eman ta zabal zazu

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Doktorego Tesia
Matematika eta Estatistika

Algorithms for Large Orienteering Problems

Tamaina Handiko Orientazio Problementzako Algoritmoak

GORKA KOBEAGA

Zuzendariak:
MARIiA MERINO
JOSE A. LozANO

2021ko Urtarrila

EXCELENCIA
SEVERO. G;cam)

% OCHOA basque center for applied mathematics

PhD Thesis
Mathematics & Statistics

Algorithms for Large Orienteering Problems

GORKA KOBEAGA

Advisors:
MARIA MERINO
JOSE A. LozANO

January 2021

This research was carried out at the Basque Center for Applied Mathematics (BCAM)
within the Machine Learning Group. This research was supported by the Basque Gov-
ernment through the BERC (2018-2021, 2014-2017) and ELKARTEK programs, and
by the Spanish Goverment through the grant BES-2015-072036, the BCAM Severo
Ochoa accreditations SEV-2013-0323 and SEV-2017-0718, and the projects PID2019-
104933GB-100 and MTM2015-65317-P.

iii

Tesiaren nondik norakoak

Tesi lan honetan, tamaina handiko Orientazio Problemak (OP) ebazteko algoritmoak
garatu ditugu. OP optimizazio konbinatorioko problema bat da: herri multzo bat eta
hauen arteko distantzia emanik, herri bakoitzak bere saria duelarik, eta ibilbidearen
distantzia (edo denbora) osoaren murrizketa bat ezarririk, OPren helburua sarien batura
maximizatzen duen ibilbidea aurkitzean datza.

Problema honek, optimizazio konbinatorioko bi problema klasikorekin lotura estua du,
izan ere, Saltzaile Ibiltariaren Problemaren (TSP) eta Motxilaren Problemaren (KP)
arteko konbinazio bezala ikusi daiteke. Batetik, T'SPren helburua herri multzo bat eta
hauen arteko distantzia emanik, herri guztiak behin bakarrik bisitatzen duen ibilbide
laburrena aurkitzean datza. Bestetik, KPn objektu multzo bat emanik, bakoitzak bere
saria eta pisua duelarik, eta motxilak izan dezakeen gehienezko pisua ezarririk, helbu-
rua motxilan sartzen den eta sarien batura maximizatzen duten objektu azpimultzoa
aukeratzean datza.

Problemaren izenak orientazio lasterketa bezala ezagutzen den kirol batean du jator-
ria. Kirol honetako parte-hartzaileei mapa topografiko bat ematen zaie, kontrol gune
batzuk zehaztuta dituena eta helburua, denbora tarte batean, ahalik eta kontrol gune
gehienetatik pasatzea da. Lasterketaren hasierako eta bukaerako kontrol guneak aurre-
tiaz zehaztuta egoten dira, eta emandako denbora tartearen barruan bukaerara iristen ez
diren parte-hartzaileak jokoz kanpo gelditzen dira. Aldaerak aldaera, lasterketa modal-
itatearen arabera, kontrol guneek puntuazio desberdinak izan ditzakete.

Problemaren izenaren jatorria kirol bat baden arren, OPk aplikazio ugari ditu. Esate
baterako, lanaldi batean herri (saltoki) guztiak bisitatzeko denbora ez duen saltza-
ileak, bere lehentasunen arabera, lanaldirako ibilbide aproposena aukeratu behar du,
eta funtsean hori da OPren bidez ebazten dena. OP eta bere aldaerak aztertzen di-
tuzten lanek izan duten azken urteetako gorakada, problema hauek turismo bidaien
plangintzan duten erabileran dago oinarritua.

Hiri bat bisitatzera doan turistarentzat, ohikoa izaten da bisitaren luzapen-denboraren
mugarengatik, hirian aukeran dauden jarduera, ikuskizun eta gune guztiez gozatzeko
aukera ez izatea. Horrela, bisitariak eskuragai dauden jarduera guztietatik batzuk
bakarrik bisitatu ahal izango ditu. Bisita planifikatzeko, jarduera bakoitzari lehenta-
sun bat ezarri behar izaten da, eta bisita ahalik eta gustukoena izateko, lehentasun
hauek maximizatzen duen ibilbidea aurkitu behar da. Horretarako, jardueren lehenta-

vi

sunez eta duten denboraz gain, bidaiariek kontutan izan behar izaten dute jardueren
arteko distantzia eta ostatatuta dauden hotela. Errealitatean ibilbide gustukoena auk-
eratzearen problema konplexuagoa da (jardueren arteko denborak ez dira momentu oro
berdinak, jarduera batzuk ez daude eguneko 24 orduetan zabalik, lehentasunak aur-
reiritziak dira, egun bat baino gehiago izan ditzake bisita egiteko) eta OPren aldaerek
konplexutasun horri erantzuna ematen saiatzen dira. Hala ere, tesi honetan OPren
bertsio klasikoa aztertzen dugu, eta helburua ahalik eta tamaina handieneko problemak
aztertzeko teknika eta algoritmoak garatzea izan da.

OP problema hurrengo eran formulatu daiteke era sinple batean:

max 7 ibilbideak bisitatutako herrien sarien batura

h.b. 7 ibilbidea ziklo sinplea da,
7 ibilbidearen luzera ez da dy baina handiagoa,
7 ibilbideak 1 herria bisitatzen du

non dy zikloaren gehienezko luzera eta 1 hasierako herria (hotela) diren. Definitzeko
erreza den problema hau, praktikan, ebaztea zaila da. NP-hard problema bat da, izan
ere, ibilbide Hamiltondarra aurkitzearen NP-complete problema klasikoa, OPren kasu
partikularra da. Honez gain, herri multzo bat OPren soluzio bideragarriren baten parte
den zehaztea ere problema zaila da. Hau da, herri multzo bat emanik, herri guzti
hauetatik igarotzen den dy baino luzera txikiagodun ibilbiderik existitzen baden NP-
complete problema bat da, hau TSPren erabakitze bertsioa baita.

OP ebazteko, algoritmo heuristiko bat eta algoritmo zehatz bat garatu ditugu. Aldi
berean, ziklo problementzako algoritmo zehatzaren parte diren euskarri grafoen sinpli-
fikazio teknika eta azpizikloak identifikatzeko separazio algoritmoak. Izan ere, teknika
hauek, OP problemaz gain, soluzioa ziklo sinple bat duten edozein problema ebazteko
erabilgarriak dira.

Lanaren 2. kapituluan, EA4OP izena eman diogun, OPrentzako algoritmo meta-
heurisitko bat aurkeztu dugu. Zehazki, EA4OP algoritmo ebolutibo bat da, hau da, ibil-
bideen populazioa sortzen du eta populazio hau eboluzionatzen du populazioko soluzioen
kalitatea hobetze aldera.

Hasierako soluzioak sortzeko, lehenengo, soluzioan egongo diren herriak aukeratzen
ditugu Bernoulli banaketaren bidez, eta gero, herri horietatik pasatzen den ibilbidea
eraikitzen dugu. Hasierako herriak aukeratzeko, herri multzo osoaren TSP soluzio hur-
bildua aurkitzen dugu eta TSParen soluzioaren balioaren, v(7'SP), eta OPren distantzia
murrizketaren arteko erlazioaz baliatuz, herri bat hasierako soluzioan egoteko probabil-

itatea zehazten dugu, p = \/do/v(TSP).

EA4OPren ezaugarri nagusienetako bat, algoritmo azkar bat izateko xedez, soluzio ez
bideragarriekin lan egitea da. Hori dela eta, algoritmoaren garapenean, hasiera faseaz

vii

gain, bi fase bereizten dira: eboluzio fasea eta soluzio bideragarriak berreskuratzeko
fasea. Belaunaldiz belaunaldi gauzatzen den eboluzio faseak hiru eragile barnebiltzen
ditu: gurasoen aukeraketa, gurutzaketa eta mutazioa. Eboluzio fasean, populazioko
soluzioak ez-bideragarriak izan litezkeenez, belaunaldi kopuru baten ostean soluzio
bideragarriak berreskuratzen ditugu populazioko soluzioak moldatuz (ken eragilea), eta
ostean bilaketa lokal bat (gehi eragilea) aplikatzen diegu soluzio berri hauei.

Eragile genetikoen ikuspuntutik lan honen ekarpen nagusia OPrentzako, eta oroko-
rrean ziklo problementzako, gurutzaketa eragile berri bat garatzea izan da. FEragile
hau, TSPrentzako proposatutako Ertzen Birkonbinazio Gurutzaketan (Edge Recombi-
nation Crossover, Whitley et al. [1989]) oinarrituz orokortu dugu. Ziklo problementzako
gurutzaketa eragile berri honek bi aldetan jartzen du fokua: batetik, soluzio gura-
soetan bisitatzen diren erpin komunak, soluzio umean ere bisitatzea, eta bestetik, soluzio
umearen ibilbidean, soluzio gurasoetan erabiltzen diren ertzek lehentasuna izatea.

EA4OPren beste ekarpen bat problema handiak ebazteko aproposa den bilaketa lokala
da. OPn bilaketa lokal eraginkor eta erabiliena, ibilbidean ez dauden herriak ibilbidera
sartzeko (distantzia osoa kontuan izanik) prozedura da, baina hau oso astuna da. Izan
ere, kanpoko herri bakoitzerako, behin eta berriz, ibilbidean sartzeko posizio hober-
ena aurkitu behar da. Lan honetan, kanpoko herriak ibilbidean sartzeko aukerak mur-
rizten ditugu. Horretarako, k-d zuhaitzak erabiltzen ditugu, kanpoko herri bakoitzeko
ibilbidean dauden hiru herri hurbilenak bilatzeko, eta hauen ondoz-ondoan txertatzeko
aukera bakarrik hartzen dugu kontutan.

Esperimentuek erakusten dute, EA4OP algoritmoak literatuko algoritmoen heuris-
tikoek baino emaitzak hobeagoak lortzen dituela. Tamaina ertaineko problemetan (400
herri baino gutxiago), beste algoritmoekin konparatuz, EA4OP algoritmo lehiakorra dela
ikusi dugu,. Aldiz, EA4OP nagusitasuna argi gelditzen da tamaina handiko problemetan
(7393 herri arte), instantzia gehienetan algoritmo aurkariak baino emaitza hobeak eta
arinagoak lortuz.

Tesiaren 3. kapitulak eta 4. kapituluak OPrentzako algoritmo zehatza dute aztergai.
OPren soluzioak zikloak direnez, 3. kapituluan ziklo problementzako Branch-and-Cut al-
goritmoen parte diren prozedura komunak aztertzen ditugu. 4. kapituluan, OPrentzako
Branch-and-Cut algoritmoa garatu eta honen emaitza konputazionalak konparatzen di-
tugu.

