle problems.

3.1 Introduction

The Travelling Salesperson Problem (TSP) has been the source and the testbed of the
most important techniques developed for the exact solution of combinational optimiza-
tion problems. These techniques have been principally developed in the context of
the Branch-and-Cut (B&C) algorithm, which combines the Branch-and-Bound (B&B)
and the cutting-planes methods, see Applegate et al. [2007] for an historical overview.
Eventually, many of these techniques have been successfully adapted to other related
problems. However, there are procedures, such as the support graph shrinking and some
separation algorithms, that are strongly dependent on the problem peculiarities. As a
consequence, these techniques might not have been adapted yet, or there might still be
room for further improvements.

As TSP is the most well-known cycle problem, we motivate the goals of this chapter
focusing on this problem. When a B&B algorithm is used to exactly solve the TSP,
which is an Integer Problem (IP), the cutting-planes method arises as a natural strategy
to handle at least two situations: the exponential number of constraints of the model
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and the consequences of the linear relaxation of the integer problem. Recall that in
a B&B algorithm the branching decisions are made guided by a sequence of Linear
Problems (LP). These LPs are principally obtained by relaxing the integrality and fixing
the variables according to the preceding branching decisions.

Within this approach, the cutting-planes method is required due to the fact that,
in order to define a TSP model, an exponential number of constraints in terms of the
number of vertices in the TSP is needed, see Padberg and Sung [1991]. In order to deal
with this situation, the exact algorithm is initialized with a subproblem of the LP, let us
call this LFPy, that considers a controlled number of constraints. During the algorithm,
the excluded constraints are added to LFP, only if they are required, i.e., if they are
violated by the solution of the LFy. The second reason to consider the cutting-planes
method is that since the variables in the linear relaxation of the TSP are considered
continuous instead of integers, new families of valid inequalities arise (inequalities that
are satisfied by all the cycles), also called cuts, that are not linear combinations of the
constraints defining the TSP. Since the number of branch nodes needed to visit by the
algorithm is reduced, the cutting-planes are very valuable to decrease the solving time
of a B&B algorithm.

Computationally, the most expensive part of the cutting-planes method is to solve the
separation problems. Given a solution of the L Py and an inequality family, the separation
problem for the given family consists of finding either the violated inequalities of the
family or a certificate that no violated inequality of the family exists.

MOTIVATION

The difficulty of efficiently solving the separation problems becomes evident when the
number of vertices of the problem increases. It is well known that, in practice, even a
polynomial time separation algorithm might turn out to be inefficient for certain fam-
ilies. To mitigate this issue, a technique known as shrinking has been exploited in the
TSP, see Crowder and Padberg [1980]; Padberg and Rinaldi [1990b]; Grotschel and Hol-
land [1991]. Shrinking consists of safely simplifying, i.e., without losing all the violated
inequalities of the family, the support graph generated by the solution of the LFPy. This
way, considering that, generally, the separation is harder than the shrinking, the cost
of finding the violated inequalities is reduced because the separation is performed in a
graph involving a lower number of vertices and edges.

In Figure 3.1, a flowchart of a generic B&C algorithm and the separation algorithm
with and without the shrinking.

In the last few decades, many optimization problems have proliferated whose solution
is required to be a cycle, but not necessarily Hamiltonian as in the TSP. This is the case
for some extensions of the T'SP itself, as can be seen in the extensive collection about T'SP
variants of Gutin and Punnen [2007]. For instance, the weighted girth problem, consists
of finding the minimum cost cycle in a weighted graph, see Coullard and Pulleyblank



3.1. Introduction 39

Cutting-planes
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support graph support graph
of LP, of LP,
L: a valid inequality family
£: a valid inequality family :>
Shrink G safely for £

Find violated
cuts on £
for G

Find violated
cuts on L
for G

Figure 3.1: In the top, a flowchart of a generic Branch-and-Cut algorithm. BRANCH is an oracle
which returns an unevaluated node in the branching tree. At each action box of the
flowchart the subproblem LP, is updated and solved. In the bottom, the detailed
separation algorithm (SEP) without and with shrinking.

[1989] and Bauer [1997]. Cycles are also the solutions of the Generalized TSP (GTSP)
where the vertices are labeled in clusters and at least one vertex of each cluster is required
to be visited, but not all the vertices, see Fischetti et al. [1995]. Other routing problems,
which are recently gaining popularity because of their wide range of applications, are the
TSP with profits, see Feillet et al. [2005] and Archetti et al. [2014b]. These problems are
the Profitable Tour Problem (PTP), the Orienteering Problem (OP), the Price Collecting
TSP (PCTSP), and their variations. From the TSP with profits, the OP, which consists
of finding the cycle that maximizes the collected vertex profits subject to a cycle length
constraint, is the one which has been most extensively studied. For a recent book on
applications and variants of the OP see Vansteenwegen and Gunawan [2019].

This chapter has three main aims: first, to generalize the shrinking rules (global and
subcycle specific) proposed in the literature of the TSP to the case of cycle problems;
second, to extend in an effective manner the subcycle exact separation algorithms for
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cycle problems; and third, to show experimentally the relevance of the proposed shrinking
rules and separation algorithms. On the one hand, 6 different shrinking rules for cycle
problems are presented in this work, of which three are safe for all the valid inequalities
and three are specifically safe for subcycle elimination constraints. On the other hand,
we extend two exact separation algorithms proposed in Padberg and Grotschel [1985]
and Padberg and Rinaldi [1990b]. We empirically show the contribution of the shrinking
and separation strategies in the time reduction and in the generation of violated subcycle
elimination constraints. For the experiments, we have used 24 instances of the subcycle
separation problem generated in the solution of OP by B&C with up to 15112 number
of vertices. The results show that the speedup of using the combination of the proposed
shrinking and separation techniques is around 50 times in medium-sized instances and
200 times in large-sized instances.

3.2 The Cycle Polytope

Let G = (V, E) be an undirected graph with no loops. Let us define the following sets:

(Q:W):={[u,v] e E:ueQ,veW} QWcv (3.1a)
6(Q)=(Q:V-0Q) QCV (3.1b)
E(Q)=(Q:Q) QCV (3.1¢)
V(T):={veV:TNnW:V)#0} TCFE (3.1d)
N(Q):=V((Q) -@Q QcvV (3.1¢)

where (@ : W) are the edges connecting @ and W, §(Q) is the set of edges in the
coboundary of @ also known as the star-set of @, E(Q) is the set of edges between the
vertices of @, V(T') is the set of vertices incident with an edge set T', and N(Q) are the
neighbour vertices set of Q). For simplicity, we sometimes denote {e} and {v} by e and
v, respectively, e.g., §(v) and V' (e).

We denote by RV and R¥ the space of real vectors whose components are indexed
by elements of V and E, respectively. With every subset T' C E we associate a vector
(vy, x)T = (yT',27) called the characteristic vector of T, defined as follows:

. {1 if v e V(T) o {1 ifecT (52

Yo i = 0 otherwise 0 otherwise

When yl =1, i.e. v € V(T), we say that the vertex v is visited by the edge set 7.

We denote by Cg the set of (simple) cycles of the graph G. We assume that every
cycle 7 € Cg is represented as a subset of edges. Then, the cycle polytope Pg of the
graph G is the convex hull of the characteristic vectors of all the cycles of the graph:

P§ = conv{(y,z)” e RV*E . 7 € Cg} (3.3)
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By definition, a vector (y,x) belongs to Pg if it is a convex combination of cycles of
Cq, ie., (y,z) € Pg if and only if there exists a set of real numbers {)\T}TEcG such that

(ya l’) = Z )\T(y,x)T (3'4)

TECG

Ar > 0 for every 7 € Cg and ZTECG Ar=1.

Similarly, we denote by 7 the set of tours, i.e., Hamiltonian cycles, of the graph G,
and by P:%P the TSP polytope of the graph G. The Pgsp is the convex hull of the
characteristic vectors of all the tours of the graph:

PSop = conv{(y,z)” e RV*E . 7 ¢ T5} (3.5)

Note that, y = 1 is satisfied by every (y,z) € PTGSP. Since, the tours form a subset of
cycles of GG, we have that:
G G
Prsp C PG (3.6)

In order to use Linear Programming based techniques such as the B&C algorithm,
the polytope Pg must be characterized by means of a system of linear constraints. A
complete characterization of the integer points of Pg using only edge variables was given
in Bauer [1997]. In this work, since we find it more convenient to formulate the shrinking
rules of Section 3.3.1 and Section 3.3.2, we consider an equivalent one which uses the
vertex and edge variables for the characterization. For (y,z) € RY*¥ S c V and
T C E, we define y(S) = >, cqyv and z(T) = >°_.p2e. Let us consider the following
constraints:

z(d(v)) — 2y, =0, veV (3.7a)

Yy — Te > 0, YveV, eed(v) (3.7b)

£(5(Q)) — 2 — 2y > 2, veQcv.a<|Ql<|v|-3 (3.7¢)
weV-—-Q

z(F) >3, (3.7d)

1>y, >0, YoeV (3.7e)

ze > 0, Ve e E (3.71)

Ze €7 Ve e E (3.7g)

The degree equations (3.7a) together with the logical constraints (3.7b) and the inte-
grality constraints (3.7g) ensure that the visited vertices have exactly two incident edges
and the unvisited vertices none. The Subcycle Elimination Constraints (SEC) (3.7¢)
ensure that only one connected cycle exists. Throughout the thesis, we use the notation
(Q,v,w) to refer to the SEC defined by the set @ and the vertices v € @ and w ¢ Q.
In the literature, the SECs have also been called Generalized Subtour Elimination Con-
straints (GSEC). The inequality (3.7d) imposes the property that the undirected cycles
contain at least 3 edges. The conditions (3.7¢), (3.7f) and (3.7g) impose that all the vari-
ables are 0-1. Note that the integrality of the y, variables is ensured by (3.7a), (3.7b)
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and (3.7g), and the condition z. < 1 is ensured by (3.7b) and (3.7¢). Considering the
constraints in (3.7), the cycle polytope of a graph G = (V, E) can be expressed as follows:

P& = conv{(y,z) € RV*E : (y,z) satisfies (3.7a), (3.7b), (3.7¢),
(3.7d), (3.7¢), (3.71), (3.7g)} (3.8)

In some problems, for instance OP and PCTSP, a feasible solution must visit a depot
vertex, i.e., yg = 1 for a vertex d € V. In such cases, the family of SECs (3.7c) that
define the cycle polytope can be substituted with the following subfamily:

2(6(Q)) =2y 20, veQCV3<S|QI<[V][-3,d¢Q (3.9)

where each constraint can be represented as (@, v). In a B&C algorithm, where all the
constraints of the model are not considered in the L P, the only advantage by using this
constraint family is that we simplify a vertex in the SEC representation. However, it
has one important disadvantage, in the family (3.9) we might need to consider an SEC
with |Q] > |V|/2, while in the family (3.7¢) it can be considered always a SEC such that
|Q| < |V|/2. Therefore, we always consider the family (3.7c) regardless of whether it is
given a depot or not in the cycle problem.

When a B&C is used to solve a cycle problem, the integrality constraints (3.7g) of the
Pg are relaxed in order to first seek a solution that satisfies the rest of the constraints.
Contrary to this strategy, Pferschy and Stanék [2017] have recently considered again
relaxing the SEC constraints in the TSP, to first solve the resulting problem to integer
optimality with MILP-solvers and then introduce the SECs if required. Despite the
improvement of the new MILP-solvers, this approach is still inferior compared to the
opposite strategy. As a consequence of the continuous relaxation, a solution (y,x) that
satisfies the rest of the constraints of (3.7) might still not belong to Pg . In these
cases, instead of directly resorting to the branching phase to tighten the integrality
gap, we could check if additional (not dominated by those in (3.7)) and facet-defining
valid inequalities for the Pg are violated. The strength of considering additional valid
inequalities was shown in the 1970s in the study of the TSP Grotschel and Padberg [1979].
In Bauer [1997] an extension of the clique trees inequality family (originally defined for
the TSP) was given, which includes the so-called comb inequalities, for cycle problems.

The shrinking rules proposed in Section 3.3.1 are safe for all the valid inequalities for
G

PC .
A polytope that it is closely related to Pg is the so-called lower cycle polytope,

see Bauer [1997]:
LE = conv{P§,(0,0)} (3.10)

where (0,0) € RV*¥ is the vector that represents that no vertex and edges of the graph
are visited. It is easy to see, that for every graph G, so that it contains at least one
cycle, there exist an infinity number of vectors (y,x) € Lo such that z(FE) < 3. Hence,
the polytope Pg is a proper subspace of Lg for every graph G that contains at least
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one cycle. It is crucial to consider the polytope Lg to obtain the shrinking results in
Section 3.3.1.

In a B&C algorithm, it is reasonable to solve the separation problems of the valid
inequality families following an order determined by their complexity. This order defines
a hierarchy of the inequality families and their closure polytopes. We refer to the closure
polytope of an inequality family as the polytope that satisfies all the inequalities of the
given family and its preceding families in this hierarchy.

Without considering the variable bounds (3.7¢)-(3.7f) and the inequality (3.7d), the
simplest inequalities are the degree equations (3.7a) and the logical constraints (3.7b).
These have, respectively, linear and quadratic exact algorithms in terms of the number
of the vertices of G and generally are always included in the LFy. The closure polytope
of the inequalities (3.7a) and (3.7b) (the inequality (3.7d) is excluded to favour the
convexity) turns out to be the undirected Assignment Polytope (with loops), Pf, which
is defined as:

P$ = {(y,z) e RV*F : (y, x) satisfies (3.7a), (3.7b), (3.7¢), (3.70)} (3.11)

Next in the hierarchy comes the SEC family. A straightforward exact separation algo-
rithm for the SECs has O(|V'|*) time complexity (see Section 3.5.3 for further discussion)
and its closure polytope is defined as:

PSpc = {(y,z) € P§ : (y,z) satisfies (3.7¢)} (3.12)

Considering the relationship Pg C PgEC C Pf, the underlying purpose of this chapter
is to effectively determine if a given solution (y,z) € Pf of a LPy belongs to PgEC, or
in case that it does not belong, to provide the violated inequalities.

Throughout the chapter, we make use of the following well-known identity repeatedly.
Given a graph G, a subset S C V and a vector z € R, the identity

2(6(S)) =D x(6(v)) — 22(E(S)) (3.13)

veES

is always satisfied. In addition, if the vector (y,z) € RYV*F satisfies the degree con-
straints (3.7a), then the equations

2(8(8)) = 2y(S) — 22(E(S)) SCV (3.14)

are satisfied by the vector (y,z). Particularly, the identity (3.14) is satisfied by every
vector in Pﬁg P Pg , PEEC and PE.
Let G* = (V*, E*) be the support graph of a given vector (y,x) where
Vi={veV:y, >0} (3.15a)
E*:={ec E:z.>0} (3.15b)
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Figure 3.2 shows a support graph obtained when solving the instance pr76 (TSPLIB)
for Generation 1 with B&C, while Figure 3.2 shows its topological representation. In the
figures, the vertices and the edges with value 1 are represented in black. The vertices
and the edges with value in [0.5,1) are represented in red. The vertices in white and
the edges with dashed style represent those with value in (0,0.5). The edges in blue and
double lined style represent those with value greater than 1. The depot vertex of the
OP, the vertex 1, is colored in green.

oo n wa
6s  o00g \.4»-01,( /\

oo |
d,

o
'\0//0—"\0/"0/0/ L\»/°‘0/‘4 L<’/

25 26 18 19

° 69

Figure 3.2: Example of a support graph obtained when solving instance pr76-genl by Branch-
and-Cut.

3.3 Shrinking for the Cycle Polytope

Let us introduce the following notation. Given a graph G = (V, E), the vector (y,z) €
RV*F and a subset S C V, we denote by G[S] = (V[S], E[S]) the graph obtained by
shrinking the set S into a single vertex s ¢ V', where the resulting set of vertices and
edges are as follows:

VIS =(V-S)u{s} (3.16a)
E[S]=E(V =S)uU{[s,v]:veV —=Sz(S:v) >0} (3.16D)

and by (y[S], z[S]) € RVISIXEIS] we denote the vector with components

[u,0] Vu,v] € EN E[S] (3.17a)
, (S:v) YoeV -8 (3.17b)
y[S](v) = yy Yo e VNV[S] (3.17¢)
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Figure 3.3: Topological representation of the support graph in Figure 3.2

(3.17d)

Let @ C V be a subset of vertices, we denote with Q[S] the subset derived by shrinking

S

(Q—S)U{s} if SNQ #0

Q otherwise

as-

which has the following associated values:

v@-y@ns)+ N isng 4

y(Q) otherwise

y[SUQIS]) =

(3.18)

(3.19a)
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~ f=((SuQ)) ifSNQ#0
z[S](6(Q[S])) = {m((;@)) therrise (3.19D)
z[S|(E(QLS])) = z(E(Q)) — x(E(QNS)) (3.19¢)

3.3.1 Shrinking for the Cycle Polytope

In this section, we present three shrinking rules that are safe for the Pg . In essence,
we have generalized for every (simple) cycle problem the results obtained by [Padberg
and Rinaldi, 1990b] for Hamiltonian cycle problems. In the following lines, we formalize
the concept of safe shrink for Pg and we prove the lemmas and the theorem in which
shrinking rules for cycle problems are based on. In addition, we show that the three
shrinking rules can be consecutively applied for the Pg .

Based on the definition given in [Padberg and Rinaldi, 1990b] for safe shrinking for
the PTGS p» an analogue definition can be formulated for safe shrinking for the Pg .

Definition 3.1. Given a vector (y,x) ¢ PS, a set S C V is safe to shrink if (y[S], z[S]) ¢
G[S]
pSY.

Note that the definition does not assume a one-by-one relationship between the vio-
lated inequalities of (y,x) and (y[S], z[S]). A set S that is safe to shrink for a separable
solution (y,z) from Pg should be understood as a subset when shrinking it does not
project the solution (y,x) to Pg[s]. When a set S is safe to shrink for a given (y, x), it
is also said that S is shrinkable for (y, ).

The definition of shrinkable set does not provide a practical tool for finding them.
Hence, the first goal is to give a set of rules of shrinking for PCG , which are obtained in
Theorem 3.5. The strategy used in [Padberg and Rinaldi, 1990b] to obtain the shrinking
rules for tours cannot be applied directly for simple cycles, because it relies on the fact
that the tours visit every vertex in the graph. So, first we need to obtain the following
lemma.

Lemma 3.1. Let (y,x) € LG be a vector. Suppose that {Q,{u},{v}} is a partition of
V' such that zp,,) = v(u: Q) = z(v: Q) > 0. Then any cycle T of CC that has a positive
coefficient in the convex combination of (y,x), Ay > 0, fulfills one of the following cases:

(i) V(r)c@Q
(i) |TO(u: Q) =lrN(v: Q) =|rN[u,v][ =1

Proof. Let Cy, denote the subset of cycles in C that visits the edge [u,v] and has a
positive value, A; > 0. Note that since (y,z) € Lg, then zp, ) < vy and zp, 4 < yu. So,
in order to satisfy the degree equations, every cycle 7 in C,, must contain at least an
edge in (u : Q) and (v : Q). Moreover, since 7 is a simple cycle, every T € Cy, crosses
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exactly once (u : @) and (v : Q). Now, let us see that if 7 does not belong to C,, and
Ar > 0, then 7 is contained in ). Consider the following inequality:

Thuol = D Acfﬂfu,v] =D A= ) A< (3.20a)

CECuw C€Cuv CECuw ec(u:Q)
D30 xal+ Y > Aal=a(u:Q) (3.20D)
CECyw e€(w:Q) CECuv e€(u:Q)

Since xp, ) = z(u : Q), we have that x7 = 0 for every e € (u : Q). Similarly, we obtain
that 2 = 0 for every e € (v : Q). Therefore, T is contained in Q. O

Figure 3.4: Illustration of the scenario in Lemma 3.2.

The next result generalizes the main theorem of shrinking in [Padberg and Rinaldi,
1990b]. The principal idea is to use a constant, ¢, to extend the rules of the original paper
(where Vv € V satisfies y,, = 1) for vertices that have fractional value. We also need an
additional hypothesis about the vector (y[W], z[W]) obtained by shrinking the subset
W, the “complement” of S, which is not required for the TSP because it is trivially
satisfied by Hamiltonian cycles.

Lemma 3.2. Given a vector (y,x) ¢ P&, let {S,W,{t}} be a partition of V with 2 < |S|
and ¢ be a constant where 0 < ¢ <1 such that:

(i) y» = c Vv e SU{t}
(ii) x(E(S)) = c-(IS] - 1)
(iii) z(t:S)=c

. G[W
(iv) (yW)xw)) € L™

(v) No cycle in the conver combination of (y[W], x[W]) is contained in S
Then it is safe to shrink S for (y,x).

Proof. Based on the hypotheses i), ii) and iii) of the lemma and the identity (3.14) we
obtain that (S : W) = c and z(t : W) = ¢, as illustrated in Figure 3.4.
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Suppose for contradiction that S is not shrinkable, so (y[S],z[S]) € Pg 51 Since

Tisy = x(s: W) =xz(t: W), based on Lemma 3.1, the vector (y[S], z[S]) can be written
as:
(ISl alS]) = Y acly,2)* + Y ally.x) (3.21)

CeEW;S CEWD
where W; is the set of cycles visiting the shrunk vertex s having a¢ > 0 and W) is the
set of cycles contained in W having ozg > (0. Note that Wy might be an empty set. The
. . 0 o
coefficients satisfy > -cpy, ac + 2 cep, ¢ = 1-

By hypothesis the vector (y[W], z[W]) belongs to Lg[m, so (y[W],z[W]) can be writ-
ten as a convex combination of cycles of Cqpy and the vector (0,0). Because of the
Lemma 3.1 and by the hypothesis v) the vector (y[W], z[WW]) can be written as:

W, 2[W]) = > By(y, )" + B0,0)(0,0) (3.22)

nESw

where Sy, is the set of cycles visiting w (the vertex to which W is contracted to) having
By >0, By = 0and 3, s By + Boo =1

Now, considering x(t : s) = x(t : w) = ¢ we have that:

c= Z ar = Z B (3.23)

CGWS nesw

and from the fact that the coefficients sum up to one, we have that:

l—c= Y ad=Bop (3.24)

neEWs

To prove the lemma we follow the “patch-and-weight” strategy used in [Padberg and
Rinaldi, 1990b] for the Pj(-.’YS p whose goal is to reconstruct the cycles and coefficients of
the convex combination of the vector (y,z). According to the vertices in W, we can
partition W; into |W| pairwise disjoint subsets (some of them which be empty). For
j € {1,...,|W]|} let us call Wi the subset of cycles in Wy containing the edge [s, wj],
and denote by C{, ceey C,zj the cycles of W! and by ﬁ{, e ,Bij their coeflicients in the
convex combination. In the same way, we can partition S,, into |S| subsets calling S,
the subset of cycles in S, containing the edge [s;, w]. We denote by 7, ... ,n,ili the cycles
of 8¢ and by ai,... ’O‘?u their coefficients in the convex combination.