Izan bitez G = (V, E), V erpinak eta E ertzak dituen grafo ez-zuzendua; Cq, G grafoko
ziklo sinpleen multzoa; eta RV eta R¥ V eta F bidez indexatutako bektore errealak.
Izan bedi (y,x)", 7 zikloaren bektore karakteristikoa, non y, = 1 edo x, = 1 baldin eta
v erpina edo e ertza, hurrenez hurren, zikloan bisitatuta badaude. G grafoaren Ziklo
Politopoa, Pg , G grafoko ziklo sinpleen bektore karakteristikoen inguratzaile konbexua
da, hau da, P§ = conv{(y,z)” € RV*F : 7 € Cg}. Ziklo problemen, eta bereziki
OPren, soluzioak Pg politopoaren erpinak dira. Branch-and-Cut algoritmoek, proble-
maren optimoa lortze aldera, PCG espazioa (edo problemari dagokion soluzio espazio)
modu eraginkor eta ordenatu batean arakatzea ahalbidetzen dute. Baina aurretiaz, Pg

viii

espazioa (konbexua) murrizketa linealen bidez (hiperplanoen ebakidura bezala) adierazi
behar da:

z(6(v)) — 2y» =0, veV

Yo — Ze 2 0, Yo eV, eed(v)

2(6(Q)) — 2yy — 2y > 2, veQCVI3IZIQIZV|[-3, weV -Q
z(F) > 3,

1>y, >0, YoeV

z. > 0, Vee E

T. €7 Vee E

non 0(Q) multzoa () multzoren muga zeharkatzen duten ertzek osatzen duten.

Ziklo problema baten optimoaren bilaketa egiteko, Branch-and-Cut algoritmoek, Pg
adierazpenaren azken baldintza (aldagai osoena) erlaxatzen dute, eta optimizatu os-
tean, balio ez osodun aldagairik izatekotan, bi azpi problemetan banatzen dute prob-
lema (branching). Honez gain, beste bi aspektu daude kontutan izan beharrekoak: (1)
politopoaren erlaxazio linealarekin lan egiterakoan, bilaketa espazioa handitzen da eta,
ondorioz, ebaketa gehigarriak erabiltzea komeni da, eta (2) Pg politopoaren adierazpe-
nean dagoen bigarren murrizketa familiak (azpizikloak ezabatzeko murrizketak, SEC)
kopuru esponentziala du. Bi aspektu hauek kontutan izanda, eta eraginkortasunari
begira, Branch-and-Cut algoritmoa, politopoaren adierazpen sinplifikatu batekin abi-
arazten da (SEC murrizketa familia esponentziala kenduta) eta algoritmoan zehar, behar
den heinean, ebaketa plano berriak (azpizikloak ezabatzeko murrizketak eta murrizketa
gehigarriak) gehitzen dira.

Ebaketa plano egokiak bilatzeko, algoritmoan zehar, behin eta berriz, problema erlax-
atuen soluzioekin lotutako euskarri grafoetan, G*, separazio problema bezala ezagutzen
direnak ebatzi behar dira. Separazio problema hauek ebaztea oso astuna da eta 3. kapit-
uluan, ziklo problemen separazio algoritmoak arintzeko, uzkurtze teknika garatu dugu.
Izan bitez G grafoa eta S C V azpimultzoa, orduan G|[S| grafoa G grafoaren uzkurketa

bat dela esaten da S multzoko erpin guztiak bakarra izango balira bezala kontsideratzen
badira.

Hala ere, ebaketak galdu daitezkeenez, edozein uzkurketak ez du balio separazio prob-
lemen aurreprozesu bezala. Azpimultzo uzkurgarriak aurkitzeko, hiru erregela seguru
(C1, C2 eta C3) orokortu ditugu Pg politopoarentzat. Behin ziklo politoporako bali-
ogarria den murrizketa familia bat zehaztuta, uzkurketa erregela zorrotzagoak garatu
daitezke murrizketa familia zehatz horrentzat. 3. kapituluan, SEC murrizketentzako
uzkurtze bi erregela berezi (S1 eta S2) aurkezten ditugu.

Uzkurketa tekniken eragina, SEC murrizketen banatze problemetan neurtu dugu. Hor-
retarako, lehenengo SEC murrizketen banatze algoritmoak aztertu ditugu, TSPtik oroko-
rtutako bi banatze algoritmo zehatz aurkeztuz. Esperimentuetan ikusi dugu uzkurtze
teknikek, bereziki S1 eta S2 erregelen konbinazioak, 50 aldiz azkartu dezaketela SEC

ix

murrizketen banaketa algoritmoa eta beraz oso eraginkorrak eta aproposak direla ziklo
problemen Branch-and-Cut algoritmoentzako. Gainera, uzkurtze teknikez gain, ba-
nantze algoritmoak arintzeko teknika konkretuak (S3 erregela) erabiliz, banantze algor-
timo hauek 250 aldiz azkartu daitezkeela ikusi dugu.

4. kapituluan Branch-and-Cut algoritmo bat garatu dugu OPrentzat. Algoritmo ze-
hatz honek, literaturan aurretiaz argitaratutako lanak kontutan izateaz gain, hainbat
ekarpen barnebiltzen ditu, eta hori dela eta OPrentzako Birjorratutako Branch-and-Cut
(RB&C) algoritmoa izendatu dugu. Kontutan izan behar da OPrentzako azken algo-
ritmo zehatza (Fischetti et al. [1998]) duela bi hamarkada baino gehiago argitaratu zela.
Gure motibazioa TSP probleman erabilitako zenbait teknika OPrentzako orokortzea izan
da.

Honako ekarpen hauek ditu 4. kapituluan aurkeztutako gure algoritmo zehatzak.
Uzkurketa teknika darabilen, SEC eta Konektibitate Murrizketentzako (Connectivity
Constraints, CC) banaketa algoritmo bat proposatu dugu. Aurreko kapituluan ikusi-
tako uzkurketa teknikek eragin negatiboa dute CCn bilaketan, kontuan izan murrizketa
hauek orokorrean ez direla ziklo politoporako baliogarriak. Duten eragin negatibo hori
gutxitzeko asmoz, hiru prozedura proposatu ditugu CC gehigarriak bilatzeko.

Ziklo Politopoarako murrizketa gehigarri ezagunenak Blossom desberdintzak dira,
TSPtik orokortuak Bauer [1997] lanean. Blossom murrizketentzako bi banaketa algo-
ritmo heuristiko orokortu ditugu TSPn erabilitako Padberg-Hong (Padberg and Hong
[1980]) eta Grotschel-Holland (Grotschel and Holland [1991]) algoritmoetan oinar-
rituz. Esperimentalki ikusi dugu, proposatutako bi heuristikek, literaturan ziklo prob-
lementzako blossom murrizketeten emaitzak hobetzen dituztela, bai soluzio kalitateri
dagokionez baita algoritmoaren exekuzio denborari dagokionez ere.

RB&C algoritmoak Zutabe Sorrera (Column Generation) teknika darabil, honela bere
LP azpiproblemetan aldagaien azpimultzo bat bakarrik erabiltzen du. Ondorioz, algo-
ritmoaren urrats batzuetan baztertutako aldagaiak baloratu (pricing) behar dira, LP
azpiproblemara sartu behar ote diren erabakitzeko. Baztertutako aldagai bakoitza balo-
ratzeko, aldagaia parte den murrizketa guztiak hartu behar dira kontuan, eta hau bazter-
tutako aldagai guztientzako kalkulatzea oso garestia da. Baloratze prozedura arintzeko,
TSPrantzako Applegate et al. [2007] lanean proposatutako aldagaien baloratze teknikan
oinarritu gara, honela kalkulu errepikakorrak behin bakarrik egitea lortzen dugu, eta
garrantzitsuagoa dena, baztertutako aldagai gehienak zehazki baloratzea saihesten dugu.

RB&C algoritmoaren beste ekarpen bat banantze begizta hiru azpi-begiztatan ba-
nantzea da. Lehenengo begiztan banantze algoritmo arinak sartu ditugu. Bigarren
begiztan OPren ziklo izaerarekin lotutako banantze algoritmoak. Hirugarren eta azken
begiztan gainontzeko banantze algoritmoak. Esperimentalki ikusi dugu, banantze be-
gizta hiru azpi-begiztetan banatzeak RB&C algoritmoa azkartzen duela.

OP problemen kalitatezko behe-mugak azkar lortzeko helburuz, RB&C algoritmo
zehatzaren barnean, bi algoritmo heuristiko primal (primal heuristic) erabili ditugu.
Lehengoak, ertz aldagaien balio primalak erabiltzen ditu. Bigarrenak, berriz, erpin

aldagaien balio primaletan oinarrituz soluzio heuristikoen populazio bat sortzen du eta
ostean populazioa eboluzionatzen du 2. kapituluan aurkeztutako EA4OP algoritmoa
erabiliz. Lehenengo heuristika, bietan azkarrena, banantze begiztan erabiltzen da eta
bigarrena, bietan kalitate onena lortzen duena, adarkatzeen ostean. OP problemen goi-
mugak eguneratzeko kalkulua ere aurkeztu dugu.

Proposatutako RB&C algoritmoak primerako emaitzak lortu ditu egindako esperi-
mentuetan. Konparatutako OPren 258 instantzietatik 180tan lortutako soluzioa opti-
moa dela egiaztatzen du, horietatik 18 lehenengo aldiz egiaztatu direlarik. Instantzia
horietatik 245tan balio ezagun onena lortzen du, horietatik 76 balio berriak direlarik.
Eta, 249 instantzian goi kota ezagun onena lortzen du, horietatik 85 berriak direlarik.
Horrez gain, literaturako beste algoritmoekin buruz-buruko konparaketak egin ditugu
soluzioaren kalitatea eta algoritmoaren exekuzio denbora konparatuz. RB&C algorit-
moak tamaina ertaineko instantzietan emaitza lehiakorrak lortzen ditu, eta tamaina
handiko problemetan berriz, emaitzarik onenak lortzen ditu.

OP ebazteko softwarearen garapena tesi honen zati garrantzitsu bat izan da. Hori dela
eta, 5. kapituluan EA4OP eta RB&C algoritmoak instalatzeko eta erabiltzeko pausuak
azaltzen ditugu.

Laburbiltzeko, tesi lan honetan tamaina handiko OPren instantziak ebazteko algo-
ritmoak proposatu ditugu, heuristiko bat eta algoritmo zehatz bat, eta bi algoritmoek
primerako emaitzak lortzen dituztela ikusi dugu, bai soluzioen kalitatearen aldetik eta
bai azkartasunaren aldetik ere.

Thesis Summary

In this thesis, we have developed algorithms to solve large-scale Orienteering Problems
(OP). OP is a combinatorial optimization problem, where given a weighted complete
graph with vertex profits and a constant dy, the goal is to find the simple cycle which,
with a length lower than or equal to dy, maximizes the sum of the profits of the visited
vertices.

The OP can be seen as a combination of two classical combinatorial optimization
problems: the Travelling Salesperson Problem (TSP) and the Knapsack Problem (KP).
On the one hand, the purpose of the TSP is to find the shortest tour that visits each
vertex exactly once. On the other hand, in the KP, given a set of objects each having
its own reward and weight, and maximum weight of the knapsack, the problem consists
of finding the subset of items that fits in the knapsack and maximizes the sum of the
rewards.

The name of the problem originates from a sports game called orienteering. The
participants are given a topographical map with detailed checkpoints, each with an
associated score, and a time limit. The participants who visit the checkpoints that
maximize the total obtained score within the time limit are the winners of the game.

Although the name of the problem originates from a sport, OP has a wide variety
of applications. For example, a travelling salesperson without enough time to visit all
the cities during a period of work must choose, according to their preferences, the most
suitable route, and this is essentially what is decided by OP. The rise in recent years
of works studying the OP and its variants is probably based on the applicability of the
problem in tourism travel planning.

Commonly, a tourist visiting a city does not have time to enjoy all the activities and
places in the city. In order to plan a visit as satisfactory as possible, the tourist must
set a priority for each activity and find the tour that maximizes these priorities. For
this purpose, in addition to the preferences of activities, the traveler must take into
account the distance between the activities and lodging hotel. In reality, the problem
of choosing the favorite tour is more complex (the time between activities is not the
same at every moment, some activities are not open 24 hours a day, the preferences are
preconceptions, the visit might last multiple days, etc.) and the variants of OP try to
answer that complexity. However, in this thesis, we study the classical version of OP,
and the goal has been to develop techniques and algorithms to solve problems as large
as possible.

xi

xii

The OP problem can be formulated in the following simple way:

max total score of the vertices visited by 7

(
s.t. 7 is a simple cycle, (0.3b
7 has a length not greater than dy, (0.3¢
T visits the depot vertex (0.3d

where dy is the maximum length of the cycle. This problem, which is easy to define,
is difficult to solve in practice. It is an NP-hard problem since the classical problem of
finding a Hamiltonian tour is a particular case of the OP. Moreover, it is also difficult to
determine whether a subset of vertices is part of any feasible solution of the OP. That
is to say, given a subset of vertices, it is an NP-complete problem to determine if there
exists a cycle with a length lower than dy, since this is the decision version of the TSP.

To solve the OP, we have developed a heuristic algorithm and an exact algorithm. At
the same time, and as part of the development of the exact algorithm for OP, we have
generalized for cycle problems the support graph shrinking techniques and procedures
to speed up the separation algorithms for subcycle elimination constraints developed for
the TSP. These techniques, beyond the OP problem, are useful in solving any problem
in which the solution is a simple cycle.

In Chapter 2, we have introduced the so-called EA4OP metaheuristic algorithm for
OP. The EA4OP is an evolutionary algorithm, i.e., the algorithm creates a population
of cycle solutions and evolves it to improve the quality of solutions in the population.
To generate the initial solutions, we first choose the vertices that will be in each solution
using the Bernoulli distribution, and then we build the route that passes through them.
To select the initial vertices, we find an approximate TSP solution for the whole set of
cities, and by using the relation between the value of the TSP solution, v(T'SP), and
the distance constraint of the OP, we specify the probability (p = +/do/v(T'SP)) of
including each city in the initial solution.

One of the key characteristics of EA4OP is to work with unfeasible solutions. Hence, in
the development of the algorithm, apart from the beginning phase, there are two phases:
the evolutionary phase and the feasible solution recovery phase. The evolutionary phase
carried out from generation to generation, involves three operators: parent selection,
crossover, and mutation. In the EA4OP algorithm, we recover the feasible solutions after
a number of generations (the d2d parameter) first by improving the route length and
then by modifying the solutions in the population (drop operator). Once the solutions in
the population are feasible we apply a local search (add operator) to these new solutions.

From the point of view of genetic operators, the main contribution of this work has
been the development of a new crossover for OP, which in a wider context is also valid for
any cycle problem. We have generalized this operator based on the Edge Recombination
Crossover proposed for TSP (Whitley et al. [1989]). We are interested in inheriting two
main characteristics from the parents related to the vertices and the edges. Regarding
the visited vertices, the crossover maintains all the vertices that are common to both

xiii

parent solutions, including, with some probability, the vertices that belong to only one
parent, and excluding the vertices that do not belong to any parent solution. Regarding
the route length, the crossover uses as many edges of the parents as possible in order to
pass on the maximum amount of information and decrease length quality losses in the
new child solution.

Another contribution in the EA4OP is the developed local search to handle large
problems. The most widely used local search in OP is the procedure of introducing
non-visited vertices to the route, but this is a very time-consuming procedure, since for
every non-visited vertex, one must find the cheapest insertion position in the route. In
this work, we reduce the possible insertion positions, for this purpose we use k-d trees,
to search for each non-visited vertices the three nearest vertices in the route, and we
only consider the possibility of inserting the non-visited vertex next to the three nearest
ones in the route.

The experiments show that the EA4OP algorithm improves the results of the state-
of-the-art heuristics. In medium-sized problems (fewer than 400 vertices) we found that
EA4OP is a competitive algorithm obtaining similar results of the literature approaches.
However, the superiority of the EA4OP is clearly seen for large-sized problems (up to
7393 vertices), where in most of the cases the EA4OP obtains better quality solutions
in shorter execution times than competitor algorithms.

In chapters 3 and 4 we study exact algorithms for the OP. As the solutions of OP are
cycles, in Chapter 3 we analyze the common procedures that are part of the Branch-and-
Cut algorithms for cycle problems. In Chapter 4, we develop a specific Branch-and-Cut
algorithm for OP and compare the computational results with the approaches in the
literature.

Let G = (V,E) be an undirected graph with no loops and denote by Cg the set
of simple cycles in the graph G, and by RY and R the space of real vectors whose
components are indexed by elements of V' and E, respectively. Then, the cycle polytope
Pg of the graph G is the convex hull of the characteristic vectors of all the cycles of the
graph, that is to say, PS := conv{(y,z)” € RV*F : 7 € Cg}. The solutions of the cycle
problem, and particularly of the OP, are the vertices of the Pg . The Branch-and-Cut
algorithms provide an efficient and orderly way to search the Pg space. In order to use
the B&C approach, the polytope Pg must be characterized by means of a system of
linear constraints:

z(0(v)) — 2y» =0, veV

Yo — Te > 0, Yo eV, e€d(v)

z(0(Q)) — 2yy — 2y > —2, veQRQCVI<IQISIVI=-3, weV -Q
z(E) > 3,

1>y, >0, YveV

ZTe > 0, Vee E

Te € 7 Vee E

where §(Q) is the set of edges in the coboundary of Q.

Xiv

For the purpose of searching the optimal solution of a cycle problem, Branch-and-
Cut algorithms relax the last constraint family in the expression of PCG (the integrality
constraints), and after optimizing the relaxed system, in case the solution has non-integer
values, it divides the problem into two subproblems (branching). There are two aspects
to take into consideration: (1) when working with the linear relaxation of the polytope,
the search space gets bigger, and therefore additional valid cuts are needed in order
to explore efficiently the problem space, and (2) the second constraint family in the
expression of the polytope PY, the so-called Subcycle Elimination Constraints (SEC),
has an exponential amount of constraints. Thus, the Branch-and-Cut algorithm starts
with a simplified expression of the polytope (by excluding the SEC constraint family)
and adds, when required, new cutting-planes (SECs and additional valid constraints)
throughout the algorithm.

In order to find the appropriate cuts to add, it is needed to repeatedly solve the
separation problems in the graphs associated with the solutions of the subproblems. In
Chapter 3, we have developed the shrinking technique to speed up the algorithms to
solve these separation problems. Given a graph G and a subset S of vertices, we denote
by G[S] = (V[S], E[S]) the graph obtained by shrinking the set S into a single vertex.

However, since violated cuts might vanish with an arbitrary shrinking, not all the
subsets are safe to shrink. Based on the definition given in [Padberg and Rinaldi, 1990b]
for safe shrinking for the P:% p, an analog definition can be formulated for safe shrinking
for the Pg . We have obtained three safe shrinking rules (C1, C2, and C3) for the
valid inequalities of the cycle polytopes. Depending on the inequality, more aggressive
contractions can be employed as a preprocess of separation algorithms. In Chapter 3,
we have also obtained two special shrinking rules (S1 and S2) for SECs.

We measure the impact of shrinking techniques on SEC separation problems. In the
experiments, we have found that the shrinking techniques, in particular the combination
of S1 and S2 rules can speed up the SEC reduction algorithm by 50 times, and are there-
fore very efficient and convenient for the Branch-and-Cut algorithms for cycle problems.
We have also seen that using separation algorithm specific acceleration techniques (rule
S3), in addition to shrinking, the speed up of the separation could be boosted 250 times.

In Chapter 4 we develop a Branch-and-Cut algorithm for the OP. This proposed al-
gorithm, in addition to considering the previously published works in literature, brings
multiple contributions together, hence the name of revisited Branch-and-Cut (RB&C)
for OP. It must be noted that the last exact algorithm for the classical OP was pub-
lished more than two decades ago (Fischetti et al. [1998]). Our motivation has been to
generalize some of the succsesful techniques used in the TSP to OP.

We have proposed a joint separation algorithm for SECs and Connectivity Constraint
(CC), which efficiently uses the shrinking technique by reducing the adverse effects of
the shrinking for CCs.

The best known additional valid inequalities for the polytope cycle are the Blossom
inequalities, generalized from TSP in Bauer [1997]. We have generalized two heuristic
separation algorithms for blossoms based on the algorithms given by Padberg-Hong
(Padberg and Hong [1980]) and Groétschel-Holland (Grotschel and Holland [1991]) for

XV

TSP. Experimentally, we have seen that the two proposed heuristics improve the results
of blossom separation heuristics in literature, both in terms of solution quality and in
regard to the execution time of the RB&C algorithm.

During the B&C algorithm, only a subset of edges is included in the working linear
relaxation. At certain points of the algorithm, we need to price the excluded edge
variables, and add to the working problem: 1) to guarantee that the working relaxation
is an upper bound of the problem or branched subproblem and 2) to recover, whenever
it is possible, a feasible problem after feasibility breaking cuts have been added. Taking
into account that usually only a small subset of variables is included in the relaxation,
and that the excluded variables could participate in multiple cuts, the pricing phase
could constitute a bottleneck in the B&C algorithm. We have developed a technique,
inspired by that used in Applegate et al. [2007], which enables us to avoid repetitive
calculations and to skip the exact calculation of the reduced cost of some variables.

Another contribution of the RB&C is the proposed separation loop for the OP that
takes into consideration the different contributions and separation costs of the valid
inequalities. The separation loop to find the violated cuts is accomplished in three
subloops. In the inner loop, we consider two basic, but fast, separation algorithms. In
the middle loop, we consider the separations of cuts which are related to the cycle essence
of the OP. In the outer loop, we consider the rest of the cuts.