The cycles of the convex combination of (y, z) are constructed in two steps. In the first
step, |Sw| copies of each cycle in W, are created. With this goal, for each j € {1,...,|W|}
and for each [ € {1,...,k;}, create |S| copies of the cycle ¢/, and denote them by {77}
for i € {1,...,]S|}. Then, for each j € {1,...,|W|}, foreach ! € {1,...,k;} and for each
i€ {l,...,|S|} create h; copies of Tlij, and denote them by {Tzzl} form e {1,..., h;}. At
this point we have |[Ws|-|Sy| cycles that belong to G[S]. In the second step, these cycles
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of G[S] are extended to cycles of G. To that end, consider each cycle Tgl and remove
the edges [t,s] and [s,w;] and join the resulting path with the path in G[W] obtained
from the cycle 0, by removing the edges [w,t] and [s;, w], and add the edge [s;,w;] to
obtain the extension of Tsz'l to G.

The coefficients of the constructed Tgl cycles are defined in the following way:

ij _ Tlsyuw] 'a{ B;n
ml k. : hi .
erzl Oéi ’ ZT:I 571“
where i € {1,...,|S]}, j e {1,...,|W|}, me{l,...,h} and I € {1,...,k;}. It can be
verified that the coefficients defined this way sum c in total:

Do A= D Ty 1 P (3.262)

(3.25)

ks 1 hi q
ijmid i it Dl O Dy B
= Zx[sﬁqﬂi] =z(S:W)=c (3.26b)
4,J

Then the vector (y,z) can be obtained as a convex combination of the cycles in Wy
and {7,7,} with coefficients {ag} and {\"?}, respectively. We conclude (y,z) € P& which
is a contradiction. O

The lemma gives a sufficient condition for a set to be shrinkable, but still it is not
practical. The next theorem gives three practical scenarios to make use of Lemma 3.2.
Beforehand, let us obtain a useful result for Lg. Consider the undirected version of the
Assignment Polytope (without loops) P} defined as:

Pl = {(y,xz) e RV*F : (y,z) satisfies (3.7a), (3.7b), (3.7f), y = 1} (3.27)

It is a well-known result of the literature that P&, = P} for 3 < |V| < 5 (see [Grétschel
and Padberg, 1979]). This relationship is the key to obtaining the shrinking rules for
the P:% p in [Padberg and Rinaldi, 1990b]. So, we would like to obtain a similar result
for LY and P§. However, LG # P4 when 4 < |V|, as shown in the counterexample of
Figure 3.5. The vector defined in the figure belongs to P§, but it does not belong to
Lg, because it cannot be expressed as a convex combination of cycles.

Nevertheless, we have the following lemma which is enough to prove Theorem 3.5.

Lemma 3.3. Let G = (V, E) be a graph and c be a constant such that 3 < |V| <5 and
0<c<1. If (y,x) € Py such that y, = ¢ for allv € V, then (y,z) € L¢.

Proof. 1t is straightforward that if (y,z) € P4 such that y, = ¢ for all v € V, then
%(y, z) € P}. By the classical result in [Grétschel and Padberg, 1979], since 3 < |[V| < 5,
the equality P}l = Prgp is satisfied. Since PYGS p is contained in Lg, the vector %(y,:c)
belongs to Lg. Then, since both (0,0) and %(y,x) belong to Lg, which is convex, and
0 < ¢ <1 we have that (y,z) € L¢. O
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Figure 3.5: An example of a solution that belongs to P§ but not to L& when |V| = 4 (it can
be easily extended for |V'| > 4 by means of subdivisions). All the edges in the figure
have value % The values of the vertices satisfy the degree equations.

Lemma 3.4. Given a graph G such that |V| =5, a vector (y,x) € Lg and 0 < c <1,
suppose that N o) =1 —c. Let {S,{t},{w}} be a partition of V such that wy ., = x(t :
S) =x(w: S) = c, then every cycle T in C& such that \; > 0 is not contained in S.

Proof. Since {S,{t},{w}} is a partition of V, we have that |S| = 3 and |V — S| = 2.
Hence, every cycle in C has vertices in S. According to the number of visited vertices
of S, we can partition C¢ into 3 subsets {C1,C3,C3}. Furthermore, the set C3 can be
partitioned into two subsets, Cg” and C$“, determined by whether the cycles are fully
contained in S or not. Since (y, ) belongs to Lg, there is a convex combination of cycles
of C& whose coefficients satisfy

DSTALED A D N > A N =1 (3.28)

TECT T7€Co Tecgut Tecin

Since the cycles in C1, C2 and C§*! have edges in (¢ : S) and (w : S), by the Lemma 3.1,
each cycle has exactly one edge in the mentioned edge sets. Now, consider the hypothesis
that 2(t : S) = ¢ (or z(w : S) = ¢), so the coefficients also satisfy the following identity:

DOMAD N+ DY A= (3.29)

T7eC1 7€Co Tecgut

By hypothesis, we have that A\ = 1 — ¢ and by (3.28) and (3.29), we obtain that
A3 =0 for all T € Cé", which means that every cycle in C¢ contained in S has null
coefficient. 0

Theorem 3.5 (Rules C1, C2 and C3). Given a vector (y,z) ¢ PS5, let S C V with
2<151<3,teV —Sand0<c<1 be such that:

(i) y» = c Vv € SU{t}

(i) x(E(S)) = c- (S| = 1)

(iii) z(t:S)=c
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Then it is safe to shrink S for (y,x).

Proof. Let W =V — (S U {t}) be a subset of V. If the hypotheses are satisfied, note
that T is non-empty. Since 2 < |[S| < 3, we have that 4 < |V[W]| < 5. Notice that,
Yy = c for all the vertices of V[W] and (y[W],z[W]) € Pf[w]. Under these hypotheses,
by Lemma 3.3, the vector (y[W], z[IW]) belongs to Lg[m. When |S| = 2, it does not
exist any cycle contained in S. When |S| = 3, as a consequence of Lemma 3.4, we have
that it does not exist a cycle in the convex combination of (y[W],z[W]) contained in S.
Therefore, the hypotheses of Lemma 3.2 are satisfied and S is shrinkable. O

SHRINKING RULES FOR PCG
From Theorem 3.5, three shrinking rules can be derived, which are summarized in Fig-
ure 3.6: the rules C1 and C2 correspond to the case |S| = 2 and the rule C3 to |S| = 3.

Figure 3.7 shows the resulting graph after applying the C1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.8 shows its topological representation.

.......

.
Saw

Yu =Yv =Yt =C Yu =Y =Yt =C Yu = Yo =Yw =Yt =C
Tlu,p] = € Tlup] =€ Tlu,o] T Tlu,w) + Plo,w) = €
Tltu] =€ Tltu] + Tlgo) = € Tltu) + Tito) T Ttw] = €
Rule C1 Rule C2 Rule C3

Figure 3.6: Hlustration of the three shrinking rules derived from the Theorem 3.5

It is easy to see that rule C2 dominates the rule C1, in fact it is just a particular case
of it. The reason to split them, is that the cost of checking C1 is lower than the cost
of C2. By contrast, rule C3 is not dominated by the rules C1 and C2. In Figure 3.9,
an example is given of a vector (y,z) € P4 in which rule C3 can be applied but not
C1 and C2. For instance, if we consider S = {1,2,3}, W = {4,5,6} and t = 7, then S
is shrinkable by rule C3. Since the vertices and edges have different values, there is no
shrinkable set that can be identified by rule C1 or C2.

A useful property of the rules derived from Theorem 3.5 is that the value of the vertices
is inherited in the shrunk graphs.

Lemma 3.6. Under the hypotheses of Theorem 5.5, y[S](v[S]) =y, for allv € V.
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Figure 3.7: Resulting graph after C1 shrinking strategy
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Figure 3.8: Topological representation of the graph after C1 shrinking strategy

Proof. For every v € V —S, we have y[S](v[S]) = y, by definition. Since 2y, = z(4(5)) =
2y, for v € S we obtain the result of the lemma. O
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wino ol

Figure 3.9: Example of a pair G and (y,z) € P4 where rule C3 can be applied but not rules
C1 nor C2. The values of the edges are the ones detailed in the legend and all the
vertices have value 1.

In the preprocess of separation algorithms, it is desirable to perform multiple consecu-
tive safe shrinkings. For that aim, we need to analyse what happens with the hypotheses
of Theorem 3.5 after the contraction of a shrinkable set. More precisely, we need to see
when the shrunk vector belongs to Pf.

Lemma 3.7. Let S be a shrinkable set for (y,x) € Pf obtained from Theorem 3.5 using
the {S, W, {t}} partition. Then, (y[S],z[S]) satisfies the degree equations and the logical
constraints associated with every edge in E(W)U (t: V). In addition, we have either

. G[S
i) (18], 215) € P{, or
i) Jw € W such that y, < ys and yuw < Ty < Ys

Proof. From the definition of the shrunk vector, it is clear that (y[S], z[S]) satisfies the
degree equations. Since v € S satisfies y, < 1, ys = y, also satisfies ys; < 1. Moreover,
Tio = Ys = Y- f x(w : §) < yy for all w € W then (y[S], z[S]) satisfies the logical

constraints and (y[S], z[S]) € Pf[s]. If the previous is not true, there exists a vertex
w € W such that z(w : S) > y, and y,, < ys (because by hypothesis (y,z) € PY).
Therefore, the logical constraint x(,, g < yu, is violated for (y[S], z[S]) by a vertex w € W
such that y,, < ys. O

There are two scenarios where the shrunk vector always belongs to PAG. First, when
all the vertices of V' have the same y value, as is the case when (y,z) € PTGS p, and
secondly, when only rule C1 is applied. The next theorem shows that if (y,z) € P§, it
is possible to shrink a subset S obtained by the rules of Theorem 3.5 and continue with
further safe shrinkings regardless of whether or not (y[S], z[S]) belongs to PE[S].
Theorem 3.8. Given a vector (y,x) € Pf, it is safe to consecutively apply the shrinking
rules derived from Theorem 3.5.

Proof. Let S be a subset obtained from Theorem 3.5 such that (y[S], z[S]) ¢ PE[S]. By
Lemma 3.7 we know that the only violated logical constraints of (y[S],z[S]) consist of
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edges whose vertices, s and v € W, have different values y, < ys. Notice that in the
proof of Theorem 3.5 the hypothesis that the logical constraints are satisfied is used twice.
First in Lemma 3.1, which is applied for vertices having the same value. Secondly in
Theorem 3.5, where it is assumed (y[N], z[N]) € PE[N] for a given subset N of V[S]. In
order to see that this last hypothesis is always satisfied by every shrinkable set candidate,
let us suppose that {M,N,{r}} is a partition of V[S] that satisfies hypotheses i), ii)
and iii) of Theorem 3.5. Then there are two possible cases: v € M U {r} and s € N,
or vice versa. The hypothesis (y[N],z[N]) € PE[N] is satisfied in both cases, because
T < Yn = Yu for u€ M U{r}. O

Another interesting scenario occurs when there is at least a vertex v € V satisfying
1y = 1, as happens in the context of cycle problems with depot. In all these problems,
the case ii) of Lemma 3.7 has a special meaning as shown in Theorem 3.10.

Lemma 3.9. If (y,z) € RV*¥ satisfies the degree equations (3.7a) and u,v € V are two
vertices such that () > yu then x(3({u,v})) < 2y,.

Proof. As (y,x) satisfies the degree equations:
2 < 2pun) = 20 + 250 — 2(6({u,})) (3.30)
0
Theorem 3.10. Given a vector (y,z) € P§, let O = {v € V : y, = 1} be the subset

1
of wertices with value equal to one and S be a shrinkable set for (y,z) obtained from
Theorem 3.5 such that O — S # (). Then, we have either

i) (y[S],2[S)) € PSS, or

it) Jw € V — S such that, for everyu € S and v € O — S, the SEC (S U {w},u,v) is
violated by (y, x).

Proof. Note that, in the case ii) of Lemma 3.7, the vertex w € V' —S cannot be contained
in O because 3, < 1. Now, as a consequence of Lemma 3.9 we can rewrite the second
case. ]

3.3.2 Safe Shrinking Rules for the Subcycle Closure Polytope

Depending on the inequality, more aggressive contractions can be employed as a prepro-
cess of separation algorithms. In the TSP, for the subtour separation problem, [Crowder
and Padberg, 1980] introduced subtour specific shrinking rules to simplify the support
graphs before proceeding with the separation algorithms. With the aim of motivating
the concepts in the subcycle-safe shrinking procedure, let us prove the following result.

Lemma 3.11. Given a vector (y,x) € P§ and an edge e € E, let S = V (e) be the subset
associated with the edge e. If (y[S],z[S]) € PgE[SC],, then either
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i) (y,x) € PSGEC, or
it) every violated SEC (Q,r,t) for (y,x) satisfies SNQ # 0 and S — Q # 0

Proof. Let e = [u,v] be the given edge and (@, r,t) be a SEC for (y,x) such that S C @
(or S C V — Q). On the one hand, since (y,z) € P§, we have y[S](u[S]) > y, and
y[S](v[S]) > y». On the other hand, z[S](6(Q[S])) = z(6(Q)) by definition. Then the
SEC (Q[S], r[S],t[S]) for (y[S],z[S]), is at least as violated as (@, r,t) for (y,x). So if
(y[S], z[S]) € Pﬂ%, and (y,z) & P§yq, the only violated SECs for (y, z) are associated
with subsets that separate u and v. ]

Recall that we want to search the violated SECs for a vector (y,z) € Pf, which has
been obtained from the LP; subproblem. Let us assume that we have defined a first
shrinking rule that contracts edges by avoiding the scenario ii) of Lemma 3.11. So if

(y,x) ¢ PgEC, as a consequence of the lemma, (y,z) ¢ ngscl In this case, the vector
(y[S], z[S]) does not belong to the closure of SECs because either there exists violated
logical constraints, SECs or both. Let us suppose that we have a second shrinking rule
that identifies (and saves) the violated logicals and “fixes” them. Repeatedly applying
the second rule, we will eventually reach a vector that satisfies the logical constraints.
Now, we are in a similar situation to the starting point, so we can try with the first rule
again and so on. This is the main idea exploited in the subcycle-safe shrinking process.

Definition 3.2. Given a vector (y,z) € RV*F that satisfies the degree equations, a set
S = {u,v} C V is subcycle-safe to shrink if at least one of the following conditions is
satisfied:

. G[S
i) (ylS).lS]) ¢ PSeer or
it) if there exist violated logical constraints for (y,x), these are associated with the edge
[u, v]

Note that the second condition does not require the existence of violated logical con-
straints for (y,z), which enables the subcycle-safe shrinkable set definition for vectors
(y,x) in P§po to be used. Furthermore, this condition means: if we have already found
a violated constraint, we should not worry if later the shrinking the vector is projected to
the subcycle closure polytope, since we have already achieved the goal of the separation
problem.

In some sense, from Theorem 3.13 we derive the first shrinking rule of the motivation
above and from Theorem 3.14 the second shrinking rule. The condition that avoids
the case ii) of the Lemma 3.12 is the hypothesis x(, ,) > max{y,,y»} in the theorems.
Actually, the hypothesis that (y,z) € Pf of the first rule can be replaced with the
hypothesis that all the logical constraints associated with vertices u and v (excluding
the one with [u,v]) are satisfied, which is a consequence of the hypothesis Tlyp] >
max{yy, Yy }. Let us address the next lemma as an intermediate step.
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Lemma 3.12. Given a vector (y,xz) € RV*F that satisfies the degree equations, let
S ={u,v} CV be a subset such that x, ) > max{yu,yv}. Then, if (y,x) & Pf, at least
one of the following conditions is satisfied:

i) (ylS),z[S]) ¢ PS™, or

i) if there exist violated logical constraints for (y,x), these are associated with the edge
[u, V]

Proof. On the one hand, since z({u,v} : w) > @[, and z({u,v} : w) > T, for all
w € V — {u, v}, every violated logical constraint for (y,z) associated with the vertices
in V' —{u, v} can be adapted to violated constraints for (y[S], z[S]). On the other hand,
since Ty, ) > max{yy, Yy } and the degree equations are satisfied, we have that Zluw] < Yu
and [, ] < yy for all w C V —{u,v}. Therefore, if (y[S], z[S]) € PE[S], the only possible
violated logical constraints associated with the vertices of S correspond with the edge
[u, v]. O

The SEC inequalities (3.7¢) are defined for sets, @, such that 3 < |Q| < |[V]| — 3.
However, if (@, u, v) violates for (y, ) the inequality of (3.7¢) but |Q| = 2 or |Q] = |V|-2,
then a violated logical constraint can be identified and therefore we also know that
(y,x) ¢ P§yq. For instance, if ({u,w},u,v) does not satisfy the inequality (3.7c), then
Tuw < Y 18 a violated constraint. In the following proofs, the term violated SEC,
embracing the cases |Q[S]| = 2 and |Q[S]| = |V[S]| — 2, refers to its associated violated
logical constraint when required.

Theorem 3.13 (Rule S1). Given a vector (y,z) € RV*F that satisfies the degree equa-
tions, let u,v € V' be two vertices such that xj, ] = yu = Yo = c. If there exists a vertex
w eV —{u,v} such that y,, > ¢, then it is subcycle-safe to shrink S = {u,v}.

Proof. Assume the vector (y, ) belongs to P{, i.e., only violated SECs exists for (y, z),
otherwise the theorem is satisfied by Lemma 3.12. Let (Q,r,t) be a violated SEC for
(y,x), and without loss of generality, suppose that S N Q # (. The goal is to see that
for a violated SEC for (y, z), there is a violated SEC for (y[S], z[S]).

First, let us suppose that S C @, where z[S](0(Q[S])) = z(6(Q)) is satisfied by def-
inition. The only case that is needed to check is when r € S. Without loss of generality,
suppose that r = v. By hypothesis yu, = z[,), 50 2y» = 2(3(S)) = 2y[S](v) and
(Q[S], y[S](s),y[S](r)) define the desired SEC for (y[S], z[5]).

z[S](6(Q[S])) = x(6(Q)) < 2yv + 2y — 2 = 2y[S](s) + 2y[S](t) — 2 (3.31)

Next, let us analyze the case SN Q # ) and Q — S # (. Without loss of generality,
suppose that u € @ and v,w € V — ). The subcase that requires a special attention is
when 7 = u and t = v. Note that, since (y, x) satisfies the degree equations and, also by
hypothesis, y, = 2[,,), we have that z(v: V — Q) < x(v : Q), and therefore:

z[S](6(Q[S])) = z(6(Q U S)) (3.32a)
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=z(0(Q)) + z(6(v)) — 2z(v : Q) (3.32b)
=2(0(Q)) +z(v:V-Q)—z(v:Q) <z(6(Q)) (3.32¢)
<O+ 2y, — 2= 2+ 2 — 2 = 2[S)(r) 1 2(S)(w) 2 (3:320)

Hence, there also exists a violated SEC (or logical constraint) for (y[S],z[S]) and the
set S is subcycle-safe to shrink. O

Figure 3.10 shows the resulting graph after applying the S1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.11 shows its topological representation.

73

Figure 3.10: Resulting graph after S1 shrinking strategy

Clearly, the shrinking rule S1 dominates the rules C1 and C2 of Theorem 3.5. For
every scenario where rules C1 or C2 can be applied, rule S1 is also applicable, since the
existence of w € V — {u,v} is determined by the vertex t € V' — {u, v} in Theorem 3.5.
Moreover, rule C3 should not be combined with rule S1, since might exist vertices with

the same y value whose connecting edge has a greater value in the shrunk graph obtained
by S1.

Theorem 3.14 (Rule S2). Given a vector (y,z) € RV*F that satisfies the degree equa-
tions, let u,v € V' be two vertices such that xj, ] > max{y,, Yy} then it is subcycle-safe
to shrink S = {u,v}.

Proof. The theorem is a direct consequence of Lemma 3.12. O
Note that, if (y,x) € Pf and S is a shrinkable set obtained from Theorem 3.5, then

by Lemma 3.7 we have that x. < max{y,,y,} for every e = [u,v| € E[S]. Hence, it only
makes sense to use the rule S2 in combination with the rule S1.
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Figure 3.11: Topological representation of the graph after S1 shrinking strategy

Figure 3.12 shows the resulting graph after applying the S1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.13 shows its topological representation.

73 72
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20 24 4347 66

Figure 3.12: Resulting graph after S1S2 shrinking strategy

If a subcycle-safe rule is applied, we know that all the SECs have not vanished. How-
ever, new violated SECs for (y[S], z[S]) might have appeared, which cannot be adapted
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Figure 3.13: Topological representation of the graph after S1S2 shrinking strategy

to a violated one for (y,z). This situation would lead to identifying unnecessary cuts for
(y, x) and therefore to slowing down the separation algorithm (the cut generation part).
It is reasonable to ask when the violated SECs for (y[S], z[S]) can be transformed to vio-
lated SECs for (y,x) and when not. Let us define the mapping by mg : P(V[S]) — P(V)

7TS(Q):{Q—{s}us ifseQ 5.35)

Q otherwise

For a given S, the inverse, 7T§1, of the mapping g is the set shrinking defined in (3.18),
ie, m5'(Q) = Q[S]. We have that Q = mg'(7g(Q)) for all @ C V[S] and Q C
ms(mg(Q)) for all Q C V. An important property of the mapping 7g, by the defi-
nition (3.19¢), is that 2(d(7s(Q))) = z[S](6(Q)) for all @ C V[S]. In some cases, we will
need to refer to the set obtained by unshrinking completely the contracted sets, where
multiple shrinking might have been performed, e.g., G[S1][S2]. In such cases, we simplify
the notation and denote 7(Q), e.g., 7(Q) = 7s, (75, (Q))-

When an inequality family is targeted in a separation problem, knowing the represen-
tation of such inequalities, as is the case for the SECs, is very valuable to study how
an inequality is transformed when shrinking and unshrinking a set. Moreover, since
z(6(rs(Q))) = z[S](6(Q)) for all @ C V[S], understanding the relationship between y
and y[S] values is the key point to see how the violated SEC inequalities behave under
the different shrinking rules.

Lemma 3.15. Given a vector (y,x) € RV*E that satisfies the degree equations and a
subset S = {u,v} of V. The following holds:

Z) y[S](U[S]) > Yo Z'fw[u,v] < Yu
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7’7’) y[S](U[S]) < Yo ifx[u,v] > Yu
iti) y[S1(v[S]) = yv i Tfu) = Yu

Proof. 1t is a consequence of the definition of y[S] and the identity (3.14). O

Lemma 3.16. Under the hypotheses of Theorem 3.13, y[S](v[S]) =y, for allv € V.

Proof. For every v € V. — S, we have y[S](v[S]) = y, by definition. For u,v € S, since
Yu = Yv = T[yn], We obtain the equality by Lemma 3.15. O

Lemma 3.17. Let G be an undirected graph, (y,z) € RY*E be a vector and a vertex
subset S C V. Suppose that y[S](u) < y(v) for all w € VI[S] and v € wg(u). Then, for
each SEC for (y[S], z[S]) there exists at least one SEC as violated as it for (y,x).

Proof. Note that, if r € Q and t ¢ @ then u € 75(Q) and v ¢ 7wg(Q) for all u € wg(r)
and v € mg(t). Let (@, r,t) be a SEC inequality violated by (y[S], z[S]). Therefore, the
SEC inequality (7s(Q), u,v) is violated by (y,z) where u € mg(r) and v € 7g(t).

3(73(5(735(62))) — 2y — 2y, < x[S](0(Q)) — 2y[S](r) — 2y[S](t) u € mg(r) and v € wg(t)
3.34
OJ

Corollary 3.18. Let G be an undirected graph and (y,z) € RV*F be a vector. If S is
a shrinkable subset obtained by rules C1, C2, C3 or S1, then (y,x) ¢ PgEC if and only

. G[S
if (yIS], 1)) ¢ PSie-
Proof. 1t is a consequence of Lemma 3.6 and Lemma 3.16. 0

When rule S2 is applied, as a consequence of Lemma 3.15, some vertices of the shrunk
graph will have lower values than the original ones. Although, by the definition of
subcycle-safe shrinking, all the violated SECs for (y,x) are not vanished, we might lose
some of them in the shrinking process. However, it could be interesting to identify
and save those excluded violated SECs if possible. For that aim we consider a vector
m[S] € RVIY! defined as m[S](v) = max{y, : u € mg(v)}. It is clear that if only the
rules of Theorem 3.5 and the rule S1 are applied, m[S](v) = y[S](v) for all v € VIS].
Considering the vector m[S], we evaluate a SEC (Q, u,v) for a given vector (y[S], z[S])
by the expression

z[S](6(Q)) — 2m[S](u) — 2m[S](v) > -2 (3.35)

and only if this is violated, we save the SEC (Q, u,v) for (y,z).
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3.4 Separation Algorithms for Subcycle Elimination Constraints

In this section, we present two exact separation algorithms for SECs in cycle problems.
Given a vector (y,x) € P§, an algorithm which finds violated SECs for (z,y) is called a
separation algorithm for SECs. A separation algorithm is called exact if it always finds
violated inequalities when they exist, otherwise it is called heuristic.

Before delving into the separation algorithms in depth, we need to make an observation
which has important consequences for SEC separation problems in cycle problems. In
the TSP, the y values are fixed to 1, so the constraints in the family (3.7¢) only depend
on the star-set value of subsets of vertices. For this reason, the SEC separation problem
for the TSP is closely related with the minimum cut problem, particularly, the most
violated SEC for (y,z) is in correspondence with the global minimum cut of G*.

SEC SEPARATION PROBLEM AND MINIMUM CUT PROBLEM

In cycle problems in general, the SECs (C, v, d) obtained from the global minimum cut
of G*, z(C : V — (), might not be violated, although other violated SECs for (y,z) can
exist.

This scenario is shown in the example in Figure 3.14. The global minimum cut in the
figure is obtained by C' = {4} and because |C| < 3, by definition (3.7¢), there is no vio-
lated SEC inequality of type (C,v,u) (or equivalently of type (V —C, v, u)). However, the
SECs ({2,3,8},2,6) (or ({1,4,5,6,7,9},6,2)), ({2,3,4,8},2,6) (or ({1,5,6,7,9},6,2))
and ({2,3,4,5,8},2,6) (or ({1,6,7,9},6,2)) are violated for the vector (y, x) represented
in Figure 3.14.

W NI~ = 00

Figure 3.14: An example of a vector (y,x) where the associated SEC with the global minimum
cut of the support graph is not violated, while violated SECs for the vector exist.
The edge values of the vector (y,x) are detailed in the legend, while the vertex
values are derived by the degree equations.

The straightforward exact algorithm to find violated SECs for (y, ), consists of solving
(‘V;‘) number of (s,t)-minimum cuts problems on G*, one for each pair of different
vertices, and then evaluating the associated inequality (3.7c¢) using the y values of the
pair of vertices. When using the push-relabel algorithm in [Goldberg and Tarjan, 1988]
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with highest-level selection and global relabeling heuristics to solve the (s,t)-minimum
cut problems (or better said, to solve its dual: the (s,t)-maximum flow problems), the
straightforward exact strategy has a O(|]V*|*\/|E*|) time complexity. Note that for
cycle problems in general, the algorithm in [Hao and Orlin, 1992] cannot be used to
find the most violated SEC. Although this algorithm solves the global minimum cut in
O(|V*|?2\/|E*|) steps, which might be very useful, particularly for the TSP, in a general
cycle problem the global minimum cut might not correspond with a violated SEC as
shown above.

The proposed separation algorithms in this chapter, the Dynamic Hong’s algorithm
and the Extended Padberg-Grotschel algorithm, are two exact algorithms for cycle prob-
lems that run in O(|V*|3/|E*|). They are motivated by two observations made in [Fis-
chetti et al., 1997]. First, for a given pair of different vertices u,v € V', the most violated
SEC, (@, u,v), corresponds to the subset @ such that (Q : V — Q) is a (u,v)-minimum
cut. Secondly, for a given subset @, the most violated SEC, (Q, u, v), corresponds to the
vertices u = argmax{y, : w € Q} and v = argmax{y,, : w € V — Q}. The next two
algorithms exploit these two observations, in order to guarantee that the most violated
SEC for (y,x) is identified.

3.4.1 Dynamic Hong’s Exact Separation Algorithm

The Hong’s exact approach, which emerged in the context of the TSP, consists of solving
only |V*| — 1 number of (s,¢)-minimum cut problems, by fixing a random vertex, s, as
the source of all the minimum cut problems, at the expense of possibly losing a subset
of violated cuts, see [Hong, 1972].

This exact approach can be extended for cycle problems, by selecting s as a vertex of
V* with maximum y value. Based on the second observation in [Fischetti et al., 1997],
an s selected this way will belong to the most violated SEC corresponding to every
subset Q). However, since to define a SEC we need to select another vertex in V* — {s},
based on the first observation, we consider for each ¢ € V* — {s} the subset @ such
that (Q : V — Q) is a (s, t)-minimum cut. This shows that the extension of the Hong’s
approach for cycle problems is also an exact separation algorithm.

Let us suppose that the vertices V* = {v], ... ’UI*V*I} are ordered decreasingly by ¢ and
define the source s; = v{ and the sink ¢; = v}, for all i € {1,...,|V*| —1}. In [Fischetti
et al., 1998] and [Bérubé et al., 2009], after each (s;,t;)-minimum cut, (Q : V — @), they
increase the weight of the edge [s;,t;] by 2 — 2(0(Q)), in order to prevent collecting the
same SEC in subsequent iterations. A disadvantage of this strategy is that the degree
equations are not satisfied anymore. In Theorem 3.20 we achieve the same objective by
shrinking the set {s;,¢;}, with the extra feature of reducing the size of the graph for the
following iterations.

The underlying idea of Theorem 3.20 comes from the shrinking rule for minimum cut
problems, Theorem 3.3, in [Padberg and Rinaldi, 1990a]. This theorem says that the
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edges having a value greater than or equal to the upper bound of the minimum cut can
be contracted. However, this rule is not safe for SECs in cycle problems. For instance,
based on Theorem 3.3, in Figure 3.14 we would shrink the set {2,6} because the value of
the edge [2, 6] is equal to the global minimum cut value z(C : V — C'). However, because
all the violated SECs in the figure consider the vertices 2 and 6 as disjoint ones, it is not
safe to shrink the set {2,6}.

Lemma 3.19. Given a vector (y,x) € RV*F that satisfies the degree constraints and
four vertices u,v,u ,v" € V* such that yy + yy > Yy T Y, let (Q:V*—Q) be a (u,v)-
minimum cut and (Q : V* — Q') be a (u',v")-minimum cut in G*. If (Q',u',v") is a
strictly more violated SEC' than (Q,u,v), then both u,v vertices belong either to Q' or

’

V- Q.

Proof. Suppose that (Q',u',v) is a strictly more violated SEC than (Q,u,v), then:

2(6(Q)) — 2yu — 2y0 +2 > 2(8(S)) — 2y, — 2y, +2 (3.36a)

2(6(Q)) > 2(8(5)) + 2yu + 2yy — 2,/ — 2y, (3.36b)

2(6(Q)) > 2(5(9)) (3.36¢)

Since z(6(Q)) = z(Q : V* — Q) is the value of the (u,v)—min/imum cut z/md x(é(Q’)) is
strictly smaller than it, then both u and v belong either to @ or V — @ . O

Theorem 3.20 (Rule S3). Given a vector (y,x) € RV*E satisfying the degree equations,
consider u,v € V* such that min{y,, y,} > yw for allw € V*—{u,v}. Then, after solving
the (u,v)-minimum cut problem and collecting, if any, the associated violated SECSs, it
is subcycle-safe to shrink S = {u,v}.

Proof. The theorem is a direct consequence of Lemma 3.19. O

The dynamic Hong’s algorithm is based on Theorem 3.20, and it takes its name because
the source, s, for the (s,¢)-minimum cut problems might not be the same as in the
classical approach. The algorithm works as follows: suppose that the vertices of V*
are ordered decreasingly by y, and set for the first minimum cut problem s; = v} and
t1 = v3. Next, we solve the (s1,t;)-minimum cut problem, evaluate the obtained SEC
candidates and, thereafter, shrink {s;,#1}. To proceed with the subsequent iteration,
we need to know if the ordering of the vertices has changed after the {s1,¢;} shrinking,
so we consider the Lemma 3.15. When the logical constraint x,, ;] < ys, is satisfied,
we have that y[{s1,t1}](s1[{s1,t1}]) >y, > y» for all v € V* — {s1,¢1}, and, hence, the
vertex s1[{s1,t1}] will be “again” the source of the subsequent minimum cut problem.
However, when zs, ;) > ys,, it might happen that y[{s1,t1}](s1[{s1,%1}]) < y» for some
v € V*—{s1,t1}. In this situation, after shrinking the set {s1,¢;}, we will need to reorder
the vertices of V*[{s1,t1}] decreasingly by y (rearrange si[{s1,?1}] in the set V*). So
now, to proceed, we set as s9 and to, the first two vertices of V*[{s1,t1}], continue by
solving the (s2,t2)-minimum cut problem, evaluating the possible violated SECs and
shrinking {sq, 2}, and so on.
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3.4.2 Extended Padberg-Grotschel Exact Separation Algorithm

[Padberg and Grotschel, 1985], showed a different exact separation algorithm for SECs in
the TSP, whose key component is the multitermal flow algorithm proposed in [Gomory
and Hu, 1961]. A multitermal flow algorithm is solved, in turn, using the so-called
Gomory-Hu tree, which can be constructed solving a |V*| — 1 number of (s, ¢)-minimum
cut problems.

In [Fischetti et al., 1997] it was mentioned that an analogue approach to the one given
for the TSP might be used for the SECs in the cycle problems, but no details were given
to illustrate how this approach should be extended. However, note that the adaptation
of the Padberg-Groétschel approach for cycle problems is not trivial. The algorithm
in [Padberg and Grotschel, 1985] for the TSP relies on the correspondence between the
most violated subtour elimination constraint for (y,z) and the global minimum cut of
G*, which is not always the case in general cycle problems (this might not even be
violated while other exist).

In cycle problems, Gomory-Hu trees were used to find violated SECs in [Bauer et al.,
2002] for the Cardinality Constrained Cycle Problem (CCCP) and in [Jepsen et al.,
2014] for the Capacitepd Profitable Tour Problem (CPTP). Nevertheless, in absence of
details of the approach used to identify the violated SECs, we understand that in both
papers the selected inequality corresponds with the global minimum cut. Therefore,
these separation algorithms for SECs should be considered as heuristics. As far as we
know, an exact extension for the Padberg-Grotschel separation algorithm for SECs in
cycle problems has not been detailed in the literature.

In order to extend the separation algorithm for cycle problems, we need to construct a
Gomory-Hu tree, T = (V*, Ar), of the support graph G* with weights (y, z). However,
unlike in the original approach, the tree 1" has to be constructed as a directed rooted
tree, where the root is set as a vertex of V* with maximum y value. Let us denote by
A(v) the set of descendant vertices of v € V* and by r the root of the tree 7. We
consider that every vertex is descendant of itself, i.e., v € A(v). Suppose that the arcs
of Ar are in the descendant orientation, and call h. the head vertex of an arc a. Given
a € Ap, we define

ug =argmax{y, : v € A(hg)} (3.37a)
v =argmax{y, : v € V* — A(hy)} (3.37Db)

which identifies the vertices, u, and v,, with the maximum y value for each of the two
connected components of the graph (V*, Ar — {a}). Note that, from the way that we
have chosen the root, we can assume that v, = r. Then, once the directed rooted
Gomory-Hu tree is constructed, the violated SECs are collected in O(V*) computational
time. With that aim, we check for each arc a € Ap (|Ap| < |V*|) if the inequality
Wq — 2Yu, — 2yr > —2 is violated, being w, the weight of the arc a in the Gomory-Hu
tree T representing the (s,t)-minimum cut for the two extreme vertices of the arc a. If
this happens, the violated SEC is defined by (A(hy), ug, 7).
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Note that this can be done efficiently because the u, vertices of the arcs can be updated
without an extra computational overhead. At every step of the Gomory-Hu algorithm,
when a new arc is added to the tree, the descendant vertices are identified, which can be
grasped to update the u, vertices. Also, with a proper implementation of the Gomory-
Hu algorithm, it is possible to maintain the subset that contains the selected r as the root
of the subsequent trees. For more details, see the pseudocode in the Appendix A.1.3.

In a similar way to the extension of Hong’s approach, it can be shown that the ex-
tension of Padberg-Grotschel is exact for cycle problems. In this case, the root vertex r
plays the role of s, whereas each arc a € Ay identifies simultaneously a vertex in V — {r},
t = hg, and its associated (s,¢)-minimum cut. Furthermore, it goes one step beyond,
based on the second observation, it considers u, instead of h,. Hence, the number of
violated cuts found by the extension of the classical Hong’s approach is dominated by
the extension of the Padberg-Grotschel approach.

According to our experiments in Section 3.5, the Extended Padberg-Grotschel ap-
proach consumes a much lower computational time than the Extended Hong approach,
although both approaches have the same worst case running time complexity. This
happens because the subsequent (s,¢)-minimum cut problems are solved in subgraphs
of G* in the Gomory-Hu tree based approach. When the problem size increases, the
time needed for the shrinking and unshrinking operations during the Gomory-Hu tree
construction is insignificant compared to the time needed to solve the (s,t)-minimum
cut problems. Therefore, in addition to potentially finding more violated SECs, the
Extended Padberg-Grotschel is a faster exact separation algorithm than the Extended
Hong’s Algorithm.

In Figure 3.15, we illustrate the Extended Padberg-Grotschel approach to find the
violated SECs for the vector (y, z) defined in Figure 3.14. The weight w, of each a € Ap
in the tree is detailed above the arcs, and the y values of the vertices u, and v, are
detailed inside a box, at the top and at the bottom respectively, near the head vertex of
the arc. Two violated SECs are identified ({2,3,4,5,8},2,6) and ({2,3,8},2,6). Note
that, if in this particular tree, the vertex 2 is chosen to be the root, only the violated
SEC ({1,6,7,9},6,2) (equivalent to ({2,3,8},2,6)) is collected, which shows that the
exact algorithm is sensible to the directed rooted Gomory-Hu tree construction.

Although, the detailed approach until now always finds violated inequalities when
they exist, extra violated SECs can be collected using a more exhaustive search whose
cost is O(|[V*|?). Observe that z(6(A(hq) U A(hy))) < w, + wy for every a, f € Ar.
Then, we can define () = max{yu,, yu, } and check if w, +wy — 2y (4 5) — 2yr < —2
for each pair arcs of Ap. This way, the violated SEC ({2, 3,4, 8},2,6) in Figure 3.15 can
be identified. We have not made use of this kind of extra SECs in our experiments.
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Figure 3.15: An example of the directed rooted Gomory-Hu tree for the SEC separation problem
of Figure 3.14. The u, (below) and v, (above) values are detailed in the boxes. The
arc weights are detailed next to the arcs.

3.5 Computational Experiments

In this section we describe the results of the computational experiments for the shrinking
and the exact separation algorithms for SECs. These experiments have been designed
with two goals in mind. First, to show the importance of the shrinking technique for
cycle problems, and second, to evaluate the performance of different combination of
shrinking and separation algorithms for SECs.

The computational study of this section is inspired by two studies for the minimum
cut algorithms: [Jiinger et al., 2000] and [Goldberg and Tsioutsiouliklis, 2001]. In both
papers, the minimum cut algorithms are tested in instances originated, among others,
from the solution of the T'SP by a B&C algorithm. Note that, as explained in Section 3.4,
the global minimum cut algorithms tested in these papers are not suitable for our aim.

[Jinger et al., 2000] studied the performance of different algorithms in combination
with the shrinking rules defined for the minimum cut problems in [Padberg and Ri-
naldi, 1990a]. Similarly, in this chapter, we show the performance of the combination
of shrinking rules and separation algorithms for SECs in cycle problems. [Goldberg and
Tsioutsiouliklis, 2001] compared different Gomory-Hu tree building strategies: [Gusfield,
1990] implementation and three variants of the classical implementation. It was shown,
for the SEC separation problem in the TSP, that the classical Gomory-Hu building
based strategies outperform Gusfield’s implementation, whereas they have not obtained
significant differences among the variants of the classical implementation. The directed
rooted Gomory-Hu tree algorithm presented in Section 3.4 can be considered within the
class of classical implementations.
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3.5.1 Benchmark Instances

The cycle problems could have a very large variety of origins, where the cycle constraints
might be combined with additional constraints (e.g., a limit in the length of the cycle)
and different objective functions (e.g., maximizing the profits and/or minimizing the
length). These different natures of the cycle problems might vary the results obtained
by each proposed strategy. However, we assume that in general terms the behaviour of
the strategies for SECs is similar for all the cycle problems. So, instead of presenting
an extensive comparison for different cycle problems, we focus our experiments on a
well-known cycle problem, the Orienteering Problem (OP).

With the purpose of evaluating our shrinking and separation algorithms for SECs,
we have built the SEC separation instances by obtaining vectors (y,z) ¢ Pg during a
B&C algorithm for the OP. The OP instances are constructed based on the TSPLIB
instances in [Reinelt, 1991] following the approach in [Fischetti et al., 1998]. Particularly,
we have chosen the TSPLIB instances selected in [Goldberg and Tsioutsiouliklis, 2001]:
pr76, attb32, vm1084, rl1323, vim1748, r15934, usald509, d15112. Based on these 8
TSP instances, we have constructed 24 OP instances following the approach in the OP
literature. The depot vertex is considered to be the first vertex of the TSPLIB instance,
the maximum cycle length in the OP is set as half of the TSP value of the instance
(values reported in [Applegate et al., 2007]) and the profits of the vertices are generated
in three different ways: Genl, all the vertices have equal profit; Gen2, the scores are
generated pseudorandomly; and Gen3, the vertices which are further from the depot
vertex have a greater profit. Once the OP instances have been constructed, the SEC
separation instances are generated by considering the first support graph during a B&C
algorithm for the OP which satisfies the degree constraints, the logical constraints and
the connectivity. We have classified the instances into two equal-sized groups: Medium,
instances whose original OP problem has less than 1500 vertices, and Large, the rest
of the instances. All the used OP instances and SEC separation problem instances are
available in https://github.com/gkobeaga/cpsrksec.

3.5.2 Shrinking Strategies for SECs

Relying on the results of Section 3.3.1 and Section 3.3.2, we have considered 5 different
shrinking strategies for SECs. We have named the obtained strategies, by concatenating
the names of the involved rules: C1, C1C2, C1C2C3, S1, S1S2. The pseudocodes of
these strategies are detailed in Appendix A.

In each strategy, each involved rule is applied exhaustively. For instance, for the rule
C1, the hypotheses of Theorem 3.5 are checked for every possible set S C V* and vertex
t € V* — S. Moreover, when a shrinkable set S is found and shrunk, new shrinkable
sets might appear in the graph obtained after applying the shrinking. In order to handle
these scenarios, we make use of a heap set, H C V*, which stores all the vertices that
need to be checked to see whether they belong to a candidate S. For that, first, the set
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H is initialized considering all the vertices of V*. During the search procedure, whenever
the heap set H is not empty, we draw one of its vertex, v, and consider it as contained
in S. Then, we find neighbour vertices of v that, if they incorporate to S, might make
S shrinkable. If a shrinkable set S is found, first we remove the vertices in the set S
from H, and then we shrink the graph G* and the vectors (y, z) and m (remember that
my = max{y, : u € m(v)} for v € V*). Immediately thereafter, we add the newly created
vertex s and its neighbours to the heap H. Additionally, when the support graph has
vertices with value one, we check if violated SECs exist as suggested by Lemma 3.9 and
Theorem 3.10.

3.5.3 Exact Separation Algorithms for SECs

We study the performance of four exact separation algorithms for SECs:
i) Algorithm EH: Extended Hong’s algorithm.
ii) Algorithm DH: Dynamic Hong’s algorithm.
iii) Algorithm DHI: Dynamic Hong’s algorithm with internal shrinking.
iv) Algorithm EPG: Extended Padberg-Grotschel algorithm.

The Algorithm EH is the Hong separation algorithm extended for cycle problems
in [Fischetti et al., 1997]. The Algorithm DH refers to the Dynamic Hong separation
algorithm explained in Section 3.4, i.e., after each minimum cut, we shrink the source
and sink vertices based on rule S3. In Algorithm DHI, in analogy to the approach
used in [Applegate et al., 2007] for the TSP, inside the DH separation algorithm, after
shrinking the source and the sink vertices, we apply the given shrinking strategy to the
newly obtained graph. The Algorithm EPG refers to the extended Padberg-Grotschel
algorithm explained in Section 3.4.