With the goal of obtaining good lower-bounds for the OP problems, we have used two
primal heuristic algorithms: one heuristic uses the primal edge values, and the other
heuristic uses the primal vertex values. Moreover, the second generates a population of
heuristic solutions based on primal vertex values and then evolves the population using
the EA4OP algorithm presented in Chapter 2. The first heuristic, the quickest of the
two, is used in the separation loop, and the second heuristic, which attains the best
quality solutions of the two, is used at the beginning of a branch node. We have also
presented a calculation to update the upper-bounds during the branching phase.

The experiments have shown that the RB&C algorithm for OP is a much more efficient
approach than the state-of-the-art B&C algorithm. It finds the optimality certification
of the solutions in 180 out of 258 instances, from which 18 are new. Of these benchmark
instances, in 245 best-known solution value is obtained, from which 76 are new values.
And, in 249 instances, it obtains the best-known upper-bound values, from which 85 are
new. In addition, we have made one-by-one comparisons with other algorithms in the
literature comparing the quality of the solution and the execution time of the algorithm.
In the case of medium-sized instances, the RB&C is able to obtain competitive results,
while in the case of large-sized instances, it achieves the best results.

The development of OP software has been an important part of this thesis. In Chap-
ter 5, we explain the steps to install and use the EA4OP and RB&C algorithms.

To summarize this thesis, we have proposed algorithms to solve large-scale OP in-
stances, a heuristic and an exact algorithm, and experimentally show that both algo-
rithms achieve outstanding results, both in terms of the quality of solutions and in
terms of speed.

Esker Onak - Acknowledgments

Quiero comenzar agradeciendo a mis directores, Maria y Josean, el enorme apoyo académico
y personal que me han proporcionado durante todos estos afios. Gracias por vuestra con-
stancia y dedicacién, por los sabios consejos, por la confianza que habéis depositado en
mi y especialmente, por sacar el akulu cuando hacia falta.

I would like to express my sincere gratitude to Prof. Grazia Speranza from the Op-
erational Research Group at University of Brescia. It was truly an honor to be given
the opportunity to work among such talented researchers during my three-month stay.
I wish to thank all the members of the OR group for their warm hospitality and the
excellent atmosphere. Thank you for all the lunch time talks, for recommending the
places to visit, the gelato moments and for the inspiring seminars. Special mention goes
to Andrea Mor who helped me enormously during my stay. Thank you for being so nice
and attentive with me. You deserve the best!

I would also like to thank Dr. A. Duarte, Dr. J.J. Salazar-Gonzélez and Dr. J. Sil-
berholz, who provided me with their codes. I gratefully acknowledge the authors of the
TSP solver Concorde for making their amazing code available to the public, since it has
been the working basis of some of the algorithm implementations in this thesis.

Muchas gracias a Laureano Escudero, J.J. Salazar-Gonzalez y a Dae-Jin por respal-
darme con cartas de recomendacién para la obtencién de la la financiacién que ha hecho
posible esta tesis.

A los miembros del Grupo de Optimizaciéon Estocédstica de la UPV/EHU, por acep-
tarme en el grupo aunque trabaje en problemas de optimizacién estocédstica con varianza
cero. Mencién especial para Gloria, IP de varios proyectos de investigacion de los que
he recibido fondos para asistir a congresos internacionales. Siempre he admirado tu
pasién por la programacién y espero que sigas disfrutando de ella en el futuro. Quisiera
agradecer a Araceli su disposicion inicial para codirigir esta tesis. Gracias por tu compro-
miso con nuestra universidad. Agradecer también a los miembros de Inteligent Systems
Group, en especial a Borja Calvo, por los ciclos de charlas en los que he participado y
por todo lo aprendido de vosotros. Eskerrik asko Matematika eta Estatistika doktoretza
programako arduradunei emandako aukeragatik, batez ere urte hauetan zuzendari izan
diren Gustavo eta Javiri.

Hona iristeko nolabaiteko eragina izan duten pertsonak ere eskertu nahiko nituzke.

xvii

xviii

Fernando Garatea, matematiketarako grina sortu eta karrera egitera animatzeagatik.
Carlos Gorria, masterrean enpresa praktikak egiteko aukera eskaini eta tesi honetan
landutako problema ezagutzea ahalbidetzeagatik. Inma Arostegui, BCAMen sartzeko
bidea zabaltzeagatik.

Me siento muy afortunado de haber compartido esta experiencia con gente tan valiosa.
Gracias a Lorea Gomez, directora de BCAM, por ofrecerme todas las facilidades. Al
eficiente staff de BCAM por tenderme una mano entre tanto papeleo. A los del grupo
de Machine Learning. To my office mates who survived next to me in 9m?2. A los que
hemos compartido un café, una birra, un paseo... A los que comian a deshora. A los que
habéis organizado cenas y salidas. A los apasionados de la programacién. A los que sois
pura actitud.

Bereziki eskerrak eman nahi dizkizuet lagun guztiei. Hor egoteagatik. Besarkada
handi bana.

Tesi hau nire familiari eskaini nahi diot. Lan hau nekez gauzatuko zan zuongatik
izango ez balitz. Nire guraso Lourdes eta Jose Antoniori, amuma Bene ta amuma Ra-
monari, anaia Joneri, Karmele eta Javiri: zuei, dana eta gehiago emategatik. Hau zortea
nirea! Nire eredu zarien aitxitxe Juan eta aitxitxe Bixenteri. Nire gogoan zaudeten izeko
Pili eta izeko Txarori. Nire famili guztiari.

Eta zelan ez, eskerrak bihotzez nire maitiek diren Esti eta Gariri. Bizi behar doguzenak!

Contents

Tesiaren nondik norakoak
Thesis Summary
Acknowledgments

1 Introduction
1.1 The Orienteering Problem
1.1.1 Complexity
1.2 Variants of the OP
1.3 Benchmark instances for OP
1.4 Review of the literature approaches for the OP
1.5 Objectives of the thesis

2 EAA4QP: An Evolutionary Algorithm for the OP
2.1 Introduction
2.2 Solution Codification
2.3 Components e
2.3.1 Imitial population oo
2.3.2 Genetic Operators oo
2.3.3 Tour improvement operator
2.3.4 Dropoperator e
2.3.5 Addoperator
2.3.6 Stopping criteria
2.4 Computational results for EAAOP
2.4.1 Parameter and heuristic selection
2.4.2 EA40OP components validation
2.4.3 Comparison with state-of-the-art algorithms
2.5 Conclusions e

3 Shrinking and Separation Algorithms for Cycle Problems
3.1 Introduction
3.2 The Cycle Polytope
3.3 Shrinking for the Cycle Polytope
3.3.1 Shrinking for the Cycle Polytope
3.3.2 Safe Shrinking Rules for the Subcycle Closure Polytope

11
11
12
13
13
14
19
19
20
22
22
24
27
29

37
37
40
44
46
54

xix

Contents

3.4 Separation Algorithms for Subcycle Elimination Constraints 61
3.4.1 Dynamic Hong’s Exact Separation Algorithm 62
3.4.2 Extended Padberg-Grotschel Exact Separation Algorithm 64

3.5 Computational Experiments Lo 66
3.5.1 Benchmark Instances. L. 67
3.5.2 Shrinking Strategies for SECso 67
3.5.3 Exact Separation Algorithms for SECs 68
354 Results 69

3.6 Discussion e 73

3.7 Conclusions e 73

RB&C: Revisited Branch-and-Cut Algorithm 75

4.1 Introduction 75

4.2 Valid Inequalities 77
4.2.1 Connectivity Constraints 77
4.2.2 Comb Inequalities 78
4.2.3 Edge Cover Inequalities 78
4.2.4 Cycle Cover Inequalities 79
4.2.5 Vertex Cover Inequalities 79
4.2.6 Path Inequalitieso 79

4.3 Initializationo 79

4.4 Separation algorithms Lo oo 80
441 SECsand CCs 81
4.4.2 Comb Inequalities (blossoms) 84

4.5 Column Generation L Lo o 86

4.6 Separation Loop 89

4.7 Primal Heuristics and Lower Bounds 91

4.8 Branching and Upper Bounds L. 92

4.9 Computational resultso oo 93
4.9.1 Evaluation of Components 93
4.9.2 Comparison with state-of-the-art Algorithms 97

4.10 Conclusionso 100

Software for OP 103

5.1 Imstallation 105
5.1.1 Imstall Heuristic Algorithm 106
5.1.2 Install Heuristic and Exact Algorithms 106

9.2 Usage e 106

Conclusions, Future Work and Contributions 113

6.1 Conclusions e 113

6.2 Future Work 115

Contents xxi

6.3 Contributions L L 116
References 119
Appendices 127

A Pseudocodes 127
A.1 Shrinking and SEC Separation Strategies 127
A.1.1 Shrinking Strategies L. 127

A.1.2 Exact SEC Separation Strategies 133

A.1.3 Directed Rooted Gomory-Hu Tree 138

B Detailed Computational Results 141
B.1 Chapter 2: Evolutionary Algorithm 141
B.1.1 [Initialization Parameter 141

B.1.2 Contribution of the genetic components 144

B.1.3 Addoperator 145

B.1.4 Comparison with state-of-the-art Algorithms 145

B.2 Chapter 3: Shrinking and exact SEC for Cycle Problems 156
B.3 Chapter 4: Revisited Branch-and-Cut 173
B.3.1 Configuration of Components: Detailed Results 173

B.3.2 Comparison with state-of-the-art Algorithms 179

CHAPTER]_

Introduction

Nothing is more challenging than a problem which is easy to understand but difficult to
solve. Combinatorial Optimization, which optimizes discrete problems that emerge in a
variety of fields, is in itself a field full of challenges. Such is the difficulty of these prob-
lems that Karp [1972] showed that many combinatorial problems are computationally
intractable within the current computational paradigm. However, the need to solve rele-
vant real-world problems has attracted many researchers to develop efficient algorithms.

The Travelling Salesperson Problem and the Knapsack Problem are two well-known
combinatorial optimization problems. They are both easy to define, but difficult to
solve. The research carried out for these two problems is a source of inspiration to solve
other combinatorial problems. In this dissertation, we study the Orienteering Problem, a
problem that can be seen as a combination of these two classical problems. Particularly,
our objective is to develop algorithms to solve large Orienteering Problems.

1.1 The Orienteering Problem

The Orienteering Problem (OP), also called the Selective Travelling Salesperson Prob-
lem or the Maximum Collection Problem, is a routing problem proposed in the 80s,
see Tsiligirides [1984] and Golden et al. [1987]. The name of the problem originates
from a sports game, where the participants are given a topographical map with detailed
checkpoints, each with an associated score, and a time limit. The participants who visit
the checkpoints that maximize the total obtained score within the time limit, are the
winners of the game.

THE PROBLEM

Given a weighted complete graph with vertex profits and a constant dg, the goal is to
find the simple cycle which, with a length not greater than dy, maximizes the sum of
the profits of the visited vertices.