When a violated SEC, (@, u,v), is found, we save in a repository only the @ set of the
violated SEC. During the whole separation procedure each @ set is saved only once to
avoid generating unnecessary cuts. Moreover, if |Q| > |V*|/2, we save V* — @ instead of
Q@ in order to decrease memory resource requirements. Once the separation algorithm
is completed, we generate the SEC cuts from the saved @ sets in the following way: we
consider for candidate vertices, u and v, the vertices with maximum y value inside @,
MQ) ={u € Q:yy >y, Yo € Q}, and outside Q, M(V* — Q) = {u € V' —Q :
Yu = Yo Yo € V* — Q}. Since the amount of generated SECs might be huge (producing
memory problems) and it is likely unnecessary to consider all of them, we consider only
kin and ko randomly selected vertices from M (Q) and M (V* — @), respectively. Note
that in a cycle problem with depot, we have either d € M(Q) or d € M(V* — Q) for
every (J, so it would be sufficient to select the depot instead of the randomly selected
vertices. In other words, in these problems, it is enough to consider uv = d and k;,, = 1
if d e M(Q) and v = d and ky, = 1 otherwise. However, with the aim of obtaining
insights about the SEC generation process in general cases, in the experiments, we have



3.5. Computational Experiments 69

ignored that the OP is a cycle problem with depot.

The pseudocodes of the considered shrinking and separation strategies can be found
in Appendix A and the source code of the implementation used for the experiments is
publicly available in https://github.com/gkobeaga/cpsrksec.

3.5.4 Results

For the experiments, we have run 10 times each combination of shrinking and separation
strategies with two objectives in mind: evaluate the influence of the random choices
during the algorithm (ties are broken randomly when ordering V*; source and sink
vertices are selected randomly in the Gomory-Hu tree construction) and obtain a better
approximation of the running times. We have divided the process of finding the violated
cuts into three parts: (1) the preprocess, which considers the shrinking carried out
before the separation, (2) the separation, which consists of finding the @ sets that define
violated cuts, and (3) the generation of the violated SEC from the @ sets. Since the
SEC generation is closely related to the obtained @ sets in the previous parts, and it is
independent of the considered shrinking and separation strategies, we have limited the
discussion of results to the preprocess and the separation parts.

The computational results are summarized in two tables. In Table 3.1, we present
the information about the graph simplification and the relative time needed by each
combination of strategies compared to the reference strategy (Algorithm EH with NO
shrinking). In Table 3.2, we show the absolute values (on average) about the collected Q
sets and the time needed (in milliseconds) by each combination of strategies. Although
these tables give a general picture of the behaviour of the strategies, we consider that the
results reflect what happens instance by instance. The detailed results of the experiments
can be found in Appendix B.2.

In Table 3.1 it can be seen that the graph is contracted considerably by means of
the shrinking, especially in large problems. The largest contractions are achieved with
strategy S1S2. An interesting point of the results is that with the rules derived from
Theorem 3.5 (C1,C2,C3) the support graph is simplified significantly, which encourages
us to apply the shrinking preprocess for other valid inequalities, such as combs. Note
that, rule C3 does not contract the graph more than what is already achieved by the
combination of rules C2 and C3, see Section 3.6 for the discussion concerning this result.

Regarding the speedup up obtained by the shrinking strategies, the results are clear
and show the importance of performing the shrinking preprocess before the separation
algorithms. If we observe the column related to Algorithm EH in Table 3.1, the speedup
obtained by each shrinking strategy is meaningful. In Medium instances, on average, the
speedup is about 6 times for the least aggressive strategy (C1), and 17 times in Large
instances. By means of the most aggressive strategy (S1S2) the speedup on average is
17 for Medium-sized instances and 53 in Large-sized instances.

With respect to the time needed, the separation algorithms, Algorithm DH and Al-
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Preprocess Separation
Graph Size Speedup
Size Shrinking %\ V¥ %|E*| EH DH DHI EPG
Medium NO 100.00 100.00 1 9 9 9
C1 42.55 50.61 6 29 23 19
C1C2 39.73 46.40 7 32 27 20
C1C2C3 39.73 46.40 7 33 25 20
S1 22.88 26.43 16 57 51 28
S1S2 21.26 24.53 17 60 53 27
Large NO 100.00 100.00 1 15 15 16
C1 30.45 37.88 17 107 74 139
C102 27.95 34.10 20 122 86 151
C1C2C3 27.95 34.10 20 121 80 150
S1 16.15 19.91 44 221 203 215
S1S2 14.34 17.43 53 252 227 225

Table 3.1: Average speedup of the proposed algorithms using the Algorithm EH with no shrinking
preprocess as a baseline.
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gorithm EPG, are both faster than the commonly used Algorithm EH, which shows
the relevance of the detailed exact separation algorithms in Section 3.4. If we compare
Algorithm DH and Algorithm EPG, without considering any shrinking strategy, the
speedups on average are similar (9 and 9 times, respectively) and Algorithm EPG in
larger instances (15 and 16 times, respectively). The table also suggests, based on the
results of Algorithm DH and Algorithm DHI, that it is not convenient in the Dynamic
Hong’s separation algorithm to internally carry out extra shrinking procedures.

SPEEDUP OF SEC SEPARATION ALGORITHMS

Taking into account jointly the shrinking and separation strategies, the largest speedups
are obtained when rules S1 and S2 are combined in the preprocess and, after that,
alternatives to the standard Hong separation algorithms are used. In terms of running
time, the Algorithm DH with the S1S2 shrinking preprocess obtains the best results in
the experiments, with an average speedup of 60 in Medium-sized instances and 252 in
Large-sized instances. The results obtained by Algorithm EPG with the S1S2 preprocess
strategy are also outstanding, especially in large-sized instances with an average speedup
of 225.

Apart from the running time, an aspect to consider when making a choice about
the separation algorithm is the number of violated cuts found. As we have already
mentioned, in the cycle problems, the number of collected violated SECs is closely related
with the Q sets obtained by the separation algorithms. Therefore, we have measured
the obtained amount of Q sets instead of the number of violated SECs. In Table 3.2,
the average number of Q) sets and time of each combination of strategies is shown.

The first aspect to note is that, by means of the shrinking preprocess, which is con-
siderably faster than the exact separation procedure, we are able to find violated SECs
in many instances (via Theorem 3.10 and Lemma 3.9). These violated SECs might be
enough for the separation goal and, in practice, we could skip the exact separation algo-
rithm if violated inequalities are found in the preprocess. In the separation process, in
general, the largest amount of Q sets are obtained by Algorithm EPG, as was anticipated
theoretically in Section 3.4. Note that, the quantity of obtained () sets is sensitive to
the randomness of the shrinking and separation strategies (it can be concluded because
#Q is not always an integer).

In the view of these results, the S1S2 shrinking strategy is the best choice to use as
the preprocess of SEC separation algorithms. Bearing in mind both the time and the
obtained amount of @ sets, either Algorithm DH or Algorithm EPG might be a good
choice as the separation algorithm. However, it is not clear from these results which of
the two exact approaches should be used in practice. It probably depends on the nature
and the size of the cycle problem under consideration.
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Table 3.2: On average, the number of @) sets found and the time needed by strategy and size.
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3.6 Discussion

Finally, we would like to open a discussion about the following concerns as a consequence
of the computational results. It might be helpful, to look at the detailed computational
results in Appendix B.2 to understand the motivation behind the discussion below.

In Figure 3.9, an example of a vector (y,z) € Pf was shown where rule C3 can be
applied but rules C1 nor C2 cannot. However, in the experiments, although rule C3 has
been applied in some instances, we have not obtained any situation in which rule C3
was able to simplify the support graph more than with the rest of the rules. An open
question is then to explain why rule C3 does not improve the results obtained by means
of the rules C1 and C2. We believe that this is related with the planarity property of
the support graphs, which is satisfied in the considered instances. Note that the graph
in the example of Figure 3.9 is not planar because the complete graph of 5 vertices, K,
is a subgraph of it.

Conjecture 3.21. Given a graph G, let (y,z) € Pf be a vector. If the support graph
G* of (y,x) is planar, then the combination of the rules C1 and C2 dominate the rule
Cs3.

Note that the rules C1, C2, and C3 induce a contraction of an edge (a sequence of
contractions for C3), which is a closed operation in planar graphs. Therefore, if G* is
planar then G*[S] is also planar for every subset S obtained from these rules. While
working with the OP, we have empirically seen that in geometrical instances the support
graph obtained within a B&C is planar most of the time.

Another interesting fact that can be extracted from the experiments is that the number
of vertices and edges in the shrunk graph (the final result) is independent of the ordering
of the considered rules and the shrinkable sets. This suggests the idea that the obtained
shrunk graphs are isomorphic.

Conjecture 3.22. Given a graph G, let (y,z) € Pf be a vector and SRK € {C1, C1C2,
C1C203, S1, S152} be a fized shrinking strategy, then the graphs obtained by applying
SRK to (y,x) are isomorphic.

If the conjecture is true, the complexity of the separation algorithm carried out in the
shrunk graph does not depend on the different implementations of a shrinking strategy.
As a consequence, in the future, we might focus on identifying the implementations of
the shrinking strategies that might obtain the largest amount of @) sets, especially for
the preprocess, e.g., by reordering the vertices in the heap.

3.7 Conclusions

In this chapter, for cycle problems, we have successfully generalized the global (C1, C2
and C3) and SEC specific (S1, S2 and S3) shrinking rules proposed in the literature of
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the TSP. The obtained computational results for the shrinking in the OP are remarkable
and, hence, very promising for other cycle problems. The results clearly show that the
shrinking technique considerably improves the running time of the separation algorithm
for SECs. This opens the possibility to investigate in two directions in cycle problems:
(1) studying the shrinking for other valid cycle inequalities of the OP (e.g., combs)
and (2) evaluating for other cycle problems the shrinking technique in SEC separation
problems.

Part of the chapter focuses on exact SEC separation algorithms for cycle problems.
We have extended from the TSP two exact algorithms (Algorithm DH and Algorithm
EPG). The proposed separation algorithms were shown to be more efficient in the OP
than the exact algorithm used so far in the literature (the adaptation of the classical
Hong’s approach). The importance of the detailed extension of the Padberg-Grotschel
approach, Algorithm EPG, lies in the fact that in cycle problems, in general, the global
minimum cut of a support graph might not generate a violated SEC, while violated SECs
in the same graph exist. An example is given where this claim is shown, which implies
that the adaptions of the Padberg-Grétschel approach used so far in the literature of
cycle problems should be viewed as heuristic separation algorithms. Therefore, this
might be the first exact extension of the Padberg-Grotschel approach in the literature
for cycle problems.



CHAPTER 4:

RB&C: Revisited Branch-and-Cut Algorithm

OUTLINE

In this chapter, we present an exact algorithm for the OP. These contributions deal with
the separation algorithms of inequalities stemming from the cycle problem (SECs and
comb inequalities), the design of the separation loop, the pricing of variables for the
column generation and the calculation of the lower and upper bounds of the problem.

4.1 Introduction

The OP can be defined by a 5-tuple (G, d, s, 1, dy), where G = K,, = (V, E) is a complete
graph with vertex set V' and edge set F; d = (d.) where d, is the positive distance value
(time or weight) associated to each e € E; s = (s,), where s, is a positive value that
represents the score (profit) of vertex v € V; 1 € V is a vertex selected as the depot;
and dy is a positive value that limits the cycle length.

The OP goal is to determine a simple cycle that maximizes the sum of the scores of
the visited vertices, such that it contains the depot node 1 € V and whose length is
equal to or lower than the distance limitation, dy. Then, the OP can be formulated as
the following 0-1 Integer Linear model:

max Z SoYo (4.1a)
veV
5.t > dexe < do, (4.1b)
ecl
z(d(v)) — 2y, =0, velV, (4.1c)
z(0(H)) — 2y — 2yr > —2, leHCV,reV —H, (4.1d)

3<[H[<|V[-3,

75
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Yy — Te > 0, veV,eed(v), (4.1e)
0<y, <1, vev, (4.1f)
0<z <1, ec kb, (4.1g)

g =1, (4.1h)
Ze €L ecel (4.11)

where the objective function (4.1a) is to maximize the total collected profit. The
constraint (4.1b) limits the total cycle length. The Subcycle Elimination Constraints
(SEC) (4.1d) ensure that only one connected cycle exists. Throughout the chapter, we
use the notation (H,[,r) for the SEC defined by the set H C V and the vertices | € H
and r ¢ H. The constraints (4.1g) and (4.1i) impose that the edge variables are 0-1,
consequently, considering these together with the Logical Constraints (4.1e) and the
bounds (4.1g), the vertex variables are also 0-1. The constraint (4.1h) defines the depot
condition.

As mentioned in the introduction, the OP can be seen as a combination of the TSP-
decision and the KP problems. Particularly, the OP is a Cycle Problem (CP) where the
solutions, which are cycles, need to satisfy a certain length constraint. This relation with
the two classical optimization problems is useful when identifying the valid inequalities
and their respective separation algorithms for OP. Let us show how the solution space
of OP is related to those well-known problems. The OP Polytope (Pop) of the complete
graph K, is defined by:

Pop = conv{(y,z) € RV*F : (y,z) satisfies (4.1b), (4.1¢), (4.1d), (4.1e),
(4.11), (4.1g), (4.1h), (4.11)} (4.2)

The Knapsack Polytope (Pgp), see Balas [1975], is a well-studied polytope closely
related to the Ppp:

Pip := conv{z € RF :  satisfies (4.1b), (4.1g), (4.1i)} (4.3)

Since the solutions of the OP are cycles, the Cycle Polytope (Pcp), presented in Chap-
ter 3, plays a crucial role when solving the OP with B&C.

We have the following relationship:

Pop C Pep N (RY x Pgp)N{(y,z) € RV*E .y =1} (4.4)

Consequently, the potential valid inequalities for the OP are those which are valid
for Pop and the Pxp. However, the Pop and the intersected polytopes in the relation-
ship (4.4) are not equal and alternative valid inequalities are needed to deal with the OP.
Figure 4.1 shows an example of a vector (y,z) in PopN(RY x Pxp)N{(y,x) : y1 = 1} but
not in Pop. Let G be the complete graph generated by the set V= {1,2,3,4,5}, and Pop
be the OP polytope of (G, d, s, 1,dy) where d is the 2-dimensional euclidean distance de-
termined by the numbers of the figure, s is any positive vector and the distance constraint
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Figure 4.1: Example of a vector in Pop N (RY x Pxp) N {(y,x) : y1 = 1} but not in Pop.

is set as dy = 5. The (y, x) vector is defined as follows: it is assumed that the degree equa-
tions are satisfied, and the dashed edges of figure have 0.5 value, 1 value the solid edges
and 0 otherwise. On the one hand, the vector (y, z) belongs to Pop. Consider the cycles
a = ([1,2],[2,3],[1,3]) and c2 = ([1, 2], [2,4], [4, 5], [3, 5], [1,3]) whose characteristic vec-
tors, (y°, 2 ) and (y2, x?), belongs to Pop. We have that (y, x) is a convex combination
of the characteristic vectors of ¢; and co, ie. (y,2) = $(y™,2) + 3(y2,2?). On the
other hand, the vector x belongs to Pxp. Consider the sets k; = {[1, 2], [1, 3], [2, 3], [2,4]}
and ko = {[1,2],[1,3],[3,5],[4,5]} whose characteristic vectors, " and z*2, belong to
Prp. We have that x is a convex combination of the characteristic vectors of k1 and ko,
ie x= %IL‘kl + %:U’”. However, (y,z) does not belong to Ppp since there is no cycle in
Pop containing node 4 (or node 5). It can be easily verified that a cycle containing 1

and 4 (or 5) and having at least three edges has a length strictly larger than 5.

4.2 Valid Inequalities

In this section, we present valid inequalities for the OP. The straightforward inequalities,
as motivated in Section 4.1, are based on the Pxp (Edge Cover inequalities) and Pop
(Comb inequalities) relaxations of the Pop and they were mainly proposed in Fischetti
et al. [1998] and Gendreau et al. [1998b]. Additional valid inequalities to those based on
Pxp and Pgp have also been proposed in the literature: the Connectivity Constraints
in Leifer and Rosenwein [1994], the Vertex Cover inequalities in Gendreau et al. [1998b],
and the Cycle Cover and the Path inequalities in Fischetti et al. [1998]. The novelty of
this section is an alternative representation of comb inequalities, which is then used for
the efficient pricing in Section 4.5.

4.2.1 Connectivity Constraints

The Connectivity Constraints (CC) are well-known inequalities for the OP, e.g. Gendreau
et al. [1998b] and Leifer and Rosenwein [1994], and are a particular case of the conditional
cuts proposed in Fischetti et al. [1998]. The CCs exploit the depot constraint (4.1h).
Given a lower bound, LB, of the OP, let T' be a subset of nodes such that 1 € T, |T| > 2
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and ), o Sy < LB. The inequality defined by T
z(6(T)) > 2 (4.5)

is valid for the OP. Since z(§(T")) = x(6(V —T')), the inequality can also be defined for
T C V such that 1 ¢ T and ngT sy < LB. So, it is always possible to assume that
] < [VI/2.

4.2.2 Comb Inequalities

The comb inequalities were generalized from the TSP to cycle problems in Bauer [1997].
A comb is a tuple (H,{Ti,...,T;},L,R) of three vertex subsets and a family 7 =
{T1,...,T;} of vertex subsets such that satisfies the following properties:

i) t > 3 and an odd integer

i) TNTj=0forl1 <i<j<t

i) GTNH#AQand T; — H #(Q fori=1,...,t
iv) L={l;} such that ; e T, N H fori=1,...,t
v) R={r;} such that r; € T, — H fori =1,...,t

The set H is called the handle, the sets in 7 are called the teeth, the set R is called
the Root set, and L is called the Link set. Then, the inequality

111

w(6(H)) + Y w(8(1))) = 2y(R) — 2y(L) > 1 (4.6)
j=1

is facet-defining for Pop, as was shown in Bauer [1997], and therefore, a valid inequality
for OP. When all the teeth consist of exactly two vertices, the comb inequalities are
known as blossom inequalities.

4.2.3 Edge Cover Inequalities

The maximum length constraint (4.1b), which is a capacity constraint for the edge
variables, defines a K P polytope, as explained in Section 4.1. For every feasible (y, z),
the edge variable, x, belongs to Pxp. For the OP, the Edge Cover inequalities are the
cover inequalities of the associated Pxp (Balas [1975]). These inequalities were first
introduced for the OP in Leifer and Rosenwein [1994] and also used in Fischetti et al.
[1998] and Gendreau et al. [1998b]. Let F' C E be a subset with ) . de > do, then:

2(F) < |F| -1 (4.7)

defines an Edge Cover inequality for the OP. We assume that F' is a minimal cover,
i.e. for every Fy C F, we have ZeeFO d. < dp.
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4.2.4 Cycle Cover Inequalities

Every feasible cycle F' C FE satisfies the equation xz(F) = y(V(F)). Let F' C E be a
subset that defines a cycle with ) . de > do, then the inequality

z(F) <y(V(F)) —1 (4.8)

is valid for the OP. These cuts were used in Fischetti et al. [1998] and Gendreau et al.
[1998b].

4.2.5 Vertex Cover Inequalities

Let UB be an upper bound of the OP and @ C V be a subset with Z,UGQ sy > UB,
then:

y(@) <lQf -1 (4.9)

defines a Vertex Cover inequality for the OP. We assume that S is a minimal cover.
These inequalities were first used for the OP in Gendreau et al. [1998b].

4.2.6 Path Inequalities

The goal of these cuts is to exclude the paths that due to the length constraint (4.1b)
cannot be part of a feasible solution. Let P = {[i1, i2], [i2, i3], ..., [ix—1,1k]} be any simple
path through V(P) = {i1,...,ix} CV — {1}, and define the vertex set:

W(P):={veV —=V(P):dii + Y de+din+dss <do} (4.10)
ecP
Then the following Path inequality

2(P)—y(VP) +y1 4y — Y. Tipw <0 (4.11)
veEW (P)
is valid for the OP, see Fischetti et al. [1998].
In Figure 4.2 a flowchart representing a simplified B&C algorithm can be consulted.

4.3 Initialization

First of all, we obtain an initial heuristic solution. To that aim, we make use of the
EA40OP metaheuristic in Kobeaga et al. [2018] considering a small size population.

Next, we build the initial subproblem, LPy. Given the computational requirements of
considering all the variables and constraints that define the OP, an initial subproblem
LPy is built. The LPg is initialized considering the following subset of constraints and
variables:
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INITIALIZATION BRANCH-AND-CUT
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Figure 4.2: Flowchart of the Branch-and-Cut algorithm considered in this work. BRANCH is an
oracle which returns an unevaluated node in the branching tree. SEP refers to the
separation algorithms. At each action box of the flowchart the subproblem LPFP; is
updated and solved.

i) All the vertex variables.

ii) Edges in the 10 nearest neighborhood graph.

iii) Maximum length constraint (4.1b), degree constraints (4.1c), and depot constraint (4.1h).

)
)
)
iv) Variable bounds, (4.1f) and (4.1g).

Immediately after the initialization, the edge variables are priced, see Section 4.5. In
the rest of the chapter, we use the LPg symbol to refer to any subproblem of the OP,
regardless of whether it is the initial one or not.

4.4 Separation algorithms

In this section, we present the heuristic and exact separation algorithms used to find
the violated inequalities. Our contributions are concentrated in the separation algo-
rithms for SECs, CCs and blossom inequalities. Hence, we only give details of these



4.4. Separation algorithms 81

separation algorithms in the section. The details of separation algorithms for the rest of
the inequalities (Logical Constraints, Edge Cover, Vertex Cover, Cycle Cover, and Path
inequalities) can be found in Fischetti et al. [1998].

In this section, we present the heuristic and exact separation algorithms used to find
the violated inequalities. Our contributions are concentrated in the separation algo-
rithms for SECs, CCs and blossom inequalities. Hence, we only give details of these
separation algorithms in the section. The details of separation algorithms for the rest of
the inequalities (Logical Constraints, Edge Cover, Vertex Cover, Cycle Cover, and Path
inequalities) can be found in Fischetti et al. [1998].

Let (y*, x*) be a solution of a particular LP( problem and define V* = {v € V : y > 0}
and E* = {e € E : 2} > 0}. Then, G* = (V*, E*) is called the support graph associated
with the solution (y*, z*).

4.4.1 SECs and CCs

Violated SECs (4.1d) and CCs (4.5) are found using a common separation algorithm.
This is natural since, in both constraint families, the incidence vector of the arcs, x in
the inequality can be written as the star-set value, x(0(Q)) of a subset @ of vertices.
Since §(Q) is the cut associated with @, the separations of both inequalities are closely
related to the minimum cut problem. In Kobeaga et al. [2020a] it was shown that the
shrinking techniques substantially speed up the SEC separation algorithms. However,
as explained below, the shrinking might also have a negative impact on the finding of
violated CCs. In this section, we study how to efficiently use the shrinking to speed up
the joint separation algorithm by reducing the adverse effects for CCs.

Given a solution (y*,z*) and a subset @, the subset @ could generate at the same
time a violated SEC and a violated CC for (y*,x*). Since the CCs do not depend on
the value of the vertices, while the SECs do, the CCs tend to be more violated and more
stable, i.e., remain active in subsequent updates of the LPy, than the SECs. Therefore,
we treat the CCs with a higher priority.

Although SECs are part of the OP model, in order to control the size of the working
LPy, they are included only when required. This strategy is reasonable since there exist
polynomial exact separation algorithms for SECs. In contrast, the separation problem
for CCs is not known to be polynomial, and it can be modeled as follows:

min 2 Z Y2y — 2 Z T(y,u) 20 %u (4.12a)
veV* veV*
s.t: stzv < LB (4.12Db)
veS
z1=1 (4.12¢)

2 €{0,1} WYweV (4.12d)
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where z = (z,) are binary variables whose values are z, = 1 if the node v is selected
and 0 otherwise. The problem (4.12) is a Quadratic Knapsack Problem (QKP) with a
fixed variable. Consequently, there exists a violated CC for (y*,z*) if and only if the
optimal solution of Problem (4.12) has a value lower than 2. Taking into consideration
that repeatedly solving QKPs during the B&C is not viable, the CCs are not separated
exactly, but in a heuristic manner take advantage of the SEC separation algorithm. The
well-known approaches for the separation of SECs in the TSP, the connected component
heuristic and Hong’s approach can be extended to jointly separate the SECs and CCs:

Connected components heuristic. The straightforward heuristic to find violated SECs
and CCs is to search for the connected components of G* using the depth-first-search
algorithm. When a connected component contains the depot vertex 1 and the sum of
the vertices scores in the component is lower than LB, we record the associated CC of
the component, otherwise, we record the associated SECs.

Extended Hong’s approach. There are two main strategies to exactly separate SEC
inequalities in cycle problems, which are extensions of Hong’s approach and the Padberg-
Grotschel approach (also known as the Gomory-Hu tree-based approach) for the TSP,
see Kobeaga et al. [2020a]. In both approaches, the separation is carried out by solving
a sequence of |[V*| — 1 (s,t)-minimum cut problems. On the one hand, in the extended
Hong’s approach, the vertex with a higher y* value (the depot vertex 1) is fixed to be
the source, s, and the sink vertices, ¢, are chosen from the set V* — {1}. On the other
hand, the extended Padberg-Groétschel approach is based on the so-called Gomory-Hu
tree (directed and rooted in 1), which is constructed by solving |V*| — 1 (s, ¢)-minimum
cut problems.

As mentioned above, and as already proposed in the literature, the SEC separation
strategies are leveraged to find violated CCs as well. Although the extended Padberg-
Grdtschel approach obtains a larger number of violated SECs, it is not appropriate to find
violated CCs, since the obtained sets do not contain the depot vertex 1. Contrarily, the
extended Hong’s approach for SECs can be easily adapted to additionally find violated
CCs. It can be achieved, by solving at each step of the separation algorithm the (1, v)-
minimum cut (useful to find violated SECs) and (v, 1)-minimum cut (useful to find
violated CCs) problems. For these reasons, we use the extended Hong’s approach as the
base strategy for the joint separation algorithm.

The running time of these SEC separation algorithms can be improved using the
shrinking techniques for cycle problems, as was seen in Kobeaga et al. [2020a]. In this
publication, three general shrinking rules (C1, C2, and C3) and three SEC specific
shrinking rules (S1, S2, and S3) for cycle problems were presented. However, although
the shrinking is a key strategy for efficiently separating the SECs, it might be unfavorable
for the separation of CCs. The point is that when the vertices are contracted and
grouped, the chance to obtain the subset of vertices with a score sum lower than LB
decreases, consequently, some violated CCs might vanish. Note that, the mentioned
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shrinking techniques are safe for valid inequalities of the cycle polytope and CCs are not.
Therefore, since CCs are important cuts for OP, shrinking might have a negative impact
on the performance of the overall B&C algorithm for the OP. One contribution in this
chapter is to propose strategies to minimize the possible disadvantages of the shrinking
(which is important to speed up the separation) in the joint separation algorithm for
SECs and CCs.

Following this, not all the shrinking strategies for cycle problems described in Kobeaga
et al. [2020a] are adequate for the OP problem. Particularly, we exclude the S2 shrinking
rule (which leads to excessively aggressive shrinking strategies and hence to vanish vio-
lated CCs in some cases) and only consider the shrinking strategies C1C2 and S1 in the
preprocess of the joint separation algorithm. Once entered in the separation algorithm,
the shrinking rule S3, which contracts the sink and target of the solved minimum cut,
contributes positively to separating both families of constraints since it enables a wider
family of subset candidates to be obtained. Hence, the S3 rule is used in combination
with the C1C2 and S1 shrinking strategies in the separation algorithm. After the S3
rule is applied, we search for new shrinkable sets using the selected shrinking strategy.

Classically, the candidate subsets for SECs and CCs are obtained by the minimum
cut algorithm. However, considering the importance of CCs, we intensify the search for
extra candidate subsets for CCs, which is made more efficient by taking advantage of
the vertex clustering obtained by the shrinking. We propose new strategies based on the
following lemma:

Lemma 4.1. Let (y,x) be a vector that satisfies the degree constraints. If U and W are
subsets of V' such that W C U, the following inequality is satisfied:

z(6(U—-W)) <z(6(U)) + z(6(W)) (4.13)
Proof. When (y,x) satisfies the degree constraints, the identity x(d(7)) = 2y(T) —

2x(E(T)) is valid for every T' C V. Replacing the respective expressions in the inequal-
ity (4.13) we obtain:

2y(U = W) = 22(E(U = W)) < 2y(U) = 22(E(U)) + 2y(W) = 2z(E(W))
Considering the hypothesis W C U, we have y(U — W) = y(U) — y(W).
2(EU)) = z(E(U = W)) < 2y(W) — z(E(W))

(4.14a)
Also, it W C U, the equality E(U — W) = E(U) — E(W) —6(W)N E(U) holds.
2(E(U)) — z(E(U)) + 2(E(W)) + z(6(W) N E(U)) < 2y(W) — 2(E(W))
z(6(W) N EU)) < 2y(W) = 2z(E(W))
z(@(W)NEU)) < z(5(W))

This last inequality is satisfied due to §(W)N E(S) C §(W), which proves the lemma.
O
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Let G[S] = (V[S], E[S]) be the graph and (z[S], y[S]) the vector obtained by applying
a shrinking strategy to G* and (y*,xz*), respectively, and 7 : P(V[S]) — P(V) the
unshrinking function. Let @ be the subset obtained by the (¥, 1)-minimum cut (where
1 is the contracted vertex such that contains the depot vertex 1, i.e. 1 € m(1)), so
1 € m(Q), and suppose that z(6(Q)) < 2. Note that, z(6(Q)) = z[S](6(Q)), where
Q = m(Q). If ZUEQ us, < LB, the subset @) defines a violated CC. Otherwise, after
each (¥, 1)-minimum cut problem is solved, and in the case that x(3(Q)) < 2, we test
the following strategies to find candidate subsets for CCs:

i) First, when |7(1)| > 2, we check if y[S](1) < 1 and ver(1) Sv < LB. If this is the
case, the subset Q = m(1) defines a violated CC.

ii) Then, we check if there exists © € V — 1, such that x[S](6(Q)) + 2y[S](v) < 2 and
Zvew(Q %) Sv < LB. If both inequalities are satisfied for v, the subset W(Q —0)
defines a violated CC.

iii) Finally, we sort the vertices in Q — 1 in non-decreasing order of 7, and check
greedily for the greatest subset Q' = {v1,...,0;} of Q such that z[S](6(Q)) +
2> e ylSI(0) < 2. I 3, g-q) Sv < LB, the subset 7(Q — Q') defines a vio-
lated CC.

4.4.2 Comb Inequalities (blossoms)

For the B&C presented in this work, we only use the blossom subfamily of comb inequal-
ities. In this section, we present two heuristics to search for violated blossom inequalities
in cycle problems, and in particular, for the OP. The heuristics are extensions of the Pad-
berg and Hong [1980] and Grotschel and Holland [1991] separation algorithms, developed
in the context of the TSP.

The key point of the heuristics for blossom inequalities is to identify a subset of
candidate handles to restrict the search of violated blossoms. In the literature of OP, a
heuristic to find handle candidates is detailed in Fischetti et al. [1998]. In this heuristic,
the search is guided by the greedy algorithm of Kruskal for the Minimum Spanning
Tree. At each iteration of the Kruskal algorithm, a new edge is inserted into the tree,
and the connected component containing the edge is chosen as a candidate handle. In
this work, we consider two alternative approaches to finding candidate handles: the
Extended Padberg-Hong heuristic and the Extended Grétschel-Holland heuristic.

Ezxtended Padberg-Hong heuristic (EPH). Padberg and Hong [1980] proposed a blossom
separation heuristic for the TSP, which is known as the odd-component heuristic. In
this heuristic for the TSP, the violated blossoms are found by restricting the set of
candidate handles to the connected components of the fractional graph G7 = (Vj*, EY),
where Ef = {e € E* : 0 <z} < 1} and V}* = V(EY).
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EXTENDING BLOSSOM HEURISTIC FOR CYCLE PROBLEMS

We generalize the blossom heuristic for the general cycle problems by applying the
algorithm by levels. A level, A, is defined by each different value of the set {y;},. We
call L the set of distinct levels. Note that, the number of levels, |L|, is bounded by |V|.
Associated with a level we have the level graph G = (V¥¥, EY), where EY = {e € E* :
0 <z} < A} and V' = V(EY).

A faster heuristic to find the handle candidates can be designed by omitting some
connected components of G. At every level, A, we discard the connected components,
C’i)‘, such that y, # A for all v € C’i)‘. Now, we identify the connected component of
vertices with y, = A. So, in total, we search for |V*| different connected components of,

in the worst case, G7J.

Once we have identified an initial list of candidate handles, the next step is to find
the associated teeth for these handles. Let H be a candidate handle, and define the set
of teeth as Ty = {e € §(H) : } > A}. Recall that the teeth of blossoms are edges. Not
all the teeth families obtained using this strategy satisfy the comb (blossom) definition.
If two teeth overlap in v ¢ H, then these two teeth are removed from the family of
teeth 7Ty and the handle is updated as H = H U {v}. If, eventually, the list of teeth Tz
consists of an odd number of at least three disjoint teeth, (H, 7, L, R) forms a blossom
inequality where L; = T/ NH and R; = T/ — H. If there is just one tooth i.e., Ty = {T'},
we test if H defines a violated CC. In the case that it does not, then H alone defines a
violated SEC.

Eztended Gritschel-Holland heuristic (EGH). Another fast heuristic for the TSP was
proposed in Grotschel and Holland [1991] whose aim was to minimize the influence of
small perturbations of x* in the separation algorithm. We have adapted this heuristic for
the OP using the strategy of levels mentioned above. In this approach, the handles are
considered as the vertex sets of the connected components of the graph G} , = (V*, EX. o)
where

Eye={ecEy:e<a; < (1—-¢)N}
for a small €, 0 < € < 1. Let H denote the vertex set of such a component, a candidate
handle, and let ey, ..., e; be the edges in the set

Ty ={e€6(H)C E* % > (1—e)A}

in the non-increasing order of z. If t is even, then append to 7Ty the edge with the
highest z} in

{e€d(H) C E":z; <€}
If the edges intersect, the strategy outlined above is followed to obtain a handle H and
a teeth family Ty that satisfies the blossom definition.

In Figure 4.3 we illustrate the EPH blossom heuristic for cycle problems. In Figure
4.3.a) the given support graph is presented, where there are three distinct levels, L =
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Q. - © y=12 () w=1/4 = o'=1 = =34 — 2*=1/2 — a*=1/4

Figure 4.3: Tllustration for the Extended Padberg-Hong blossom heuristic. Figure a) represents
the support graph, with the vertex and edge values detailed in the bottom legend.
Figure b) shows all the handle candidates obtained by the heuristic. Figure c) a
violated blossom found by the heuristic involving vertices with different y values.

{1,1/2,1/4}. In Figure 4.3.b) the candidate handles are presented. Three candidate
handles are obtained in level 1: {1,2,3}, {5,6,7} and {10,11,12,13,14,15,16}. Two
candidate handles are obtained in level 1/2: {10,11,12} and {14,15,16}. There are no
candidate handles obtained in level 1/4. Next, we check for violated cuts. The star-set of
{10,11,12,13,14, 15,16} is formed by two non-overlapping edges, so it is excluded. The
candidates {5,6, 7} and {10, 11,12} define violated blossoms, e.g., ({10,11, 12}, {{8, 10},
{9,11},{12,13}}, L, R) where L = {10,11,12} and R = {8, 9, 13} shown in Figure 4.3.c).
The candidates {1,2,3} and {14,15,16} define violated SECs, e.g. ({1,2,3},1,4) and
({14,15,16},14, 1), but first for {1, 2, 3} it should be checked whether it defines a violated
CC.

4.5 Column Generation

During the B&C algorithm, only a subset of edges is included in the working LPj.
At certain points of the algorithm, we need to price the excluded edge variables, and
add to the LPg: 1) to guarantee that the working relaxation is an upper bound of the
problem or branched subproblem and 2) to recover, whenever it is possible, a feasible
LPg after feasibility breaking cuts have been added to the LPy. Taking into account that
usually only a small subset of variables is included in the LPg, and that the excluded
variables could participate in multiple cuts of the LPg, the pricing phase could constitute
a bottleneck of the B&C algorithm. In this section, we develop a technique, inspired by
that used in Applegate et al. [2007], which enables us to avoid repetitive calculations
and to skip the exact calculation of the reduced cost of some variables.
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Let us call £V the family of SECs (4.1d), CC (4.5), and comb (4.6) cuts. In these cuts,
the edge variables with non-negative coefficients can be represented as the sum star-set
of subsets of vertices. Complementarily, let us call £F the family of Logical (4.1¢), Edge
Cover (4.7), Cycle Cover (4.8) and Path (4.11) cuts. Note that the Vertex Cover (4.9)
inequalities do not contribute to the reduced cost of the edge variables. So, in the OP,
the reduced cost of an edge variable, e = [v, w], can be calculated by:

TCe = —deTgy — My — Ty + rc;/ + ch (4.16)
where 7,4, is the dual variable of the maximum length constraint (4.1b), 7, and 7, are
the dual variables of the degree constraints (4.1c) of v and w respectively, and rc! and
rcE are the contributions made by the cuts in £V and LF, respectively. We will see
that the rcZ values can be obtained in linear time in terms of |V| and |£F|, and we
will reproduce the pricing strategy used in Applegate et al. [2007] to calculate the rc¥
values.

It can be seen that the cost of the calculation of all the rcZ is O(|£F||V]). To that aim,
it is sufficient to check that the number of edges with a non-negative coefficient in each
cut of £F is bounded by |V|. In the case of Logical, Cycle Cover, and Path inequalities,
it is derived from the definition of the valid inequality. For Edge Cover inequalities, this
bound is obtained in Lemma 4.2.

Lemma 4.2. Let T C E denote a subset defining a violated cover inequality. If the
degree equations (4.1c) are satisfied by (y,z) € RV*E then |T| < |V].

Proof. When the degree constraints are satisfied by (y, x), as a consequence of the well-
known equality z(0(S)) = 2y(S) — 2z(E(S)), the inequality z(E(V(T))) < y(V(T)) is
always satisfied. Suppose that T" violates the cover inequality (4.7) then

7] =1 <2(T) <z(E(V(T))) <y(V(T)) < |V (4.17)

O

Calculating all the rc) values has a O(|£Y||V|?) complexity when the cuts are stored
externally as edge variable coefficient arrays. The strategy used in Applegate et al. [2007]
speeds up the pricing by obtaining a fast lower bound of the reduced cost rcg (TSP is
a minimization problem) and excluding for exact pricing the edges that have a negative
lower bound. In order to use this strategy for the OP, first, the edge variables of the cuts
in £V must be represented and stored as a family of subsets of vertices, as we have done
in Section 4.2. Let S = F1 U...UF, be the family of all the subsets involved in the cuts
of LY where F; = {H;} UT;. For combs, H; and T; represent the handle and teeth set,
respectively. For SECs and CCs we can assume that 7; = () and H; = (), respectively.

Based on the representation of the cuts in £ by means of subsets of vertices, the cuts
are stored in an efficient data structure by pointing to the subsets involved in the cut.
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This way each subset is saved once at most for all the cuts. Moreover, it allows us to
speed up the evaluation of rcg values as explained below.

Since the OP is a maximization problem, during the pricing, we need to identify the
edge with positive reduced cost. We aim to define upper bounds, 7c., of the reduced
costs rce, to exclude for exactly pricing the edges that have a non-positive upper bound

SV
rc, .

For each subset, S € S, let us call mg the dual of the subset S defined as:

T =3 x;(9)m; (4.18)
j=1

where x;(S) = 1if S € F; and 0 otherwise, and 7; is the dual variable associated with
the cut j. Then, the contribution of the cuts in £ in the reduced cost of an edge e can

be written as:
red = Y 7y (4.19)

SeF
V(e)NS#D
V(e)—S#0
where 7g is the dual of a subset S. Since, for the edge e = [v,w], each S must contain
either v or w, an upper bound, TACX, of cm can be obtained by:

TACZ:Zﬂs—FZﬂS

SeF SeF
vES weSs

which satisfies r¢! < 7c!. Therefore, we have the desired upper bound:

Ve = —deTpi1 — Ty — T + 1¢F + 1Y (4.20)

PRICING: COST AND STRATEGY

Note that, each edge appears at most twice in a comb inequality, so the calculation of
all the 7°cY has a O(M|LY||V|) time complexity where M is the maximum number of
subsets involved in a cut. Therefore, the calculation of all the rc, has a O(M|LY||V])
time complexity. In our B&C, the value of M is related to the number of teeth in the
combs. To ensure a true linear time complexity procedure, one could limit the number
of teeth in the combs. However, in practice, the number of teeth tends to be small and
it can be assumed that M << |V|. The edges that r¢. < 0 can be excluded for exactly
pricing .

For those edges that r¢. > 0, the exact reduced cost, rc., can be calculated by using
the upper bound value:
TCe = TCe — 2 Z Tg (4.21)

SeF
Vie)csS
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The pricing loop is done in batches. In the first step, a fixed number of rc. are
calculated, the first batch of variables and those with positive values are preselected. In
the next step, for those preselected variables, we calculate the exact reduced cost, rc.,
and add to the LPg the edges whose value is positive. Then, the LPq is updated. Next,
we select the second batch of variables and we repeat the procedure. When the pricing
aims to obtain the upper bound of the branched subproblem, we exit the pricing loop
when a whole round of evaluation is performed without introducing a variable to the
LPy. When the pricing aims to recover a feasible LPg, we exit the pricing loop once a
feasible LPg is obtained without the need to price all the excluded variables.

4.6 Separation Loop

The separation loop to find the violated cuts is accomplished in three subloops. In
the inner loop, we consider the separation of logical constraints (4.1e) and the connected
components heuristic for SECs and CCs. In the middle loop, we consider the separations
of cuts which are related to the cycle essence of the OP, i.e., SECs, CCs, blossoms, and
Cycle Cover cuts. In the outer loop, we consider the rest of the cuts, i.e., the Edge
Cover, Vertex Cover, and the Path inequalities. The separation loop is illustrated in
Figure 4.4.

At each subloop, the separation of the considered cuts is performed sequentially, in-
stead of restarting from the beginning of the list. This is, we always carry out the next
separation in the subloop list, regardless of whether or not we are coming from an in-
terior subloop. This way, we give the same chance to all separations in a subloop and
decrease the probability of bounding in the same separation algorithm in consecutive
iterations of the subloop.

The separation algorithms of the inner loop are fast since both have a O(|E*|) time
complexity. First, we carry out the connected components heuristic and then the sep-
aration of logical constraints. In the inner loop, intending to keep it as a fast loop, we
price the edge variables only when the floor part of the objective value is equal to the
lower bound of the OP, i.e., if |s-y*| = LB. When both separations fail and no new
edges have been added, we find a feasible solution using the PB primal heuristic (see
Section 4.7) and update the LB if needed. We add the associated CC of the heuristic
solution if it is violated and then we price the variables. When a new CC cut or a priced
edge has been added to the LPg, the inner loop is repeated. Otherwise, we return to the
middle loop.

The middle and outer loops only differ in the considered constraint families. In the
middle loop, we consider the separation algorithms in the following order: the extended
Padberg-Hong algorithm for blossom, the extended Grotschel-Holland algorithm for blos-
som, the joint SEC/CC separation algorithm, and Cycle Cover separation algorithm. In
the outer loop, we consider the Edge Cover algorithm, the Vertex Cover algorithm, the
Path algorithm.
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Figure 4.4: Illustration of the separation loop. The symbol & represents that some cuts have
been added to the LPg.
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SEPARATION LOOP STRATEGY

When we enter in any of the separation loops, the first step is to execute the lower level
subloops. Then, we start with the first algorithm on the list. If no violated cuts are
found we move on to the next algorithm. If violated cuts are found, we first add the cuts
and optimize the LPy. Then, we search for a feasible solution using a primal heuristic
and update the LB if needed. We add the associated CC of the heuristic solution in case
it is violated and then we price the variables. At this point, we move to the lower level
loop and continue with the next separation in the list.

In the separation loop, after adding the violated cuts found in a separation algorithm,
we check if any edge variable or constraint can be removed from the LPgy. We remove an
edge variable from the LPy if, during a number of consecutive evaluations, its associated
value, =}, has been zero. We remove a constraint from the LPy if during a number of
consecutive evaluations its slack has been higher than zero.

4.7 Primal Heuristics and Lower Bounds

We use two primal heuristics to obtain feasible solutions from a fractional solution
(y*,z*). In the first heuristic, we obtain a single solution, by using the z* values related
to edges, inspired by the heuristic proposed in Fischetti et al. [1998]. In the second
heuristic, first, we build a population of cycles and then evolve it using the EA4OP
metaheuristic, see Kobeaga et al. [2018]. The cycles in the population are constructed
by selecting first the subset of vertices in each cycle using the y* values.

Path Building primal heuristic (PB). The PB heuristic was presented in Fischetti et al.
[1998]. First, the edges e € E* are sorted in decreasing order of z}, and the ties are
randomly broken. The procedure starts with an empty path T = (). At each step we
select an edge e € E* whose x} has the largest value from the set of edges which have
not been considered yet. If the inclusion of e in T" does not lead to a vertex with a
degree larger than 2, then T'= T U {e} otherwise we exclude e and repeat the process.
The path building heuristic finishes when the inclusion of e leads to 7" being a cycle or
when there are no edges left to check. If the depot vertex is not in one of the paths in
T, it is included as a single point path. If T" consists of multiple paths, we extend it to a
cycle by randomly connecting the extreme vertices (in the original paper the paths were
joined using the nearest neighbor heuristic). Since this primal heuristic is fast, it is used
in the separation loop.