2 Chapter 1. Introduction

Traditionally, the solution of the OP must visit a given edge or vertex of the graph.
In the early works for OP, the solutions of the problem were paths starting and finishing
in two given vertices. Finding a path whose ends are fixed is equivalent to finding a
cycle which transverses the edge associated to starting and finishing vertices. In recent
publications, it has become common to fix a vertex instead of an edge. Throughout all
the dissertation, a feasible cycle solution for the OP must visit a given vertex, called the
depot vertex. The OP can be modelled as follows:

max total score of the vertices visited by 7 (1.1a)
s.t. 7 is a simple cycle, (1.1b)
7 has a length lower than dy, (1.1¢)
T visits the depot vertex (1.1d)

The OP can be seen as a combination of the Knapsack Problem (KP) and the Travel-
ling Salesperson Problem (TSP). Given a set of items with an assigned weight and profit
and a constant wg, the goal in KP is to find the subset of items which, with a total weight
lower than or equal to wy, maximizes the sum of the profits of subset items. In the KP,
the feasibility of a subset is checked in linear time. In the OP, however, the feasibility of
a solution is checked by solving a TSP-decision problem. A subset of vertices is feasible if
there exists a cycle (Hamiltonian in the subgraph obtained by the vertices) whose length
does not exceed dy, finding such a cycle is an NP-complete problem. This simple but
non-trivial combination of two NP-hard problems makes the OP an interesting problem
to study.

In Figure 1.1 we show the TSP solution (left) and the OP solution (right) for the
instance pr76 of TSPLIB published in Reinelt [1991]. For the OP, the depot node is
represented in green and the distance limitation is half of the TSP solution value on the
left. The scores of the nodes are randomly generated as explained in Table 1.1.

The OP is classified as one of the three generic problems in TSPs with profits, see Feil-
let et al. [2005]. The TSPs with profits have two opposite criteria: one that motivates the
salesperson to travel and another that imposes a constraint in the route length, e.g., the
route must have a minimum length or the route length must be not greater than a given
value. The other two problems of TSPs with profits are the Profitable Tour Problem
(PTP) (Dell’Amico et al. [1995]) and the Price Collecting TSP (PCTSP) (Balas [1989]).
In the PTP the goal is to maximize the difference between the total collected profit and
the cost of the tour. Particularly, the PCTSP is closely related to the OP. In both
problems, the solutions are simple cycles that contain a given depot vertex. The two
problems differ in two aspects. First, the Knapsack constraint of the problem in the
PCTSP is defined among the collected vertex profits rather than in the length of the
route as in the OP. Secondly, the objective function in PCTSP is to minimize the route
length while in the OP it is to maximize the collected vertex profits. See Angelelli et al.
[2014D] for the study on the complexity and approximation algorithms for TSPs with
profits.

1.1. The Orienteering Problem 3

Figure 1.1: On the left, the TSP solution of pr76. On the right, the OP solution for pr76-Gen2-50

1.1.1 Complexity

NP-HARD PROBLEM

The Orienteering Problem is an NP-hard problem since the existence of a polynomially
bounded algorithm for it implies the existence of a polynomially bounded algorithm for
well-known NP-complete problems, and hence for all NP-complete problems (Golden
et al. [1987]).

In order to see that a polynomially bounded algorithm for the OP implies the existence
of a polynomially bounded algorithm for NP-complete problems, it can be seen that a
NP-complete problem is equivalent to some particular cases of the OP.

Given an undirected graph G, let us assign weight one to every edge and score one to
every vertex, and let |V| be the cycle length constraint of the OP. Then if the OP value
is equal to |V, there exists a Hamiltonian tour for the graph G. The Hamiltonian cycle
problem, a known NP-complete problem which consists of determining the existence of
a cycle that visits all the vertices in a graph exactly once, has a polynomially bounded
algorithm if there exists such an algorithm for the OP.

It can also be seen that there exists a polynomially bounded algorithm for the TSP-
decision problem if there exists such an algorithm for the OP. Given an undirected
weighted graph G and a constant dy, let us assign score one to every vertex. Then, if
the solution value of OP is equal to |V|, there exists a tour for the graph G with length
equal to or lower than dy.

4 Chapter 1. Introduction

BRUTE FORCE SEARCH ALGORITHM

In a worst case scenario, using a brute force approach for the OP, we will need to evaluate
all the simple cycles of the graph. If this is the case, for each non-empty subset of vertices,
all the permutations of vertices in the subset need to be evaluated. Although the number
of simple cycles might seem to be much larger than the number of Hamiltonian cycles,
they are both comparable. Let n be the number of vertices of a graph and k£ the number
of vertices in a simple cycle. Then, the number of simple cycles is:

n

n - 1 "1 =1
S (Me=nY —— =Y — <ty —=nl 1.2
(k) B R R~ T T~ T R (12)

k=1

Hence, the brute force search algorithm for the OP has the same time complexity, O(n!),
as the brute force search algorithm for the TSP. However, its complexity is much bigger
than the time complexity of the brute force algorithm for KP, which is O(2").

1.2 Variants of the OP

Many practical problems have been modeled where the OP plays a crucial role. Some
examples are travelling salesperson without enough time to visit all the cities (Tsiligirides
[1984]), the home fuel delivery problem (Golden et al. [1987]), the tourist trip design
problem (Vansteenwegen and Van Oudheusden [2007]; Souffriau et al. [2008]; Wang et al.
[2008]), and the mobile-crowdsourcing problem (Yuen et al. [2011]).

In order to address these real-world problems, many variants of the OP have been
proposed in the literature:

- Team OP (TOP): the goal is to determine M paths, each limited by a maximum
length constraint, in order to maximize the total score. See Chao et al. [1996b],
Boussier et al. [2007], Poggi et al. [2010], Dang et al. [2013], Keshtkaran et al.
[2015], Bianchessi et al. [2018].

- OP with Time Windows (OPTW): each node has an assigned time window which
determines when a node can be visited. See Vansteenwegen et al. [2009], Labadie
et al. [2011], Gunawan et al. [2017].

- Arc OP (AOP): the profits are located in the arcs. See Archetti et al. [2016], Archetti
et al. [2014a], Riera-Ledesma and Salazar-Gonzélez [2017].

- Time Dependent OP (TDOP): the travel time between two nodes depends on the
departure time. See Verbeeck et al. [2014].

- OP with Stochastic Profits (OPSP): the profits associated with the nodes are
stochastic with a known distribution. See Ilhan et al. [2008].

- OP with Stochastic Travel and Service Times (OPSTS): the travel and service

1.3. Benchmark instances for OP 5

times are stochastic. See Campbell et al. [2011].

Generalized OP (GOP): each node has an assigned set of scores with respect to a
set of attributes. See Geem et al. [2005] and Wang et al. [2008].

- Probabilistic OP: each node is available to visit with a certain probability. See
Angelelli et al. [2017].

- Multi-agent OP: individual agents are self-interested in maximizing their score.
However, the nodes have a capacity and can only receive a limited number of
agents at the same time. See Chen et al. [2014].

Clustered OP (COP): the nodes are clustered in groups. The score associated with
each group is obtained when all the nodes in a particular cluster are visited. See
Angelelli et al. [2014a].

In recent years, there has been a considerable increase in the publications related to
OP. In Figure 1.2 we show the trend of the number of publications in which the OP is
studied or used, according to Scopus.

Documents by year

80
60

40

Documents

20

0
1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020

Year

Figure 1.2: Trend of Orienteering Problem related publications. Source Scopus.

1.3 Benchmark instances for OP

Several benchmark instances have been proposed in the OP literature, which go from
a few dozen of nodes in the early years to several thousands of nodes in more recent
publications.

In the benchmark instances of the early works, it was common to use different starting
and finishing nodes. In Tsiligirides [1984], the first paper dealing with the OP, three
instances were presented, each with 21, 31 and 32 nodes. In Ramesh et al. [1992] 9
sets of nodes, with 10, 20, 30, 40, 50, 60, 80, 100, and 150 nodes, were generated using
random scores and arc costs. In Chao et al. [1996a], two new sets of nodes were proposed,

6 Chapter 1. Introduction

a square-shaped one with 66 nodes and a diamond-shaped one with 64 nodes.

In the last few decades, the OP approaches have been tested in instances where the
starting and finishing nodes for the solution cycles are the same. Although the first set
of instances of this kind is used in Laporte and Martello [1990], which consists of ran-
domly generated instances involving from 10 to 90 nodes (the instances have not been
published), the most influential benchmark instances for the OP are those proposed in
Fischetti et al. [1998]. These instances are based on the well-known TSPLIB reposi-
tory of benchmark instances for the TSP, see Reinelt [1991]. In this paper, the authors
describe three methods of generating scores for OP instances from TSPLIB. In gener-
ation 1 (Genl) all the vertices have score one. In generation 2 (Gen2), the scores are
generated pseudorandomly as described in Table 1.1. In generation 3 (Gen3) the scores
are proportional to the distance to the depot vertex. For all of these three generations
the distance limitation is set as half of the TSP solution, dyp = [0.5 - v(T'SP)]. In this
thesis, we have extended the set of benchmark instances to larger size problems. So far,
instances up to 400 nodes of the TSPLIB had been evaluated in the OP literature; we
also considered the ones involving up to 7397 nodes. The benchmark instances set is
summarized in Table 1.1.

Table 1.1: Generations for instances based on TSPLIB.

medium # large

Generation Score for the ith node, i € [n]
n < 400 n > 400

Genl 1 0.5 45 41
Gen2 1+ (7141 (i —1)+73) mod 100 0.5 45 41
Gen3 1+ L99 . dLZ'/IIlanE[n] dl,jJ 0.5 45 41

All the instances used for the computational experiments are available in https:
//www.github.com/bcamath-ds/0PLib.

1.4 Review of the literature approaches for the OP

Since the publication of Golden et al. [1987], dozens of heuristic and exact approaches
have been proposed to solve the OP. A review of the early approaches for the OP, prior
to 1996, can be found in Chao et al. [1996a]. In the last decade, with the upsurge
of variants and applications of the OP, new surveys have been published about the
approaches, variants and applications of the OP. These recent surveys are Vansteenwegen
et al. [2011], Gunawan et al. [2016] and Vansteenwegen and Gunawan [2019].

With the aim of setting a good starting point to introduce the contribution in this
dissertation, we provide a background of the approaches proposed for the OP in the
literature and describe the most important heuristic and exact approaches proposed

https://www.github.com/bcamath-ds/OPLib
https://www.github.com/bcamath-ds/OPLib

1.4. Review of the literature approaches for the OP 7

thus far. In Table 1.2 we summarize the most influential heuristic approaches for the
classical OP, while in Table 1.3 we summarize the exact algorithms developed for the
OP. We have excluded from the lists the publications that do not compare the proposed
algorithm with the benchmark instances in the literature or solve a different version to
the classical problems, e.g., use an alternative objective function.