Vertex Picking primal heuristic (VP) with the EA{OP metaheuristic. In the VP
heuristic, we first select a collection of vertices in V* and then build a random cycle
through the selected vertices. Each vertex v is selected according to a Bernouilli dis-
tribution with parameter y;. By applying multiple times the VP strategy to obtain
feasible solutions from (y*, z*), we build a small population. Then, as explained below,
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we ensure that the solutions in the population are feasible and improve when it is pos-
sible. Once we have a population with feasible solutions, it is evolved using the EA4OP
metaheuristic proposed in Kobeaga et al. [2018]. The EA4OP with VP heuristic is used
to find feasible solutions after an edge is branched, as shown in Figure 4.2.

For solutions obtained by PB and VP heuristics, we improve the route lengths using
the Lin-Kernighan heuristic for the TSP, and then first check if it satisfies the con-
straint (4.1b). If it does not, we apply the drop operator which consists in deleting
vertices from the solution until the cycle satisfies the length constraint. Then we try
to improve the solution by the k-d tree based vertex inclusion procedure as explained
in Kobeaga et al. [2018].

4.8 Branching and Upper Bounds

The branching is carried out in a classical way following a depth-first-search, where the
edges are branched first to 1 and then to 0. In order to select the edge variable to branch,
we use the classical branching strategy: the edge e, with the fractional value closest to
0.5 is selected, i.e., the edge that minimizes |z} — 0.5].

GLOBAL AND BRANCH NODE UPPER BOUNDS

The global upper bound and branch node upper bound are calculated just before pruning
a branch. The branch node upper bound, UB", is used to verify the pruning, i.e, that
LB > |UBY|. The global upper bound is calculated with two aims: firstly, to use
it in Vertex Cover separation, and secondly, to compute the optimality gap when the
algorithm finishes due to time limitations.

The global upper bound, UB® of OP, is obtained using the dual solution 7* of the
solution (y*,z*) of the LPg:

Zﬂ' bi +rcj + Z rc, + Z T, (4.22)

veV—{1} eck
rck>0 rcg >0

where the reduced costs rc;, and rc; are calculated using the dual variables 7 and c is

the number of constraints.

The upper bound of a branch node, UBY, can be calculated by subtracting the contri-
butions of the branched edges to UB®. Let By, By C E be the subset of edges branched
to 0 and 1, respectively. Then, we obtain UB by:

Zﬂb+rcl+ Z Tc+ZchZrc+Zrc: (4.23)

veV — {1} EEE eGBO BEBl
rcs>0 rcg>0 rci>0 rci<0
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4.9 Computational results

In this section, we present the results of the computational experiments. Firstly, we
evaluate the new designed components for the revisited B&C algorithm (RB&C); and
secondly, we compare the performance of RB&C with state-of-the-art B&C and heuristic
algorithms. The software used for the experiments is publicly available on https://
github.com/gkobeaga/op-solver.

The experiments are carried out using well-known instances in the literature. These
instances, which are based on the TSPLIB library, were first proposed in Fischetti et al.
[1998] and then extended to larger problems in Kobeaga et al. [2018]. The instances
are split into two groups: medium-sized instances (up to 400 nodes) and large-sized
instances (up to 7397 nodes). In total, we consider 258 benchmark instances. They are
also classified into three generations (Genl, Gen2 and Gen3) according to the definition
of scores, see Fischetti et al. [1998]. For all of these three generations, the distance
limitation is set as half of the TSP solution value.

In order to measure the performance of the algorithms, we compare the quality of the
returned best solutions (LB) and the mean running time (in seconds) of the algorithms.
In addition, in the case of the B&C algorithms, we also compare the obtained upper
bounds (UB). All the experiments for the compared algorithms have been carried out
using a 5-hour time limit.

In Table 4.1, we detail the values of the common parameters for all the simulations of
the RB&C algorithm. They were chosen inspired by the parameters used in Applegate
et al. [2007] and our preliminary experiments for the OP.

4.9.1 Evaluation of Components

In this section, we evaluate the designed components for the RB&C algorithm. We have
carried out experiments with several alternative configurations of the components. To
that aim, a subset of 15 OP instances were selected: 5 TSP instances (pr76, att532,
vm1084, rl11323 and vm1748, inspired by the subset selected in Goldberg and Tsiout-
siouliklis [2001]) with their respective score generations proposed in Fischetti et al. [1998].
Then, for each instance and generation, we have executed the different B&C configura-
tions 5 times.

In order to evaluate our contributions, we have chosen a reference configuration, REF-
ERENCE, that incorporates the components proposed in this chapter and compared it
with its alternative configurations. The reference RB&C algorithm considers the follow-
ing components:

- SEC/CC separation algorithm (Section 4.4.1):
i) SRK=S1S3: Uses shrinking rules S1 and S3.
ii) CC STRATS: Uses strategies to find extra violated CCs.
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Table 4.1: Common parameters.

Parameter Value Description

ZERO 10~7  Sensibility of fractional numbers

ADD_CUT_ BATCH 250  Maximum number of cuts added to the LPq at once
ADD_MIN_ VIOL 10=®  Minimum violation of a cut to include it in the LPg
SUBLOOP_IMPR 1%  Minimum improvement to repeat the subloops

ADD SEC PER SET 50 Amount of SECs considered for each subset
ADD_PATH_MAX 500 Maximum cuts for Path inequalities separation

ADD EGH_ EPSILON 0.3 Epsilon value for the EGH blossom heuristic
PRICE_MAX ADD 200 Maximum number of variables added to the LPg
PRICE _RC THRESH 107  Minimum penalty of a variable to add to the LPg
DEL_DUST_ VAR 107®  Minimum y value to consider an edge as active
DEL_DUST_CUT 107®  Maximum slack value to consider a cut as active
DEL MAX AGE CUT 5 Consecutive inactivity to delete a cut from the LPg
DEL MAX AGE VAR 100  Consecutive inactivity to delete an edge from the LPg
XHEUR_ GREEDY_ XMIN 0.3 Use arcs larger than this value in PB primal heuristic
XHEUR EA40P POP_SIZE 10 Population size for EA4OP

XHEUR_EA40P_D2D 5 Iterations before checking feasibility in EA4OP
XHEUR_EA40OP_NPAR 3 Number of parents preselected in EA4OP

Blossom separation algorithms (Section 4.4.2):
i) EPH BLOSSOM: Uses Extended Padberg-Hong blossom heuristic.
ii) EGH BLOSSOM: Uses Extended Grotschel-Holland blossom heuristic.

Separation algorithms from the literature:

i) CYCLE: Uses Cycle Cover inequalities.
ii) EDGE: Uses Edge Cover inequalities.
iii) PATH: Uses Path inequalities.

- Separation Loop strategy:

i) SEP=THREE SUBLOOPS: Uses the separation loop strategy presented in
Section 4.6.

Primal heuristics (Section 4.7):

i) XHEUR=VP + EA4OP: Constructs a small population using VP heuristic
and evolves it with EA4OP.

ii) SEP XHEUR=PB: Constructs a single solution using PB in the separation
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loop.

The alternative configurations are obtained by modifying a single component in REF-
ERENCE, while the rest of the components remain untouched. These changes to REF-
ERENCE are made by deleting a component(-), adding a new component(+) or replacing
a component (COMP=). The tested alternative strategies are the following:

- SEC/CC separation algorithm:

i) -SRK: Does not use any shrinking technique. As a consequence, CC STRATS
are not used either.

ii) SRK=C1C2S3: The shrinking rule S1 is replaced with the rules C1C2.
iii) -CC STRATS: Does not use strategies to find extra violated CCs.
- Blossom separation algorithms:

i) -EPH BLOSSOM: Does not use the Extended Padberg-Hong blossom heuris-
tic

ii) -EGH BLOSSOM: Does not use the Extended Grétschel-Holland blossom

heuristic

iii) +FST BLOSSOM: Uses the blossom separation heuristic in Fischetti et al.
[1998]

- Separation algorithms from the literature:
i) -CYCLE COVER: Does not use Cycle Cover inequalities
ii) -EDGE COVER: Does not use Edge Cover inequalities
iii) +VERTEX COVER: Uses Vertex Cover inequalities
iv) -PATH: Does not use Path inequalities
- Separation Loop strategy:

i) SEP=TWO SUBLOOPS: The separations algorithms in the outer subloop
are appended to the middle subloop.

- Primal heuristic in the branch node:
i) XHEUR=PB: Constructs a single solution using PB heuristic.
ii) XHEUR=VP - EA4OP: Constructs a single solution using VP heuristic.

In Table 4.2 we summarize the mean relative difference to the best achieved LB and
UB, as well as the mean relative difference to the best performing configuration in terms
of running time. The results grouped by instances are presented in Appendix B.3.1.

The results show that the alternatives decrease the performance of the REFERENCE
configuration for the RB&C algorithm either in terms of solution quality, upper bound
value, or running time. The experiments restate the importance of the shrinking tech-
niques for the SEC/CC separation algorithm, as can be seen in the results for -SRK.
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Table 4.2: Results of the alternative configurations for RB&C. In bold, the values of the alter-
natives that are worse than those obtained by the REFERENCE configuration.

Gap
Genl Gen2 Gen3
Strategy LB UB Time LB UB Time LB UB Time
REFERENCE 0.05 0.00 262.06 0.05 0.04 23.11 0.02 0.01 44.02
- SRK 0.13 0.00 532.37 0.10 0.04 25.86 0.02 0.02 134.74
SRK=C1C2S3 0.02 0.00 88.32 0.09 0.04 31.72 0.01 0.01 79.81
- CC STRATS 0.02  0.00 115.91 0.04 0.01 21.85 0.01 0.01  449.90
- EPH BLOSSOM 0.09 0.15 208.65 0.12 0.15 33.64 0.10 0.22 199.79
- EGH BLOSSOM 0.02 0.00 296.71 0.04 0.04 26.18 0.03 0.01 91.83
+ FST BLOSSOM 0.00 0.00 345.32 0.04 0.00 26.43 0.04 0.00 66.54
- EDGE COVER 0.11 0.00 137.73 0.13 0.04 30.04 0.05 0.01 35.50
- CYCLE COVER 0.06 0.00 124.79 0.02 0.04 25.60 0.03 0.01 48.18
- PATH 0.08 0.00 183.86 0.10 0.04 32.00 0.03 0.01 69.01
+ VERTEX COVER 0.05  0.00 61.10 0.03 0.04 22.33  0.03 0.01 104.82

SEP: TWO SUBLOOPS 0.05 0.00 315.34 0.06 0.04 17.05 0.03 0.01 164.44

XHEUR=PB 0.08 0.00 179.14 0.12 0.01 2.37 0.04 0.01 62.74
XHEUR=VP - EA40P 0.02 0.00 222.46 0.07 0.04 7.17 0.01 0.01 168.63

It is not only worse not using the shrinking in terms of time, but indeed, the obtained
LB values are also worse. In addition, the results suggest that the S1 shrinking tech-
nique, which is considered in REFERENCE, might be preferable to the C1C2 technique.
Regarding the CC STRATS, the results for Gen3 suggest that not considering the strate-
gies to find extra violated CCs might have a negative impact on the running time of the
algorithm.

Next, looking at the separation algorithms for blossoms, the results show that the
EPH heuristic is crucial in the RB&C, particularly, if we focus on the obtained LB and
UB values. From the table, we can also extract that the EGH heuristic improves the
running time of the B&C algorithm. Alternatively, although the FST blossom heuristic
might improve the quality of the solutions, it reports worse running times.

With respect to the rest of the separation algorithms proposed in the literature for the
OP, we include in REFERECE all but Vertex Cover inequalities. This way, the RB&C
uses the same families of cuts as in Fischetti et al. [1998], which enables us to evaluate
the contributions in this chapter in a better way.

Finally, the experiments show that the VP primal heuristic plays an important role
in obtaining better LB values, particularly for large problems, as can be seen in the
detailed results in Appendix B.3.1. However, solving the VP primal heuristic in the
branch node is more costly than PB primal heuristic, hence the running time of the
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RB&C is worsened in the smallest instances. Similarly, by using the EA4OP to improve
the results by VP heuristic, the obtained LB values are improved in large problems at
the expense of worsening the running time in the smallest instances.

4.9.2 Comparison with state-of-the-art Algorithms

The proposed reference RB&C has been compared with the state-of-the-art B&C al-
gorithm in Fischetti et al. [1998] (FST) and two state-of-the-art heuristics, Kobeaga
et al. [2018] (EA4OP) and Santini [2019] (ALNS). The detailed results can be found in
Appendix B.3.2.

Three notes before moving on to the discussion. First, the FST code reports the
running times using one trailing digit while the rest of the algorithms report the times
using two trailing digits. In order to make use of the reported times in the literature
of the FST, we round the obtained times by the RB&C to one trailing digit when we
compare it with the FST algorithm. Secondly, the FST returns a false optimum for
pab61 in Genl. We assume that this is a consequence of the rounding sensibility and we
accept as valid the rest of the reported optima by FST. Thirdly, eight instances (rat99,
rat195, tsp225, pab61, rat575, rat783, nrwl379, and fnl4461) of Gen3 have been excluded
for the comparison of the RB&C with the EA4OP and the ALNS, due to an issue in the
generation of scores of the instances used by those algorithms. Since the results of the
current comparison are clear enough, we have discarded rerunning the experiments with
the updated scores.

First, we compare the RB&C algorithm with the B&C by Fischetti et al. [1998]. The
results of the FST algorithm were updated using CPLEX12.5 in Kobeaga et al. [2018],
which is the same version of CPLEX used for the experiments of RB&C. Moreover,
the new experiments are run on the same machine with the same amount of reserved
memory (4GB). In Table 4.3 we summarize, by size and generation, the number of
instances returning a feasible solution, #, the obtained optimality certifications, OPT,
the number of best-known solution (LB), and upper bound (UB) values.

In Table 4.3 it can be seen that the RB&C algorithm is able to obtain the best-known
solutions value in all the medium-sized instances.

COMPARISON WITH FST ALGORITHM

Moving on to large-sized instances, the superiority of the RB&C algorithm compared to
the FST approach becomes evident. While the FST algorithm fails to output a solution
in almost half of the instances (mainly because of running out of memory), the RB&C
algorithm returns a solution for every instance. Moreover, it obtains the best-known
solution in significantly more instances than FST (245 against 170) and UB (249 against
173) values. Even more, it obtains more optimality certifications (180 against 165).
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Table 4.3: Comparison of the number of instances in which a feasible solution (#), an optimal
(OPT), a best-known solution (LB) or a best upper bound value (UB) were obtained.

# OoPT LB UB
Size Gen FST RB&C FST RB&C FST RB&C FST RB&C
Medium Genl 45 45 45 44 45 45 45 44
Gen2 45 45 45 45 45 45 45 45
Gen3 45 45 45 45 45 45 45 45
Large Genl 21 41 12 24 13 39 13 40
Gen2 22 41 9 10 9 36 13 38
Gen3 29 41 9 12 13 35 12 37
All 207 258 165 180 170 245 173 249

Table 4.4: Comparison of the number of obtained optimal solutions (OPT), number of best-
known solutions (LB) and number of best upper bounds (UB) in the instances that
FST does return a solution.

OPT

LB

UB

Time

# FST RB&C FST RB&C FST RB&C FST RB&C

Genl 66 1 4 0 6 2 8 15 40
Gen2 67 1 0 0 11 3 9 25 27
Gen3 T4 1 3 1 14 4 17 23 33
All 207 3 7 1 31 9 34 63 100

In Table 4.4 we compare the quality of the solutions and running times, restricted to
those instances in which FST actually returns a solution. We particularly focus on the
number of solutions (optimality certifications, best-known solutions and upper bounds)
that are new in the literature, i.e., values not obtained by the rest of the algorithms.
Thus, for the lower-bound values, we also take into account the results obtained by the
EA40P and ALNS heuristics. Additionally, we show the number of instances in which
the considered B&C algorithms are faster than the competitor. When we restrict the
considered instances to the instances where the FST obtains a feasible solution, the
RB&C outperforms the results of the FST. While the FST obtains 1 new best-known
solution (not obtained by any other algorithm) and 9 new UB values, the RB&C obtains
31 LB and 34 UB new values. In the same set of instances, the FST obtains 3 optimality
certifications that the RB&C is not able to obtain, while the RB&C obtains 7 optimality
certifications that the FST is unable to obtain. Moreover, it turns out that the RB&C
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is faster than the FST in 100 instances while the FST is faster than the RB&C in 63
instances.

Next, we compare the RB&C algorithm against state-of-the-art algorithms in terms
of solution quality, running time, and Pareto efficiency. In Table 4.5 and Table 4.6 the
algorithms are compared pairwise and instance-by-instance for medium-sized and large-
sized instances respectively. The aim is to measure the number of instances where an
algorithm is simultaneously as least as fast as the opponent and obtains a better quality
solution.

Table 4.5: Comparison in medium-sized instances against state-of-the-art algorithms in terms of
quality, time and Pareto efficiency.

Genl Gen2 Gen3

EA40P tie RB&C EA40P tie RB&C EA40P tie RB&C

Quality 0 30 15 0 14 31 0 15 27
Time 15 0 30 37 0 8 39
Pareto 7 0 30 10 0 8 13

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 0 40 5 0 29 16 0 29 13
Time 1 0 44 4 0 41 8 0 34
Pareto 1 0 44 1 0 41 5 0 34

FST  tie RB&C FST  tie RB&C FST  tie RB&C

Quality 0 45 0 0 45 0 0 45 0
Time 14 6 25 17 2 26 18 1 26
Pareto 14 6 25 17 2 26 18 1 26

COMPARISON IN MEDIUM-SIZED INSTANCES

Table 4.5 shows that the RB&C algorithm is competitive in medium-sized instances.
Compared to the ALNS heuristic and FST algorithm, it obtains better Pareto efficiency
results in the three generations. Comparing it to EA4OP, the Pareto efficiency is lower
because the heuristic is a faster algorithm. Nevertheless, the RB&C obtains much better
quality solutions.
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Table 4.6: Comparison in large-sized instances against state-of-the-art algorithms in terms of
quality, time and Pareto efficiency.

Genl Gen2 Gen3

EA40P tie RB&C EA40P tie RB&C EA40P tie RB&C

Quality 1 0 40 5 0 36 3 0 33
Time 39 0 2 40 1 0 35 1 0
Pareto 1 0 2 5 0 1 3 0

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 2 2 37 4 1 36 4 0 32
Time 6 11 24 13 25 3 13 19 4
Pareto 4 0 34 5 0 24 4 0 20

FST  tie RB&C FST tie RB&C FST  tie RB&C

Quality 0 13 28 0 9 32 3 11 27
Time 1 5 35 8 13 20 5 17 19
Pareto 1 1 39 8 0 33 7 2 32

COMPARISON IN LARGE-SIZED INSTANCES

Table 4.6 shows that RB&C is the best performing algorithm in large-sized instances.
Particularly, it behaves better than the FST algorithm, obtaining the best quality and
time solutions in most of the instances, hence obtaining better Pareto results. The ALNS
algorithm is able to return some solutions with better quality or running time, however,
overall, the RB&C performs better in large-sized instances. The EA4OP metaheuristic
is faster than the B&C but, in general, obtains worse quality solutions.

Finally, in Table 4.7, we summarize the new best-known results obtained in the ex-
periments. The RB&C algorithm obtains 18 new optimality certifications, 76 new best-
known solution values and 85 new upper-bound values.

4.10 Conclusions

We have presented a revisited version of the B&C algorithm for the OP that brings
multiple contributions together. We have proposed a joint separation algorithm for SECs
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Table 4.7: New best-known optimum, lower bound and upper bound values.

OPT LB UB

Genl 12 25 28
Gen2 2 27 28
Gen3 4 24 29

All 18 76 85

and CCs, which efficiently uses the shrinking technique for cycle problems by reducing
the adverse effects of the shrinking for CCs. We have developed two blossom heuristics
for cycle problems which generalize the well-known approaches in the literature of the
TSP. We have designed an efficient variable pricing procedure for the OP which enables
us to avoid repetitive calculations and to skip the exact calculation of the reduced cost
of some variables. We have proposed a separation loop for the OP that takes into
consideration the different contributions and separation costs of the valid inequalities.
We have used alternative primal heuristics, one of which is based on a metaheuristic,
and a mechanism to update the global upper bound during the branching phase to
tighten the lower and upper bounds for the cases when the algorithm finishes without
an optimality certification.

The experiments have shown that the RB&C algorithm for OP is a more efficient
approach than the state-of-the-art B&C algorithm. The introduced algorithm has in-
creased the number of solved problems, obtained better running times in more instances,
succeeded in returning new optimality certifications, new best known solutions, and new
upper-bound values for large problems. Additionally, it has been shown that the RB&C
algorithm obtains better quality solutions than the state-of-the-art heuristics for the OP
within the 5-hour running time limit.

Nevertheless, there are many research lines that remain open after this work. One of
the most demanding aspects to improve in the presented approach is the implementation
of advanced branching techniques. The use of more general cuts, such as combs and
clique trees, and the development of their respective separation algorithms for cycle
problems might help to improve the performance of the RB&C algorithm. All these
future contributions might help to solve the remaining instances until optimality, but
we can anticipate it will not be an easy challenge. Implementing the contributions in
this chapter to other cycle problems which are different from the OP will definitely help
to comprehend their importance in the context of cycle problems with a more general
view.






CHAPTER 5

Software for OP

The implementation of the proposed algorithms has been an important part of this thesis.
Although we have released a repository of software for each chapter, all the algorithms
implemented during the thesis have been included in our last software repositoy for
the B&C algorithm. This repository, which is publicly available under the Apache 2.0
license at https://github.com/gkobeaga/op-solver, is an extensive work written in
C. In table 5.1 a summary of the repository contents can be seen.

Table 5.1: Summary of the repository contents.

Language Files Lines Code Blanks

Bash 1 7 7 0
Automake 28 414 321 85
C Header 25 2654 2269 385
C 139 26972 23649 3317
Total 193 30047 26246 3787

A large part of the source code related with the B&C algorithm has been inspired by
the Concorde solver developed in Applegate et al. [2007] for the TSP, which is publicly
available at http://www.math.uwaterloo.ca/tsp/concorde.html. We have also used
the implementation of the B&C proposed in Fischetti et al. [1998], which had been
provided by the authors, as a reference for some of the separation algorithms.

When implementing the algorithms for the OP, particularly the B&C algorithm, the
are several subproblems (Minimum Cut Problem/Maximum Flow Problem, Minimum
Spanning Tree Problem, Knapsack Problem, Linear Problem, Integer Problem, Cycle
Problem) and data-strucures (Graph, Spatial Data) involved. The repository is struc-
tured as follows:
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e Data-sctructures:
(a) Graph
i. Constructors
ii. Hash
iii. Connected components
iv. Minimum-cut problem
v. Gomory-hu trees
vi. Minimum Spanning Tree
(b) Data
i. Read distance
ii. Nearest Neighbor (k-NN)
i. k-d trees (Concorde)
e Problems:
(a) Knapsack Problem
i. Initialization
ii. Exact
i. Branch-and-Bound
(b) Linear Problem
i. External LP sover: IBM ILOG CPLEX
(¢) Integer Problem
i. Dependency: LP
ii. Exact
i. Branch-and-Bound
(d) Travelling Salesperson Problem
i. Dependency: CP
ii. Initialization
iii. Heuristic
i. k-opt
ii. Lin-Kernighan (Concorde)
(e) Cycle Problem
i. Dependency: LP, IP, KP, TSP

[graph
[graph/graph.c
[graph/arc_hash.c
[graph/connect.c

[graph/{maxflow.c, mincut.c}

]

]

]

]

]
[graph/ghtree.c]
[graph/mst.c]
[data/]
[data/io/]
[data/nearest/]
]

[data/nearest/kdtree

[prob/kp]

[prob/kp/exact]
[prob/kp/exact /bab.c]
[prob/Ip]
[prob/Ip/lib/cplex.c]
[prob/ip]

[prob/ip/exact]
[prob/ip/exact /bac]
[prob/tsp]

[prob/tsp/init]
[prob/tsp/heur]
[prob/tsp/heur/kopt]
[prob/tsp/heur/linkern]
[prob/cp]
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ii. Initialization [prob/cp/init]
iii. Exact [prob/cp/exact]
i. Branch-and-Cut [prob/cp/exact /bac]
iv. Heuristic [prob/cp/heur]
i. Evolutionary Algorithm [prob/cp/heur/eal

e Each problem (and algorithm) has an associated enviroment where the specific
enviromental variables (i.e. verbosity), parameters and statistics are stored:

Problem Enviroment [prob/* /env.c]
i. Parameters [prob/* /param.c]
ii. Statistics [prob/* /stats.c]
iii. Initialization Enviroment [prob/*/init/env.c]

i. Parameters [prob/*/init /param.c]
ii. Statistics [prob/*/init /stats.c]
iv. Heuristic Enviroment [prob/* /heur/env.c]
i. Parameters [prob/* /heur /param.c]
ii. Statistics [prob/* /heur /stats.c]
v. Exact Enviroment [prob/* /exact/env.c|
i. Parameters [prob/*/exact /param.c]
ii. Statistics [prob/* /exact /stats.c]

5.1 Installation

The software is build using the GNU Autools suite. First, download the source code,

Listing 5.1: Clone the repository

git clone https://github.com/gkobeaga/op-solver
cd op-solver

install the dependencies,

Listing 5.2: Install the dependencies

sudo apt install autoconf automake libtool m4 libgmp-dev

and generate the configure script.

Listing 5.3: Generate the configure script
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./autogen.sh
mkdir -p build && cd build

Since the external LP solver is proprietary software, there are two options to install
our software: to build only the heuristic algorithm or to build both the heuristic and
the exact algorithms.

5.1.1 Install Heuristic Algorithm

By default, the solver is built only with the heuristic algorithm:

Listing 5.4: Build only the heuristic

make clean
../configure
make

5.1.2 Install Heuristic and Exact Algorithms

To build the exact algorithm, you need to have the IBM ILOG CPLEX installed in your
system. To build the ‘op-solver* with the exact algorithm:

Listing 5.5: Build the heuristic and the B&C algorithm

make clean
../configure --with-cplex=<CPLEX_PATH>
make

For instance, if CPLEX is installed in /opt/ibm/ILOG/CPLEX Studiol25/cplex/
the configuration is carried out as follows:

Listing 5.6: Example of the configuration with cplex

../configure --with-cplex=/opt/ibm/ILOG/CPLEX_Studiol25/cplex/ J

5.2 Usage

In order to use the OP solvers, download first the benchmark instances for the OP:

Listing 5.7: Download the OP instances

cd build
git clone https://github.com/bcamath-ds/0PLib.git
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To solve the problem using the EA4OP algorithm:

Listing 5.8: Solve OP with EA40P

./src/op-solver opt --op-exact O OPLib/instances/gen3/kroA150-gen3
-50.0plib

To solve the OP using the revisited Branch-and-Cut algorithm(RB&C):

Listing 5.9: Solve OP with RB&C

./src/op-solver opt --op-exact 1 OPLib/instances/gen3/kroA150-gen3
-50.0plib

You can increase the verbosity of the RB&C with:

Listing 5.10: Increase verbosity

./src/op-solver opt --op-exact 1 --op-exact-bac-verbose 1 OPLib/
instances/gen3/kroA150-gen3-50.0plib

When the B&C algorithm finishes, it writes the solution in the “solution” directory:

Listing 5.11: Solution file for kroA150-Gen3

NAME : kroA150

TYPE : 0P

DIMENSION : 150
COST_LIMIT : 13262.00
ROUTE_NODES : 79
ROUTE_SCORE : 5039.00
ROUTE_COST : 13246.00
NODE_SEQUENCE_SECTION
1

93

28

58

61

25

81

69

64

40

54

2

144

114

44

50
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116
82
126
95
13
76
33
146
103
37

52
78
96
39
101
121
30
107
112
132
29
46

14
48
100
71
41
136
128
43
123
115
120
149
55
83
34
135
140
125
51
87
145

117

57
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20
12
27
86
150
62
60
77
110
23
98
91
109
47
-1

DEPOT_SECTION

1
-1
EQF

It also writes the execution statistics in the “bac-stats.json” file in the following format:

Listing 5.12: Statistics for kroA150-Gen3

"prob":

{

"name": "kroAl50",

Ilnll:
IIdOH :
T,

"sol":

150,
13262

{

"val": 5039,
"cap": 13246,

"sol_

n 1bl| :
n ub n :

¥,

ns": 79,
5039,
5039

"param": {

"sep_
"sep_
"sep_
"sep_

logical": 1,

sec_comps": 1,
sec_exact": 3,
sec_cc_2": 0,

"sep_sec_cc_extra":
"sep_blossom_£fst":
"sep_blossom_eph":
"sep_blossom_egh":

1,

b

b
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T,

"sep_cover_edge": 1,
"sep_cover_vertex": O,
"sep_cover_cycle": 1,
"sep_path": 1,
"sep_loop": 1,
"sep_srk_rule": 4,
"sep_srk_s2": O,
"sep_srk_s3": 1,
"sep_srk_extra": 1,
"xheur_vph": 1,
"xheur_vph_meta": 1

"stats": {

"time": 34427,
"active_sep_logical": 2207,
"success_sep_logical": 265,
"total_sep_logical": 460,
"active_sep_sec_comps": 2207,
"success_sep_sec_comps": 31,
"total_sep_sec_comps": 664,
"time_sep_sec_comps": 151,
"active_sep_sec_exact": 891,
"success_sep_sec_exact": 726,
"total_sep_sec_exact": 6072,
"time_sep_sec_exact": 3171,
"active_sep_blossom_fast": 914,
"success_sep_blossom_fast": 127,
"total_sep_blossom_fast": 274,
"time_sep_blossom_fast": 315,
"active_sep_blossom_ghfast": 897,
"success_sep_blossom_ghfast": 94,
"total_sep_blossom_ghfast": 149,
"active_sep_blossom_mst": O,
"success_sep_blossom_mst": O,
"total_sep_blossom_mst": O,
"time_sep_blossom_mst": O,
"active_sep_cover_edge": 486,
"success_sep_cover_edge": 48,
"total_sep_cover_edge": 48,
"time_sep_cover_edge": 941,
"active_sep_cover_cycle": 851,
"success_sep_cover_cycle": 2,
"total_sep_cover_cycle": 2,
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"time_sep_cover_cycle": 52,
"active_sep_cover_vertex": O,
"success_sep_cover_vertex": O,
"total_sep_cover_vertex": 48,
"time_sep_cover_vertex": O,
"active_sep_path": 482,
"success_sep_path": 22,
"total_sep_path": 111,
"time_sep_path": 196,
"time_sep_sep_loop": 12164,
"time_sep_sep_loop_it": O,
"time_sep_sep_loop_inner": 2830,
"time_sep_sep_loop_inner_it": 1015,
"time_sep_sep_loop_middle": 10833,
"time_sep_sep_loop_middle_it": 9368,
"time_sep_sep_loop_outer": 12164,
"time_sep_sep_loop_outer_it": 2450,
"time_age_cut": 687,
"time_age_vars": 907,
"time_add_vars": 6216,
"time_add_cuts": 4957,
"time_xheur_branch": 30,
"time_xheur_sep": 2330

},

"timestamp": 1606759120605,

"event": "stats_summary",

"env": "cp_exact_bac",

"seed": 127591,

"pid": 148865







CHAPTER 6

Conclusions, Future Work and Contributions

6.1 Conclusions

In this thesis, we have developed two algorithms to solve large-scale orienteering prob-
lems: a heuristic evolutionary algorithm and an exact Branch-and-Cut algorithm. As
part of the research carried out for the exact algorithm, we have extended, from the
literature of the TSP, the support graph shrinking tecniques for cycle problems.

In Chapter 2 of this work, we have presented an efficient evolutionary algorithm for the
OP. Essentially, the algorithm follows the steady-state genetic algorithm schema. The
proposed method maintains unfeasible solutions during the search and considers specific
operators to recover it when required. It allows us to obtain high quality solutions
without being penalized in terms of computational time. Furthermore, the parameter
d2d helps to strike a balance between solution quality and computational time.

The Edge Recombination crossover, originally proposed for the TSP, has been adapted
for the OP. We consider this adaptation of the Edge Recombination crossover as a
contribution to the solution of cycle problems in general. In addition to the problems
that consist of permutations, this adaptation also allows us to deal with a wider range
of problems whose solution space consists of simple cycles.

Another contribution that we find remarkable for routing problems is the proposed
add operator. When the distance matrix is given by spatial points, its design allows
the use of a data structure, i.e., k-d tree, that strongly reduces the computational cost,
improving the overall results.

The computational experiments have shown that several characteristics are essential
for the effectiveness of the EA4OP, the use of unfeasible solutions during the search
process being the most relevant feature. All in all, the EA4OP proves to be an efficient
algorithm for the OP. In comparison to the state-of-the-art algorithms, not only does
the EA4OP obtain competitive results in medium-sized instances, but it also achieves
outstanding results in large-sized instances in terms of quality with low execution times.
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In Chapter 3 of this dissertation we have successfully generalized, for cycle problems,
the global (C1, C2 and C3) and SEC specific (S1, S2 and S3) shrinking rules proposed
in the literature of the TSP. The obtained computational results for the shrinking in the
OP are remarkable. The results clearly show that the shrinking technique considerably
improves the running time of the separation algorithms for SECs.

Part of the chapter focuses on exact SEC separation algorithms for cycle problems.
We have extended from the TSP two exact algorithms (Algorithm DH and Algorithm
EPG). The proposed separation algorithms were shown to be more efficient in the OP
than the exact algorithm used so far in the literature (the adaptation of the classical
Hong’s approach). The importance of the detailed extension of the Padberg-Grotschel
approach, Algorithm EPG, lies in the fact that in cycle problems, in general, the global
minimum cut of a support graph might not generate a violated SEC, while violated
SECs in the same graph exist.

In Chapter 4 a revisited version of the B&C algorithm for the OP that brings multiple
contributions together is presented. We have proposed a joint separation algorithm for
SECs and CCs, which efficiently uses the shrinking technique for cycle problems by
reducing the adverse effects of the shrinking for CCs. Two blossom heuristics for cycle
problems which generalize the well-known approaches in the literature of the TSP have
been developed. We have designed an efficient variable pricing procedure for the OP
which enables us to avoid repetitive computations and to skip the exact calculation of
the reduced cost of some variables. A separation loop for the OP has been proposed
which takes into consideration the different contributions and separation costs of the
valid inequalities. Alternative primal heuristics are used, one of which is based on a
metaheuristic, and a mechanism to update the global upper bound during the branching
phase to tighten the lower and upper bounds for the cases when the algorithm finishes
without an optimality certification.

The experiments have shown that the RB&C algorithm for OP is a much more efficient
approach than the state-of-the-art B&C algorithm. The introduced algorithm has in-
creased the number of solved problems, obtained better running times in more instances,
succeeded in returning new optimality certifications, new best-known solutions, and new
upper-bound values for large problems. Additionally, it has been shown that the RB&C
algorithm obtains better quality solutions than the state-of-the-art heuristics for the OP
within the 5-hour running time limit.

Finally, in Chapter 5 we show how to install and use the software developed during
the thesis period.

In conclusion, we have proposed two algorithms in this thesis that are state-of-the-art
in their respective fields for the OP, especially for instances with a large number of nodes.
Depending on the goal, one can take advantage of the exact RB&C algorithm or the
heuristic EA4OP algorithm. The proposed exact algorithm was shown to be the most
appropriate when the available computational time to obtain a solution is high since it
obtains the best quality solutions and returns the best upper bound of the problems.
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Conversely, if a quick solution is required, the EA4OP was shown to be the fastest in
large-sized instances, while still providing acceptable solution quality.

6.2 Future Work

Although the results of the EA4OP and the RB&C are outstanding, there are some
aspects of these algorithms that could be improved:

(1)

Improve the solution initialization

In Chapter 2 we have proposed a strategy to select a subset of vertices to include
in the initial solutions, where all the nodes were sampled using the same proba-
bility parameter for the Bernoulli distribution. However, giving a different a priori
probability to each node might contribute to obtain better initial solutions. These
probabilities might depend on the score of the node, the distance from the depot,
or the number of nodes in the neighborhood.

Study the k-d tree based node insertion local search with more detail.

We have extensively used the k-d tree based local search in both algorithms. This
choice was made based on the preliminary experiments carried out in a subset of
instances of the OP, where a considerable speedup was seen. We believe that the k-d
tree based node insertion is a remarkable contribution, not only for the OP but, for
problems where only a subset of vertices might be visited. A detailed comparison,
in multiple related problems, against commonly used node insertion procedures in
the literature would help to understand the real contribution of the new local search
approach.

Apply the shrinking either for other valid cycle inequalities of the OP or for other
cycle problems.

In Chapter 3 we studied the contribution of the shrinking in accelerating the SEC
separation for OP. However, three of the presented rules (C1, C2 and C3) are safe
for all the valid inequalities. It would be interesting to analyze if the shrinking
preprocess is also useful to speedup the separation of other valid inequalities for OP.
Another possibility to extend the work is to evaluate the shrinking technique in the
separation problems for other cycle problems.

Use advanced branching techniques in the RBEC.

The branching in the RB&C has been carried out in a classical way following a
depth-first-search, where the edges are branched first to 1 and then to 0. In order to
select the edge variable to branch, we used the classical branching strategy: the edge
e, with the fractional value closest to 0.5 is selected. This is the simplest possible
branching strategy and more sophisticated alternatives should be studied.

Use more general valid cuts in the RBEC.

The use of more general cuts, such as combs and clique trees, and the development
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of their respective separation algorithms for cycle problems might help to improve
the performance of the RB&C algorithm.

(6) Parallelize the EA4OP and RBEC.

Both proposed algorithms in the thesis were implemented sequentially and it would
be interesting to study the parallelization of these algorithms. Regarding the EA4OP,
the solutions initialization, the local search and feasibility recover procedures are
easily parallelizable. The parallelization of the RB&C is more complicated, but an
effort in this direction could provide new results.

(7) Apply the EA4OP and RBEC to variants of the OP.

Another research line of particular interest is the application of the EA4OP and the
RB&C to solve variants of OP presented in Chapter 1.

(8) Improve the availability and usability of the software

The software have been developed with its extension to cycle problems and OP
variants in mind. We plan to improve its availability to allow other researchers and
developers to use it.

6.3 Contributions

Publications:

- [Kobeaga et al., 2018] An Efficient Evolutionary Algorithm for the Orienteering
Problem, G. Kobeaga, M. Merino, and J.A Lozano. In Computers & Operations
Research, volume 90, pages 42-59.

- [arXiv:2004.14574]. On solving Cycle Problems with Branch-and-Cut: Extending
Shrinking and Exact Subcycle Elimination Separation Algorithms, G. Kobeaga, M.
Merino, and J.A Lozano. Submitted to Annals of Operations Research.

- [arXiv:2011.02743]. A revisited branch-and-cut algorithm for large-scale orienteer-
ing problems, G. Kobeaga, M. Merino, and J.A Lozano. Submitted to Computers
and Operations Research.

Presentations in International Conferences and Summer Schools:

- A revisited branch-and-cut algorithm for the orienteering problem, G. Kobeaga,
M. Merino, and J.A Lozano, 30th European Conference on Operational Research
EURO in Dublin (Ireland), June 2019.

- An evolutionary algorithm to solve large orienteering problems efficiently, G. Kobeaga,
M. Merino, and J.A Lozano, Metaheuristics Summer School MESS in Acireale-
Catania (Italy), July 2018.

- Adapting efficient TSP exact algorithms for large orienteering problems, G. Kobeaga,
M. Merino, and J.A Lozano, ECCO XXXI Conference in Fribourg (Switzerland),
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June 2018.

- Solving large-sized orienteering problem instances using an evolutionary algorithm,
G. Kobeaga, M. Merino, and J.A Lozano, Joint EURO/ORSC/ECCO Conference
in Koper (Slovenia), May 2017.

Diffusion activities:

- Algorithms for large orienteering problems, G. Kobeaga, M. Merino, and J.A
Lozano, Operational Research Group in Brescia (Italy), October 2019.

- Orientazio Problemak. G. Kobeaga. Zientzialari 98 irratsaioa (https://www.
bilbohiria.eus/56107). Bilbao Hiria Irratia (Radio Bilbao Hiria), 2019/04/25.

- Orientazio problema handiak ebazteko algoritmo zehatzak arintzen, G. Kobeaga,
M. Merino, and J.A Lozano, Matematikari Euskaldunen III. Topaketak in UEU
Eibar July 2018.

- Orientazio Problema. G. Kobeaga. Euskal Herriko Unibertsitatearen (UPV/EHU)
Kultura Zientifikoko Katedra (https://vimeo.com/266644370). 2018/04/26.

- On solving the Orienteering Problem via an efficient Evolutionary Algorithm. G.
Kobeaga, M. Merino, J. A. Lozano. In 6as Jornadas de Investigacién de la Facultad
de Ciencia y Tecnologia, in UPV/EHU Leioa, 2018.

- Integer programming for combinatorial optimization problems, G. Kobeaga, M.
Merino, and J.A Lozano, Intelligent Systems Group Seminar in UPV/EHU Donos-
tia, March 2018.

- Un algoritmo evolutivo eficiente para el Problema de Orientacion, G. Kobeaga, M.
Merino, and J.A Lozano, Grupo de Optimizacién Estocastica, UPV/EHU Leioa,
December 2017.

- Ordering nodes for insertion procedures in the Orienteering Problem, G. Kobeaga,
M. Merino, and J.A Lozano, Intelligent Systems Group Seminar in UPV/EHU
Donostia, May 2017.

- Orientazio Problema, G. Kobeaga, M. Merino, and J.A Lozano, Matematikari
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- Orienteering Problems, Intelligent Systems Group Seminar, UPV/EHU May 2016
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Kaiera, 2016-02-29.

Contributed Presentations:
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https://github.com/gkobeaga/cpsrksec: implementation of the shrinking and
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APPENDIX A_

Pseudocodes

A.1 Shrinking and SEC Separation Strategies

In this appendix, we detail the pseudocodes of the shrinking and separation strategies
used in the computational experiments for Chapter 3. These strategies are combina-
tions of the shrinking rules proposed in Section 3.3.1 and Section 3.3.2, and the exact
separation algorithms proposed in Section 3.4.

The pseudocodes should be considered as illustrations of the implementations of
strategies whose aim is to help the reader to understand how the strategies work.
The source code in C of the computational implementations is available at https:
//github.com/gkobeaga/cpsrksec. In Table A.1, we detail the meaning of the symbols
used in the pseudocodes.

A.1.1 Shrinking Strategies

The shrinking strategies are combinations of the shrinking rules of Section 3.3.1 and
Section 3.3.2. In total, 5 different shrinking strategies for SECs are obtained: C1, C1C2,
C1C2C3, S1 and S152. The SHRINK /UPDATE procedure refers to a process performed
every time a set is shrunk.
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Symbol Meaning
G=(V,E) Input graph of the cycle problem
G* = (V*, E*) Support graph
(y, ) € P§ A solution of the LPy
m € RK* A vector where my, = max{yy : u € w(v)}
H cVv* Heap: vertices remaining to check
S cv* A subset candidate for the shrinking
Q cV A subset of V'
Q CP(V) List of Q sets of V
L List of violated SECs
D cve Set of fixed vertices. In a cycle problem with depot: D = {d}
0] cVv* Set of vertices with value one
(kin X kout) € Ny xNi  Maximum vertices (inside and outside) considered when
generating the violated SECs from the @ sets
T = (V,Ar) A directed rooted tree
parent V-V Successive parent of each v in the tree
child V-V Successive children of each v in the tree
w c RfT Weights of the arcs of the Gomory-Hu tree
G=(V,E) Generic graph used in the Gomory-Hu tree construction

Table A.1: A summary of the symbols used in the pseudocodes
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Algorithm SHRINK/UPDATE: Shrink graph and vectors. Save ) sets. Update
heap.