We name the benchmark instances using numbers to simplify the tables: [1] Tsiligirides
[1984], [2] Laporte and Martello [1990], [3] Ramesh et al. [1992], [4] Chao et al. [1996a],
[5] Fischetti et al. [1998] and [6] Gendreau et al. [1998b].

Regarding the heuristic approaches, we focus the summary on the used approach
framework, solution initialization technique (Initialization), cycle length improvement
heuristic (Length) and local search procedures (Local Search). We classify the initial-
ization approaches into two groups: the constructive ones and the selective ones. By
constructive, we mean techniques that add nodes, and paths, to the solution step by
step. By selective, we refer to techniques that first determine the nodes in the initial
solution and thereafter construct the cycle, or path, that transverses the selected nodes.

In Table 1.2, in order to simplify the alternative local search procedures, we follow the
notation used in Keller [1989]. By (a,d), we mean that a nodes have been added and d
nodes have been dropped from the solutions simultaneously. The most widely used local
search is (1,0) where the added node is inserted with the cheapest insertion criteria.
Since all these local search heuristics are inappropriate for the aim of solving large
problems, we do not delve deeper in the specific proposed local search procedures. The
primary reason why these local search procedures are not useful for large OP problems
is that they are computationally expensive.

In the Length column we specify the heuristic used to optimize the cycle length of
the solutions. These heuristics are: k-opt (Lin [1965]; Lin and Kernighan [1973]) and
GENIUS (Gendreau et al. [1992]).

Note that all the proposed heuristics in the literature thus far share the property of
working with feasible solutions. In these algorithms, whenever an unfeasible solution is
obtained, the solution is amended to convert it to a feasible one.

Regarding the exact approaches for the OP, the most competitive approach thus far
was proposed by Fischetti et al. [1998] two decades ago. To our knowledge, no exact
algorithm for the classical OP has been published after this work. The first exact algo-
rithm, a Branch-and-Bound (B&B) algorithm, was published in Laporte and Martello
[1990] where bounds for the problem were provided based on the Knapsack relaxation of
the OP. In Ramesh et al. [1992], new bounds for the B&B were obtained by Lagrangian
relaxation. In Leifer and Rosenwein [1994] a Branch-and-Cut (B&C) algorithm was
proposed, which included logical, connectivity, and cover cuts for the first time. In Gen-
dreau et al. [1998b] a B&C was proposed for a variant of the OP which considers multiple
depot nodes. The B&C approach in Fischetti et al. [1998] outperformed the previous
ones in middle-sized OP instances by considering column generation, new valid inequal-
ities (cycle cover and path inequalities), problem-specific separation algorithms, and an

8 Chapter 1. Introduction

efficient primal heuristic.

1.5 Objectives of the thesis

The algorithms published so far in the literature were developed with small and medium-
sized instances in mind. The main objective of the thesis is to design algorithms to solve
large-sized OPs. With that aim, we plan to develop:

(i) A heuristic algorithm that, with low computational time, obtains solutions with
acceptable quality:

i. Minimize the need to check and recover the feasibility of solutions.

ii. Initialize the solutions considering the relation between the distance constraint
and the TSP solution value.

iii. Improve the solutions with a local search procedure that scales for large-sized
problem.

(ii) General techniques for Branch-and-Cut algorithms to solve large cycle problems:
i. Safe shrinking of support graphs.
ii. Techniques to speed up exact subcycle elimination separation algorithms.

(iii) A Branch-and-Cut algorithm able to obtain optimality certification in a wider set
of instances than previous methods and to improve the known lower and upper
bounds in the literature.

As a by-product of the previous goals we also pursue to:
(iv) Implement the algorithms and make the software publicly available.
(v) Create a repository with TSPLIB-based large-sized OP instances.

The rest of the thesis is organized as follows. In Chapter 2 an evolutionary algorithm
is developed. We extend from the TSP the Edge Recombination crossover and a k-d
tree-based local search is proposed. Chapter 3 introduces the cycle polytope and the
shrinking technique. Three safe shrinking rules for the cycle polytope and two subcycle-
safe shrinking rules are obtained. We extend efficient exact algorithms and procedures
for the subcycle separation problem. In Chapter 4, a Branch-and-Cut algorithm is
developed. In each of these three chapters, a section with computational experiment
is included. In Chapter 5, we detail the structure, the installation and the use of the
implemented software. In the appendices, pseudocodes and detailed experimental results
are presented.

1.5. Objectives of the thesis

] ‘1] 19A08s010 Jurod-1 ‘(0‘1) 1do-g QATIONIISUOD JSYYDH-OMLWLIN [GT0Z] ‘T8 10 SIRULIRI
[c]‘[] ¥d ‘(1) “(0'1) 1do-g PAIONIISU0D YJ UM JSVHD [7107] [e 10 sodue)
[a][v] “[1] (7'e) 1do-g OATIONIISUOD OATyRION [0T0g] wopTon pue z[oyraqrg
[v] “[1] ud ‘(p'e) “(1°1) “(T0) “(0'T) 1do-g OATIONIISUOD SNA ‘00V [6002] " 10 opIydg
(17) (1'0) (0°1)
‘1] ssou)yy pozijeuad ‘I9A0SSOId UOIIIS[UT 1do-g QAT}I9[0S JUELIETS) [1007] uareSse],
[9] snye)s nqey‘(pe) ‘(0‘1) SNINAD QAT}ONIISUOD oIeag Nqef, [e8661] 'Te 10 neaIpuox)
% ‘[1] (P ‘o) “(1'7) “(0°1) 1do-g QATJONIISUOD OIISLINDY] [29661] ‘Te 10 ory)
[1] (1°0) pue (0‘1) 1do-g 9AI}09[0s JI0M)OU [RINDN [S66T] Te 10 Suepy
1] syuewonoxdw (T°T) pue (0°T) ydo-¢ ‘9do-g 9AI}ONIISUOD oymadg [166T] umoig pue yseurey
1] (z‘'1) pue (1°7) ‘(0°‘T) ydo-g QATJONIISUOD oytoadg [686T] 10793
[1] 91813 JO 107U8d ‘((°T) ydo-g DAIIONLIISUOD pluEicplells [886T] 'Te 10 map[On)
[1] 91413 JO 107U8d ‘(O°T) 1do-g QATJONIISUOD OT)STUTULIGD (] [L86T] 'Te 10 uapon)
[1] (0‘1T) 1do-g QATJONIISUOD ‘U001G pue ‘PO [FRGT] SOPLISIIST,
MRGIGiplicTe] YoIeag [e20] iSuorT UOoIjRZI[RIIU] yoeoxddy uoryesIqn g

‘dO o3 103 soyorordde orsumay Jo Arewrwng :g'T o[qR],

10 Chapter 1. Introduction

Table 1.3: Exact Approaches for the OP.

Publication Approach Contributions Benchmark
Laporte and Martello [1990] B&B KP bounds 2]
Ramesh et al. [1992] B&B Lagrangian relaxation (3]
Leifer and Rosenwein [1994] B&C Logical, Connectivity, 1]
Edge Cover
Fischetti et al. [1998] B&C Cycle Cover (5]

Path Inequalities
Column Generation
Primal Heuristics
Gendreau et al. [1998b] B&C Vertex Cover [6]
Alternative Obj

Primal Heuristics

CHAPTER 2

EA4OP: An Evolutionary Algorithm for the OP

OUTLINE

In this chapter, we present an Evolutionary Algorithm for the OP. The key character-
istic of the algorithm is to maintain unfeasible solutions during the search. Further-
more, it includes a novel heuristic for node inclusion in the route, an adaptation of the
Edge Recombination crossover developed for the Travelling Salesperson Problem, spe-
cific operators to recover the feasibility of solutions when required, and the use of the
Lin-Kernighan heuristic to improve the route lengths.

2.1 Introduction

There are several Evolutionary Algorithms (EA) proposed in the literature to solve
OP and TOP Tasgetiren [2001]; Bouly et al. [2010]; Ferreira et al. [2014]; Marinakis
et al. [2015]; Ostrowski et al. [2017], among others. In all of these approaches the
solutions are initialized with constructive methods which add a new node to the route
while the distance limitation constraint is satisfied and codified based on the visiting
sequence of nodes. The tour lengths are improved using the 2-opt heuristic and general
purpose genetic operators are adapted for the evolutionary part. Particularly, all of
them use an adaptation of the single-point crossover or its generalization, the n-point
crossover. Approaches Bouly et al. [2010]; Ferreira et al. [2014]; Marinakis et al. [2015]
and Tasgetiren [2001], have been tested in the benchmark instances proposed by Chao
et al. [1996a] (40 instances involving up to 66 nodes) and Tasgetiren [2001] (49 instances
involving up to 33 nodes). Approach Ostrowski et al. [2017] has been tested in 90
TSPLib-based instances and 15 VRP-based instances proposed by Fischetti et al. [1998].

We propose a population-based evolutionary optimisation technique whose main char-
acteristic is to maintain unfeasible solutions during the search process. Essentially the
algorithm follows the steady-state genetic algorithm schema Whitley et al. [1989] with
the difference that, at some generations, we perform a tour-improving procedure followed

11

12 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

by node dropping and adding strategies, for feasibility conversion and path tightening
respectively. The pseudocode is described in Algorithm 1.

Our approach, in addition to the common parameters of any genetic algorithm (pop-
ulation size, mutation probability), uses a specific parameter, d2d, that controls the
frequency of the feasibility and improving phase.

Algorithm 1: Evolutionary Algorithm

1 Build initial population (2.3.1);

2 Tour improvement (2.3.3);

3 Drop operator (2.3.4);

4 Add operator (2.3.5);

5 i=0;

6 while stopping criteria are not satisfied OR mod(i,d2d) # 0) do
7 i=i+1;

8 if mod(i,d2d) # 0 then

9 Select two parents (2.3.2);

10 Crossover (5);
11 Mutation (14);

12 if child better than worst in the population then
13 Insert the child in the place of the worst individual;
14 end
15 else

16 Tour improvement (2.3.3);
17 Drop operator (2.3.4);
18 Add operator (2.3.5);
19 end
20 end

2.2 Solution Codification

A solution to the problem can be seen as a sequence defined by a subset of nodes (route).

CODIFICATION
In order to codify that solution, a permutation of the whole set of nodes has been
considered, m = (m1,...,7,). In this permutation, 7; represents the next node visited

after vertex ¢ in the route. The nodes in the route form a cycle in the permutation and
a node which is not in the route is codified as a fixed point, i.e, 7(i) = i.

Figure 2.1 shows a solution of an OP whose associated codification is the follow-
ing permutation, 7 = (6,2,3,4,8,7,5,1). Note that the nodes in the solution route

2.3. Components 13

{1,6,7,5,8,1} form a cycle in the permutation 7, while those nodes off the route {2, 3,4}
are fixed points in the permutation.

@ G 7= (6,2,3,4,8,7,5,1)

De—1 ®

Figure 2.1: Example of a solution in an eight-node graph and its corresponding codification as a
permutation.