© W N O kW N

N NN e e e e e e e e
N H O © 0 N & O bk W N = O

input : G*, (y,x), m, H, S and Q
output: G*, (y,x), m, H, s and Q

G* «+ G*[S];
(y, @) « (y[S], 2[S]);
m < ml[S];
H «+ HIS);
O+ {veV*:im,>1};
for n € N(s) do
ify, < Tn,s] then
for r € O do
if r # s then
if ({s,n},s,r) violates (3.35) then
Q < {r({s,n})};
if |Q| > |V|/2 then
| Q+V-Q;
end
Q « QU{Q};
goto line 20;
end
end
end
end
H «+ HU{n};
end
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Algorithm C1: Shrinking: Rule C1
input : G, (y,x), m, H and Q
output: G*, (y,x), m, H and Q

1 while |H| # () do
2 Select a vertex u € H;
3 H + H —{u};
4 C < Yu;
5 for v € N(u) do
6 if y, = ¢ and x[,,) = c then
7 for t € N(v) — {u} do
8 if y» = ¢ and x|, 4 = c then
9 S« {u,v};
10 SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
11 goto line 15;
12 end
13 end
14 end
15 end
16 end

Algorithm C1C2: Shrinking: Rule C1 and Rule C2
input : G*, (y,z), m, H and Q
output: G*, (y,z), m, H and Q

1 while |H| # () do
2 Select a vertex u € H;
3 H «+ H —{u};
4 C < Yu;
5 for v € N(u) do
6 if y, = ¢ and x[, ) = ¢ then
7 for t € N(v) — {u} do
8 if v = ¢ and x4 + T} ) = ¢ then
9 S+ {u,v};
10 SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
11 goto line 15;
12 end
13 end
14 end
15 end

16 end
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Algorithm C1C2C3: Shrinking: Rule C1, C2 and C3

© W N0k W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

input : G*, (y,x), m, H and Q
output: G*, (y,z), m, H and Q

while |H| # 0 do
Select a vertex u € H;
H + H — {u};
C < Yu;
for v € N(u) do
if y, = ¢ and x[,,] = c then
for t € N(v) — {u} do
if y¢ = ¢ and x4 + z[y) = ¢ then
S« {u,v};
SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
goto line 26;
end
end
for w € N(v) — {u} do

if Tlut] + Tluw] T Tlow] = 2c then
for t € N(w) — {v,u} do
if yp = ¢ and x4 + T} ) = ¢ then
S+ {u,v,w};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 26;
end

end
end

end

end
end

end
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Algorithm S1: Shrinking: Rule S1

© 0w N O 0k W N -

10
11
12
13
14

input : G*, (y,x), m, H and Q
output: G*, (y,z), m, H and Q
while |H| # () do

Select a vertex u € H;
H «+ H — {u};
C < Yu;
for v € N(u) do
if y, = ¢ and x[,,) = c then
if 3w € V* — {u, v} such that y,, > c then
S« {u,v};
SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
goto line 13;
end
end

end

end

Algorithm S1S2: Shrinking: Rule S1 and S2

© W N O 0k W N -

10
11
12
13
14
15
16
17
18

input : G* (y,x), m, H, D and Q
output: G*, (y,z), m, H, D and Q
while |H| # () do

Select a vertex u € H;

H «+ H — {u};

C < Yu;

for v € N(u) do

if y, = ¢ and x[,,) = c then

if 3w € V* — {u, v} such that y,, > ¢ then
S« {u,v};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 17;

end

]

Ise if z[, ) > yu and x[, ) > y» then
S+ {u,v};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 17;

end

end

end
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A.1.2 Exact SEC Separation Strategies

The exact separation strategies detailed in this appendix refer to the separation al-
gorithms used for the experiments in Section 3.5. We assume that the vertex set
V* = {v1,...,vjy+} is an ordered set. The CUTGEN algorithm is the procedure de-
tailed in Section 3.5 to generate the most violated SECs corresponding to set () given the
parameter (kin, kout) € Ny X Ni. The vector ki, koyt) represents the maximum amount
of vertices that are considered inside and outside ). Note that, CUTGEN is defined
to select, for each inside vertex, a number of k,,; different random outside vertices to
maximize the randomness of the obtained violated SECs.

Algorithm EH: Extended Hong’s exact separation algorithm
input : G, (y,x), D and (kin, kout)
output: A list £ of violated SECs

1 V* « sort V* decreasingly by y; m + y;

2 H+ V7

3 Apply shrinking strategy (G*, (y,z), m, H, D, Q);
4 while |V*| > 1 do

5 Q@ + (v1,v2)-minimum cut in the graph G*;
6 if (Q,v1,v2) violates (3.35) then

7 if |Q| > |V'|/2 then

8 Q<+ V—-Q;

9 end
10 Q+ QuU{m(Q)};
11 end
12 end
13 L + CUTGEN (G*, (y,x), D, Q, (kin, kout));
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Algorithm DH: Dynamic Hong’s exact separation algorithm
input : G*, (y,x), D and (kin, kout)
output: A list £ of violated SECs

1 V* « sort V* decreasingly by vy;
2 m < y;
3 H+ V¥
4 Apply shrinking strategy (G*, (y,z), m, H, Q);
5 while |V*| > 1 do
6 Q < (v1,v2)-minimum cut in the graph G*;
7 if (Q,v1,v2) violates (3.35) then
8 if |Q| > |V|/2 then
9 | Q+V-Q;
10 end
11 Q « QU {m(Q)};
12 end
13 if Tlyy,va] = Yoo then
14 ‘ reorder < 1;
15 else
16 ‘ reorder < 0;
17 end
18 S« {v1,v2};
19 G* «+ G*[S];
20 | (y,z) < (y[S], z[5]);
21 m < m[S];
22 if reorder then
23 ‘ V* < sort V* decreasingly by vy;
24 end
25 end
26 L+ CUTGEN (G*, (y,z), D, Q, (kin, kout));
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Algorithm DHI: Dynamic Hong with extra shrinking separation algorithm

© 0 N O Ok W N

NONONN NN R B R R R R R R e
Uk W N HF O © 0N O Uk W N = O

input : G*, (y,z), D and (kin, kout)
output: A family Q of violated SECs

V* « sort V* decreasingly by y;

m < y;

H« V*;

Apply shrinking strategy (G*, (y,z), m, H, Q);
while [V*| > 1 do

Q@ < (v1,v2)-minimum cut in the graph G*;
if (Q,v1,v9) violates (3.35) then
if |Q| > |V'|/2 then
| Q+ V-0
end
Q« QuU{m(Q)};
end
if [y, 0y] > Yv, then
‘ reorder < 1;
else
‘ reorder < 0;
end
S« {v1,v2};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
Apply shrinking strategy (G*, (y,x), m, H, Q);
if reorder then
‘ V* « sort V* decreasingly by vy;
end

end
L+ CUTGEN (G*, (y,z), D, Q, (kin, kout));
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Algorithm EPG: Extended Padberg-Groétschel exact separation algorithm

© 0 N O A W N

I
[ e e )

input : G*, (y,z), D and (kin, kout)
output: A family Q of violated SECs
V* « sort V* decreasingly by y;
m < y;
Apply shrinking strategy (G*, (y,x), m, H, Q);
(T,w,u) +GHTREE (G*, (y,x),v1);
for a € Ay do
Q < dg;
ifw,—2 -uy,—2 v, <2 then

if |Q| > |V'|/2 then

| Q+ V-0

end

Q« QU{m(Q)}:

end

end
E <+ CUTGEN (G*a (y7 CE), D7 Q7 (k’L’VM kout));
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Algorithm CUTGEN: SEC generation

© W N O kW N =

NN N e R e e e e e e e
N B © © 00 N O G b W N = O

input : G*a (9737)) Da Q7 (k’in7kout)
output: A family £ of violated SECs
for Q € Q do

if DNQ =0 then
Mm%{’UEQZvayUVUEQ};
Sin < randomly select k;,, vertices from M;,;
else
‘ Sin < a vertex in D N Q;
end
if D— @ =0 then
| Mo+ {v eV =Q:yy > yu VueV* - Qh
else
‘ Sout < a vertex in D — Q;
end
for u € S;, do
if D—Q =0 then
‘ Sout + randomly select kg vertices from Moy ;
end
for v € S,; do
‘ Add the violated SEC (Q, u,v) to L;
end

end

end
‘C <+ CUTGEN (G*7 (ya .T), D; Q7 (knu kout));
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A.1.3 Directed Rooted Gomory-Hu Tree

As was explained in Section 3.4, the key for an efficient extension of the Padberg-
Grotschel exact separation algorithm is the construction of the directed rooted Gomory-
Hu tree, which is detailed in the following pseudocodes. The novelty is the ADD-
ARC/REORDER-TREE procedure, where we show how the Gomory-Hu construction
must be adapted to evaluate the u, values (u, = argmax{y, : u© € A(v)}) and reorder
the tree in order to maintain a given vertex in the top of the tree.

Algorithm GHTREE: Rooted directed Gomory-Hu tree
input : G, (y,z), r
output: T, w,u: a rooted directed weighted tree
T+ (V,0);
for v € V do
| uy =m, = argmax{y, : w € 7(v) € G*};
end
G + G* and consider |7(v)| = 1 for every v € V;
(T, w,u) < GHTREE-RECURSIVE(G, (y,x),r, T, w,u);

[< B U N

Algorithm GHTREE-RECURSIVE: Recursive operator to build the Gomory-
Hu tree
input : G, (y,z),r, T, w,u
output: T, w,u
1 C+{veV:|n(v) =1}
2 if |C]| > 1 then
3 (a, b) + randomly select two different vertices from C;
(A : B) + (a,b)-minimum cut in G;
(T, w,,74,7) - ADD-ARC/REORDER-TREE(T, (y, z), m, u,, A, B);
(T.w,u) « GHTREE-RECURSIVE(G*[B], (y[Bl, 2[B]), ra, T, 0, u);
(T, w,u) « GHTREE-RECURSIVE(G*[A], (y[A], z[A]), b, T, w, u);
end

® I O G s
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Algorithm ADD-ARC/REORDER-TREE: Add arc and reorder the tree
input : T, (y,z), m,u, r, A, B

output: T, w,u, rq,Tp

1 if r € A then

2 Tq < T
3 Ty < b;
4 if parent(r) € A or parent(r) = ) then
5 ‘ e = (r,b);
6 else
7 e=(b,);
8 = (p(r),r);
9 g = (p(r),b);
10 Wy — Wy;
11 Ar = Ar —{f} U {g}
12 my = max{m,,my};
13 end
14 Up = My
15 up = Mp;
16 for c € child(r) do
17 if c € A then
18 ‘ uy = max{ur, uc};
19 else
20 Ar = Ar —{(r,0)} U{(a, ) };
21 up = max{up, uc};
22 end
23 end
24 else
25 Tq  a;
26 T T
27 if parent(r) € B or parent(r) = 0 then
28 ‘ e=(r,a);
29 else
30 e = (a,r);
31 f=(r),r);
32 g = (p(r),a);
33 Wy — Wy;
34 Ar = Ar —{f}U{g}
35 end
36 Up = My
37 Ug = Ma;
38 for c € child(r) do
39 if c € B then
40 ‘ ur = max{ur, uc};
41 else
42 Ar = Apr — {(r,0)} U{(a,0)};
43 Uq = max{Ua, Uc};
44 end
45 end
46 end

47 AT = AT @] {6};
48 we < z(A: B);







APPENDIX B

Detailed Computational Results

B.1 Chapter 2: Evolutionary Algorithm
B.1.1 Initialization Parameter

We detail the results of Section 2.4.1, where the influence of the parameter p on the
population initialization and on EA4OP is checked. Three different choices of p are
tested: a?, a and y/a where a = do/v(TSP).
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Appendix B. Detailed Computational Results

B.1.2 Contribution of the genetic components

We detail the results of Section 2.4.1, where the contribution of the components in the

EA4OP algorithm are evaluated.

Table B.5: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 1.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time

gil262 134 15.19 5.82 136 13.92 1.09 139 12.03 3.03 156 1.27 2.83
a280 133 9.52 7.10 134 8.84 1.02 136 7.48 3.02 143 2.72 3.00
1lin318 171 16.59 12.40 184 10.24 3.38 185 9.76 7.07 202 1.46 7.15
pr299 144 11.11 8.01 145 10.49 1.39 147 9.26 3.02 160 1.23 3.12
rd400 200 16.32 18.69 215 10.04 2.17 216 9.62 7.04 234 2.09 6.59
pcb3038 1365 13.17 8903.48 1401 10.88 304.07 1437 8.59 681.24 1572 * 681.94
13795 1496 17.58 14438.13 1616 10.96 670.28 1669 8.04 2996.22 1815 * 2994.90
fnl4461 1993 15.19 — 2097 10.77 1024.42 2172 7.57 2463.64 2350 * 2462.65
rl5934 2784 11.48 — 2982 5.18 2445.80 3051 2.99 5383.43 3145 * 5382.25
pla7397 4188 18.54 — 4495 12.57 3195.25 4628 9.98 15982.47 5141 * 15981.78

Table B.6: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 2.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P
instance best gap time best gap time best gap time best gap time
2il262 7201 13.46 8.16 7611 8.53 1.23 7630 8.30 4.03 8175 1.75 3.47
a280 7411 12.07 8.68 7494 11.08 1.09 7515 10.83 3.03 8304 1.47 2.85
1lin318 9297 14.89 14.08 10362 5.14 2.74 10439 4.43 8.07 10866 0.52 8.29
pr299 8418 8.32 9.20 8652 5.77 1.46 8698 5.27 3.03 9112 0.76 3.23
rd400 11295 17.26 19.70 11670 14.52 2.23 11836 13.30 7.05 13442 1.54 6.80
pcb3038 77315 15.82 12439.37 80334 12.53 331.58 83847 8.71 820.23 91842 * 820.37
13795 87534 15.34 - 93116 9.94 748.88 97617 5.59 4789.09 103397 * 4788.96
fnl4461 113951 18.85 — 122232 12.96 1014.76 128427 8.54 2619.03 140424 * 2618.15
rl5934 146403 14.71 - 157466 8.26 2591.68 166807 2.82 5757.77 171649 * 5757.80
pla7397 226347 16.92 — 244388 10.30 3919.61 261568 3.99 — 272452 * —
Table B.8: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 4.
Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time
gil262 1955 3.74 3.43 2004 1.33 1.07 2004 1.33 2.02 2030 0.05 1.35
a280 11615 3.72 7.11 11681 3.17 1.41 11714 2.90 4.04 12048 0.13 3.39
1in318 14739 2.60 10.39 14911 1.46 2.59 14892 1.59 8.07 15119 0.09 7.91
pr299 14954 0.21 3.63 14947 0.26 1.70 14956 0.20 4.06 14980 0.04 3.46
rd400 19994 0.56 9.88 20071 0.18 2.23 20071 0.18 10.10 20101 0.03 9.61
pcb3038 87338 13.67 13477.94 89617 11.42 331.67 92835 8.24 800.34 101173 * 800.13
13795 69006 13.82 — 72665 9.25 671.90 75807 5.32 4496.88 80069 * 4496.09
fnl4461 64382 24.33 — 71304 16.20 796.02 74942 11.92 1490.72 85088 * 1490.80
r15934 118749 13.85 — 125856 8.69 2603.21 130007 5.68 4038.32 137838 * 4037.07
pla7397 116662 18.07 - 130276 8.51 3051.93 135336 4.96 6667.88 142399 * 6667.36
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Table B.7: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 3.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time

gil262 8274 10.51 8.21 8429 8.84 1.27 8708 5.82 4.04 9094 1.64 3.94
a280 8001 18.14 8.98 8117 16.95 1.06 8229 15.81 4.02 8684 11.15 3.22
1lin318 8484 18.17 12.13 9625 7.17 3.16 9625 7.17 7.09 10273 0.92 6.33
pr299 9071 12.30 10.35 9146 11.57 1.47 9239 10.67 4.04 9959 3.71 3.95
rd400 11400 13.79 22.63 11625 12.09 2.78 11779 10.92 8.05 13088 1.02 7.74
pcb3038 88097 15.83 16178.25 88756 15.20 309.60 92394 11.73 917.28 104667 * 917.39
13795 82427 15.64 — 91545 6.31 824.38 92140 5.70 3160.52 97707 * 3158.89
fnl4461 135326 17.59 — 142804 13.03 956.08 149330 9.06 3248.98 164201 * 3248.64
r15934 172220 16.96 — 193989 6.46 2831.70 193768 6.57 5882.33 207385 * 5881.87
pla7397 257454 19.73 — 276725 13.72 3673.65 299270 6.70 — 320744 * —

Table B.9: Contribution of the k-d tree based add operator: Generation 1

Cheapest insertion 3-nearest insertion (using k-d trees)

instname  Best Time Best Time
gil262 157 4.29 156 2.84
a280 140 3.27 143 3.00
pr299 160 4.32 160 3.12
lin318 202 7.42 202 7.15
rd400 236 12.35 234 6.59
pcb3038 1608 3014.56 1572 681.94
13795 1798 8105.06 1815 2994.90
ml4461 2326 8883.04 2350 2462.65

B.1.3 Add operator

In this section we detail the preliminary experiments carried out for the add operator. In

tables B.9, B.10 and B.11 we show the contribution of the 3-nearest insertion approach,

which uses the k-d trees, in relation to the cheapest insertion heuristic. The headings
are as follows: instance, name codification of the instance; best, best known solution

of the corresponding algorithm; time, average time (in seconds) of 10 runs. In the last

row, average summary for gap and time are shown.

B.1.4 Comparison with state-of-the-art Algorithms

In this Appendix the numerical results are detailed for the four algorithms (B&C, 2-P
IA, GRASP-PR and EA4OP) and the full classification, that is, eight tables. Table B.12
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Table B.10: Contribution of the k-d tree based add operator: Generation 2

Cheapest insertion 3-nearest insertion (using k-d trees)

instname Best Time Best Time
gil262 8266 4.47 8175 3.47
a280 8301 3.93 8304 2.85
pr299 9115 5.27 9112 3.23
lin318 10901 9.74 10866 8.29
rd400 13576 12.94 13442 6.80
pch3038 92353  3208.56 91842 820.37
13795 104503 11156.20 103397 4788.96
nl4461 140361 10222.61 140424 2618.15

Table B.11: Contribution of the k-d tree based add operator: Generation 3

Cheapest insertion 3-nearest insertion (using k-d trees)

instname Best Time Best Time
gil262 9124 4.93 9094 3.94
a280 8695 4.86 8684 3.22
pr299 10120 5.81 9959 3.95
lin318 10339 7.70 10273 6.33
rd400 13122 12.31 13088 7.74
pchb3038 106347  3494.96 104667 917.39
13795 98394 10604.92 97707 3158.89

fnl4461 163465 10030.42 164201 3248.64
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shows the results for generation 1 and medium-sized instances, Table B.13 for generation
1 and large-sized instances, Table B.14 for generation 2 and medium-sized instances,
Table B.15 for generation 2 and large-sized instances, Table B.16 for generation 3 and
medium-sized instances, Table B.17 for generation 3 and large-sized instances, Table
B.18 for generation 4 and medium-sized instances and Table B.19 for generation 4 and
large-sized instances. The headings are as follows: instance, name codification of the
instance; best, best known solution of the corresponding algorithm; gap, quality gap with
respect to the global best known solution; time, average time (in seconds) of 10 runs.
In the last row, average summary for gap and time are shown. The symbols mean the
following: *, best known solution achieved (or optimum solution achieved for instances
in which B&C finishes before time limit ); —, execution stopped because 5-hour time
limit was exceeded; N A, solution not available after time limit exceeded; “ . 7, the code
finished unexpectedly. The best results for each instance among heuristics are in bold,
in terms of quality solution and time. In the last row of the tables, average gap and
average time are computed, considering 18000 seconds for problems that did not finish
in that time. The averages are calculated excluding missing values.
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B.2 Chapter 3: Shrinking and exact SEC for Cycle Problems

In this section, we show the computational results obtained in each considered SEC
instance. For each instance, we present three tables: two are related with the
shrinking processes and one is related with separation and SEC generation processes.
In addition, the results are separated into three groups (Genl, Gen2 and Gen3).
These groups represent the generation strategy proposed in [Fischetti et al., 1998]
to build the OP vertex scores which are then used to obtain the support graphs.

From Table B.20, Table B.22, ... and Table B.34, we report the details of the
shrinking preprocess. One can see, below the support graph and shrunk graph
columns, the size of the given support graph and the size of the shrunk support
graph for each shrinking strategy. In the preprocess columns, we show the number of
@ sets obtained and the time (in milliseconds) needed by each shrinking preprocess.
As can be seen, the shrinking is very fast, needing very few dozens of millisecond to
be accomplished in the larger instances. An interesting point of these tables is that
within the shrinking preprocess we are already able to obtain @) sets that correspond
with violated SECs. In particular, the largest amount of () sets are obtained with
the shrinking strategy S1S2.

In tables Table B.21, Table B.23, ... and Table B.35, we report the number of
times a rule is applied by each shrinking strategy. Regarding the Conjecture 1 in the
discussion of the computational experiments of Chapter 3, it can be seen that Rule
C3 is rarely applied in the shrinking preprocess. Moreover, the strategy C1C2C3
does not provide further contractions of the support graph and, in all the compared
instances, the obtained final shrunk graphs have the same amount of vertices and
edges as with strategy C1C2.

The extra column in these tables represents how many extra vertices are con-
tracted in the internal shrinking process of Algorithm DHI, i.e, Extra is increased
by one if rule C1, C2 or S1 is applied and by two if rule C3 is applied. The results
show that this extra shrinking is rarely achieved.

In tables Table B.36, Table B.37, ... and Table B.41 ,we report the details about
the separation process and SEC generation. We can see that EPG approach al-
ways obtains more violated SECs than Algorithm EH as suggested theoretically in
Chapter 3. Moreover, without using the shrinking preprocess, the EPG algorithm
is always faster than Algorithm EH except for the smallest instance pr76.

Regarding the SEC generation process, we compare two strategies 1 x 1 and
10 x 10, which refer to the amount of vertices considered inside and outside @
sets when generating the violated SECs. What we see is that, in medium-sized
instances, the generation of violated SECs is the most time-consuming part (see the
results regarding Algorithm EPG), but in large-sized, this difference is shortened.
Nevertheless, it is likely that most of the generated violated cuts by 10 x 10 (around
half a million of different violated SECs were obtained in large-sized instances by
EPG) are useless and counterproductive to consider them, in practice, for a B&C.
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B.3 Chapter 4: Revisited Branch-and-Cut

B.3.1 Configuration of Components: Detailed Results

In this section, we show the detailed results of the alternative RB&C configurations
by instances and generations. Each configuration has been executed five times with
a b-hour execution time limit. We show the obtained results of the configuration in
terms of lower-bound values, LB, upper-bound values, UB, and time (in seconds)
performance, Time. For the LB and UB, the obtained best value for each configu-
ration (the maximum for LB and the minimum for the UB) is presented in the Best
column. Regarding the Time, the Mean column shows the meantime of the five
executions. The Gap column represents the relative distance to best-known value
(highest Best value in the case of LB, and lowest Best in the case of UB and Mean
in the case of Time, respectively).
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B.3.2 Comparison with state-of-the-art Algorithms

In this appendix, we detail the experimental results for the four algorithms (FST
B&C, EA40P, ALNS and RB&C). Table B.47 shows the results for medium-sized
instances of generation 1, Table B.48 for large-sized instances of generation 1, Table
B.49 for medium-sized instances of generation 2, Table B.50 for large-sized instances
of generation 2, Table B.51 for medium-sized instances of generation 3 and Table
B.52 for large-sized instances of generation 3.

In the Best column, we show the global best-known lower and upper-bound values.
For each algorithm, we detail the best LB, the goodness gap GGap, the best UB,
and the meantime (in seconds). The GGap represents the relative distance between
the algorithm’s best LB and the global best-known LB. For the RB&C algorithm we
also detail the optimality gap OGap which represents the relative distance between
the obtained LB and UB by RB&C.

For each algorithm, generation and size, we have calculated the average gap and
running time over the instances where a feasible solution was obtained by the al-
gorithm. In those instances where the time limit was reached, a running time of 5
hours has been used. These averages are shown in the last row of the tables. The
symbols in the tables mean the following:

% : best-known solution achieved
— : not comparable result

.. the code finished unexpectedly
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Appendix B. Detailed Computational Results
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Revisited Branch-and-Cut

B.3. Chapter 4
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