Note that not every possible permutation is a valid solution of the problem: first, the
route length limitation constraint may not be satisfied; secondly, sub-routes may also
appear. However, this route codification has been chosen for implementation reasons. On
one hand, a fixed length codification was desirable; on the other hand, some operations
over the solutions, such as checking if a node is contained in the route, can be efficiently
implemented using this codification. A similar codification was previously proposed for
the Prize Collecting TSP Balas [1989].

2.3 Components
2.3.1 Imitial population

Algorithm 2 shows a pseudocode for generating npop individuals for the initial popu-
lation. An individual is generated in two steps. In the first step, a subset of nodes is
randomly chosen, where each node is sampled with probability p. In the second step, a
route passing through the subset of nodes is randomly created and codified as described

14 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

in Section 2.2.

Algorithm 2: Initial population

1 for i =1 to npop do
2 v1 node is included in the subset of nodes;

3 for j =2 ton do

4 v; node is included in the subset of nodes with probability p;
5 end

6 Construct a tour by randomly ordering the selected nodes;

7 end

The probability p is a parameter of the algorithm, where n - p determines the expected
number of visited nodes of each generated individual. In addition, note that the obtained
initial individuals could be unfeasible.

2.3.2 Genetic Operators

In this section we will describe the genetic operators - parent selection, crossover and
mutation - that are used to evolve the population. While the chosen parent selection
operator is a general purpose selection procedure, the crossover and mutation operators
have been specifically developed or adapted for the OP problem.

Parents selection

Our selection operator is a kind of hybridisation between tournament and roulette wheel
selection, see Algorithm 3. In the first step, ncand candidates are uniformly at random
selected from the population. In the second step, the roulette wheel selection is carried
out, based on the individual fitness (i.e., its objective function or total score), where a
correction is performed (subtraction of the minimum fitness) in order to point out the
fitness quality differences between candidates.

Algorithm 3: Parents selection

1 Select uniformly at random ncand candidates from the population,
C={hL,...,Incand} C {1,...,npop};

2 Compute m := minr,cc(f1,), where fr, is the objective function value of I; € C;

3 Compute r; := fr, —m+1,71=1,...,ncand,

4 Compute p; := ﬁ, I, € C;

5 Sample twice with the distribution (p1, ..., Pneand) to obtain two parents;

2.3. Components 15

Crossover operator

The crossover produces a new child solution from a given pair of parents solutions by
using an adaptation of the well-known Edge Recombination operator Whitley et al.
[1989].

CROSSOVER GOALS

In the OP, we are interested in inheriting two main characteristics from the parents
related with the nodes and the edges. Regarding the visited nodes, we want to maintain
all the nodes that are common to both parent solutions, to include, with a probability,
the nodes that belong to only one parent, and to exclude the nodes that do not belong
to any parent solution. Regarding the route length, we want to use as many edges of
the parents as possible in order to pass on the maximum amount of information and
decrease length quality losses in the new child solution.

The original ER crossover Whitley et al. [1989] was designed for problems where the
solution space consists of Hamiltonian cycles; now we have extended it for a larger set of
sequencing/ordering problems, where the solution space consists of simple cycles which
do not necessarily contain all the nodes. This generalisation does not use the information
of the associated cost of the edges and, therefore, it is possible to produce unfeasible
solutions for the OP.

The operator uses the so-called edge map, which is a summary of parental information,
to guide the procedure. The edge map contains, for each common node of the parental
graph, its degree, connected nodes and intermediate paths. Representing the route of
the first and second parent as the graphs G; = (V1, E1) and Gy = (Va, Ey) respectively,
the parental graph consists of all vertices and edges arising in the solutions of the two
parents, i.e., PG = (V1 UV, E1 U Es). A node u is a common node of the parental
graph if that vertex belongs simultaneously to both parents, u € Vi N V5. A node u is
a connected node of a node v if u and v are common nodes and there exists a path
over the parental graph connecting both nodes which does not contain a third common
node. The degree of a common node is the number of nodes which are connected to it.
An intermediate path between two common nodes u and v is any path from u to v,
which is inside the parental graph with no more common nodes.

The ER crossover operator builds the child route as follows (see Algorithm 4): first,
the edge map is constructed, and the starting node vy is assigned to be the current
node. Each time the current node is reassigned, it is removed from the edge map, and
the degree of each non-visited common node is recomputed. At each step we will decide
which the next common node to visit is by selecting from the set of the non-visited
connected nodes of the current node the one that has the lowest degree, where ties are
broken randomly. If we reach a node whose all connected common nodes are already
visited, we will choose the next node randomly from the set of non-visited common

16 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

Figure 2.2: Example of a crossover. (a) Parental graph. The route of the first parent is repre-
sented by dotted line, the route of the second parent with dashed line. The common
nodes are filled in gray. (b) Child after the crossover.

nodes. A intermediate path between the current node and next node is randomly chosen
and its nodes incorporated to the route. The process finishes when there are no more
common nodes left to visit.

Note that the operator does not make sense when there is a unique common node, vy,
or when the solution routes are equal. In any of these cases, the crossover procedure is
skipped, and one of the parent solutions is cloned.

In Figure 2.2, two parents solutions are shown (a) and the child (b) produced after
the ER crossover application. Table 2.1 shows the associated edge-map and Figure 2.3
shows some illustrative steps of the operator. The algorithm starts at common starting
node 1. Both of its connected nodes, 4 and 9, have degree two - we have already removed
the node 1 from the edge map-, so the algorithm will make a random choice. Assume
that the common node 4 is chosen, and again randomly we choose one of the possible
paths to reach the node 4, in this case we assume that the path chosen is (1,2,4), see
first step in Figure 2.3. The candidates for the next common node are 6 and 10. Both
have degree 2 so randomly choose one, assume that 6 is chosen. There is a unique path
to choose that goes from 4 to 6, the one that passes through node 5, see second step. In
the last step, all the common nodes have been visited so the algorithm will join node 11
and 1.

2.3. Components

17

Table 2.1: Example of an edge map

Common Node Connected Nodes Degree Intermediate paths
1 4 9 (1,4), (1,2,4)
9 (1,9), (1,8,9)
1 (4,1), (4,2,1)
4 6 3 (4,5,6)
10 (4,10)
(6,5,4)
6 3 (6,7), (6,3,7)
11 (6,11)
. 6 9 (7,6), (7,3,6)
12 (7,12), (7,13,12)
1 (9,1), (9,8,1)
9 10 3 (9,10)
12 (9,15,16,12)
(10,4)
10 3 (10,9)
11 (10,11), (10,14,11)
6 (11,6)
11 10 3 (11,10), (11,14,10)
12 (11,12)
7 (12,7), (12,13,7)
12 9 3 (12,16,15,9)
11 (12,11)

18 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

g/i ® : ®
®© 00 > (-0 @

CO00O0O0 ©®HLOo0O0OO
© ©

first step second step last step

Figure 2.3: Illustration of the crossover operator. The left and center figures show the results of
two consecutive steps of the crossover algorithm, while the right figure represents the
last step before closing the route.

Algorithm 4: ER crossover operator

=

Initialize current node to vy;

2 while there are non-visited common nodes do
3 Remove all the occurrences of current node from the connected nodes of edge
map;
4 if at least one connected node of the current node is not visited then
Update next node as the connected node with the smallest degree, ties are
broken randomly;
6 Choose randomly an intermediate path between current node and next node.
Insert the path after the current node;
Rename the next node as the current node;
else
9 if there are non-visited common nodes then
10 Select randomly a non-visited common node and insert it on the route
after the current node;
11 Call it the current node;
12 end
13 end
14 end

Mutation operator

At each generation, after the crossover operator has been applied, a mutation is per-
formed, see Algorithm 5. To perform the mutation, we will choose a node uniformly
at random from {vs,...,v,}. If the node is on the route, the node is dropped and its
adjacent nodes are connected. If the node is not on the route, it is inserted in the best

2.3. Components 19

place - using the same heuristic explained later in the add operator 2.3.5.

Algorithm 5: Mutation operator

Select uniformly at random a node from {va,...,v,};
if the node is on the route then
‘ Remove the node from the route and connect the adjacent nodes;
else
‘ Insert the node on the route, using the heuristic explained in Section 2.3.5;
end

(=B N VI

2.3.3 Tour improvement operator

The feasibility of a solution closely depends on the order of the visiting nodes. A set of
nodes could belong to a feasible or an unfeasible solution, depending just on the ordering
of them on the route. The aim of this operator is to decrease the length of the routes as
much as possible. In this manner, first, unfeasible solutions are attempted to convert to
feasible solutions, second, the lengths of the feasible solutions are decreased in order to
insert new nodes during the add operator 2.3.5.

Finding the shortest route for a subset of nodes is equivalent to solving a TSP for
that set of nodes. In the extensive literature that has the TSP, there is a vast quantity
of heuristic approaches that can be used for the OP. We are particularly interested in
those local search techniques that provide a high quality solution in a reasonable time
due to the fact that the tour improvement is applied many times during the algorithm.
In this work we have considered the Lin-Kernighan heuristic Lin and Kernighan [1973];
Applegate et al. [2007].

2.3.4 Drop operator

Improving the tour length might not be enough to convert an unfeasible solution to a
feasible one, it could still continue violating the route length limitation constraint. In
this case, in order to obtain a feasible solution, it is necessary to delete nodes from the
solution until it fits the distance limitation.

To that end, we sort the nodes contained in the route considering both the cost in
terms of length and the fitness gain for visiting each node. Namely, we want to drop the
nodes that concurrently have a low contribution to the fitness and are costly to visit. Let
us define the value for sorting the visited nodes as drop(v;) = m where v;,
and v;,, nodes are the previous and next nodes to v;, respectively (see the drop operator
in Algorithm 6 and the example in Figure 2.4).

Thereby, at each step of the drop operator the node with the lowest drop value is
removed from the solution. The algorithm stops once it obtains a feasible solution.

20 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

~ 3.93
~ 3.62
~ 22.45
~ 2.618

Figure 2.4: Drop operator example. After evaluating the drop value of each node, the node 8 is
removed from the tour.

Algorithm 6: Drop operator

1 while NOT distance limitation constraint is satisfied do

2 Order nodes according to drop index and remove the one with the lowest value;
Update route length and fitness;

3 end

2.3.5 Add operator

Once the individual has been made feasible, we apply an improvement mechanism to it.
It consists of the addition of new nodes to the current route. This operator is applied
for node inclusion while the distance limitation constraint is satisfied, see Algorithm 7.

When dealing with node insertion, we have to set some criteria in order to select the
most suitable node to add to the route and, then, to decide where the insertion should
be made.

Before defining the insertion criteria, let us define an associated value, addcost(v;),
for each non-visited node, v;, that approximates the increase of the route length when
inserting it to the route. A common heuristic that appears in the literature in order to
calculate the addcost value is to evaluate the cost of each possible insertion in the route
and to take the minimum value Campos et al. [2014]; Silberholz and Golden [2010].

CHEAPEST INSERTION APPROACH
If m represents the number of visited nodes in a solution, then the computational cost of

2.3. Components 21

selecting the candidate to insert at each step when using the cheapest insertion approach
is O((n —m) -m) < O(n?). Using the information calculated in the first step, i.e., the
insertion position and the addcost of each non-visited candidate, it is possible to decrease
the computational cost of selecting a candidate for the rest of the steps. This way we
have O((n —m) - m) for the first step and O(n — m) for the rest of the steps.

Although the previous method is quadratic, a faster node insertion method is still
desirable, since a large amount of queries of this type are made during the algorithm.
Therefore, we propose a new heuristic method for node insertion, one that speeds up
the process at the expense of the quality of the addcost approximation.

To evaluate the inserting cost of a non-visited node, we start by finding the three
nearest visited nodes. If two of these three nearest nodes are adjacent in the route, the
addcost value is the cost of inserting the candidate node between these two nodes (see
Figure 2.5). When there are more than two pairwise adjacent nodes in the 3-nearest set,
the addcost value is determined by the choice that minimises the adding cost. Otherwise,
if none of the three nearest nodes are adjacent to each other, calculate the cost of inserting
the candidate node between the contiguous nodes of the three nearest nodes. There are
six different options, so we choose the one with the minimum value for the addcost.

Because of the design of the proposed minimum cost insertion heuristic, when the
distance matrix is given by spatial points, the computational cost can be decreased
using a data structure to accelerate the proximity queries. In our case, we have used a
k-d tree, which is built once in the whole algorithm.

Finally, the addvalue is defined to set the inserting preference of a non-visited node
using the addcost and the score of the node. The inserting preference of a non-visited
node depends whether the insertion is feasible or not. When the insertion is feasible,
i.e., the current length plus the addcost value is not greater than the route length limit,
the inserting preference is defined as addvalue(v;) = s;/addcost(v;). When the insertion
is not feasible, the inserting preference of the node is set to 0. If the maximum value of
addvalue is positive, the node which maximizes the addvalue is inserted in the route,
and the process is repeated. The add operator stops when adding any of the non-visited
nodes leads to an unfeasible solution, i.e., when all the addvalues are 0.

K-D TREE BASED 3-NEAREST INSERTION APPROACH

When the nodes are spatial points, for the insertion approach, we use k-d trees for
semidynamic point sets [Bentley, 1990]. The k-d tree is build in O(nlogn) time. For
each non-visited node, the k-d tree is updated (undelete and delete the node) in O(1)
time and the three nearest nodes are found in O(log(n)). Therefore, the total cost of
finding the best position in the route for all the non-visited nodes in the first step is
O((n —m)log(n)) < O(nlogn).

22 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

Figure 2.5: Example of an evaluation of the cost of inserting a node in the route. Node vs is the
node to evaluate and the rest of nodes are part of the route (solid line). In this case,
the best position for the node v3 in the route is between the adjacent nodes vy and
V5.

In Figure 2.5 we represent the calculation of the heuristic to obtain the addcost of the
non-visited node vs. First, we search the three nearest nodes from v3 on the route, in
this case v1, vo and vs. Given that v; and vs are adjacent in the route, we assign to vs
the increase of the distance route if v is added between v, and wvs, i.e., addcost(vs) =
di3+d3s —dyps.

2.3.6 Stopping criteria

There are two main stopping criteria for our evolutionary algorithm. The first one is
based on the distribution of the population fitness. Specifically, the algorithm stops
when a certain proportion of the solutions has the same fitness as the best solution of
the population. The second one is a limitation on the execution time.

These criteria are evaluated after the feasibility of the solutions is checked and the add
operator is performed, particularly, when the generation number is a multiple of d2d.

2.4 Computational results for EA4OP

This section presents the results of the computational experiments carried out for testing
the evolutionary algorithm explained in the previous section. The proposed approach
has been compared with the exact branch-and-cut algorithm (B&C) Fischetti et al.
[1998] and three state-of-the-art heuristics: GRASP with Path Relinking (GRASP-PR)
Campos et al. [2014], tabu search (TS) Gendreau et al. [1998a] and the two-parameter
interactive algorithm (2-P IA) Silberholz and Golden [2010]. Results for TS are not
reported because they were not competitive compared with the rest of the approaches,
but they are available upon request from the authors. The benchmark instances have
been generated from those obtained from TSPLib repository. We have split up the
instances into two groups: medium-sized instances, up to 400 nodes and large-sized

2.4. Computational results for EA4OP

23

Algorithm 7: Add operator

TU R W N =

N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

while NOT stop do

for node v; not in route do

Get the three nearest nodes in the route for v;, Vi = {vi, v, vi};

if at least two nodes of Vs are adjacent in the route then

Find the pair (vprey, Unext) Where Uprey, Unest € V3 that are adjacent in
the route that minimizes dprev,i + dinest — dprev,next;

else

Define:;
Vs ={(vi,v,.,.), (V5,05), (V3,05)} U
{(v1,,.,,v1), (v, ., v3), (V5 . v5) b
Find the pair (vprey, Unest) € V5 that minimizes

dprev,i + di,ne:ct - dprev,nea}t;

end
addCOSt(Ui) = dprev,i + di,next - dpre'u,next;
if route length + addcost(v;) < dy then
‘ addvalue(v;) = s;/addcost(v;);
else
‘ addvalue(v;) = 0;
end

end

Select the node, v;, which maximizes addvalue;

if addvalue(v;) > 0 then
Include the selected node in the route;
Update route length and fitness;

else

‘ Stop;
end

end

24 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

ones, up to 7397 nodes. As detailed in the literature, three generations are classified
according to the definition of scores. A fourth generation has been created with the
most difficult instances for the exact methodology.

The solution quality and the computational cost have been analysed. The solutions
have been measured in terms of the quality gap (gap), defined as the relative difference
in percentage between the best known or optimal solution (opt) and the solution of the
corresponding algorithm (best), i.e., gap = 100 - %pbf‘% The computational cost in
seconds is measured via time consumption.

The computational experiments are reported as follows. The validation of the pro-
posed algorithm components is carried out in Section 2.4.2. Section 2.4.3 shows the
performance of the evolutionary algorithm versus the exact B&C and two state-of-art
heuristics: GRASP-PR and 2-P TA. The detailed numerical results are available in Ap-
pendix B.1.

2.4.1 Parameter and heuristic selection

In order to perform the parameter and heuristic selection, we have selected five medium-
sized instances of generation 2, involving the largest amount of nodes without repeating
the “family” (gil262, a280, 1in318, pr299 and rd400). We have chosen instances from
generation 2 precisely because, contrary to the other generations, here the scores are
pseudo-randomly generated.

Solution initialization parameters

As explained in Section 2.3.1, an initial solution is generated in two steps: the first
one consists of randomly selecting a subset of nodes to be visited; the second one con-
sists of constructing the tour involving the selected nodes, i.e., giving an order in the
selected subset of nodes. It is desirable that the average number of selected nodes in
a solution, n - p, is close to the number of nodes in the optimal solution. A straight-
forward choice is to select p as the proportion between the distance limit and the TSP
solution, i.e., p = do/v(TSP). However, the results achieved by the B&C in Fischetti
et al. [1998] show that the optimal solution tends to visit a higher number of nodes
than expected. Therefore, we have decided to overestimate the number of initial nodes
using p = /do/v(T'SP). To approximate the TSP value, Lin-Kerninghan heuristic has
been used and this computational time has been considered in the global time of the
algorithm.

In order to get an idea of the influence of the parameter p on the population ini-
tialization and on EA4OP, we have tested three different choices of p: o2, o and \/a
where o = do/v(T'SP). The rest of the parameters have been set as detailed in Section
2.4.1. The experiments show that the best mean gap either for the initialization or for
the EA4OP is obtained using p = /a. Furthermore, in the initialization, the closest

2.4. Computational results for EA4OP 25

solutions to the optimum in terms of visited number of nodes are obtained using the pa-
rameter value mentioned. However, it is interesting to note that the higher the value of
p used, the longer the time that is needed to initialize the population, due to the higher
amount of nodes included in TSP problems that are solved during the initialization, see
details in supplementary material.

Genetic operator parameters

The parameters value selection for the algorithm (ncand, npop, d2d and pmut) has been
performed using non-parametric statistical tests: Friedman test for multiple (more than
two) mean comparisons, Wilcoxon signed-rank test for two mean comparisons and Finner
post-hoc test for pairwise comparisons Garcia et al. [2010]. For all of these tests, 0.05
has been used as significance level.

Taking into account that, depending on the target (gap or time), the selected values for
the parameters might differ, gap has been prioritized over time. Therefore, the analysis
is performed in two steps: in the first step, a Friedman test on the gap is carried out for
each parameter. If it does not find significant differences for the parameter values, all of
the values are considered for the next step. Otherwise if it finds significant differences
between the achieved gaps by the different values, we continue with Finner post-hoc
tests to select the values that obtain the best gaps. Those values which are not signif-
icantly different from the best gap are considered for the second step. If all values have
significant differences with the best, this is the value chosen and the procedure finishes
here for that parameter. In the second step, previously selected values are considered
and the procedure detailed for the gap is repeated now for the time. In the case that
there are several parameter values with no significant differences with the value that
obtains the best mean time, the value with the lowest mean gap is chosen.

For each parameter, the following set of values has been considered: ncand € {5, 7, 10},
npop € {10, 20, 50, 100}, pmut € {0.01, 0.05, 0.1} and d2d € {5, 10, 20, 50} where
d2d < npop. For each parameter a univariate analysis has been conducted, except for
npop and d2d - for which a bivariate analysis has been carried out. The values (npop,
d2d)=(100, 5) and (100, 10) have been excluded from the analysis because those config-
urations require an excessive amount of time. Each combination of the parameters has
been run 10 times.

Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

26

“(0¢°'00T) pPue (0z‘00T) @IeduIoD 0} posn Uoaq SBY 1S9} JURI-POUSIS WOXOI[IA :y

¢0—01 "9 626G 909¢ 10
€86°0 00T 7% COL8G 16°0 GTL'S G0°0 nwd
- T69°¢ €86°¢ 100
LST0 ¢ 01-C> 9691 (G ‘01)
G870 ;01T > L2868 (01 ‘02)
I18°0 ;02> eves (¢ 0t
66T o OT-T 06e¥ (0T omv n
€98°C go_O0T ¥ o1-0L"C > grer (01 09) (pep *dodu)
9P1T'C 0. 0T-8 1807 (S °09)
COF'y 0820 geLz (0 ‘001)
0L LS g9 - 65¢z (02 ‘00T)
T9T9 ¢;-0T-T> 6029 ¢
176°G 00T - 69 9-0T-g> 1259 L pUDIU
18TG - PSIGC 0
onpea-d onpea-d UeIA onpea-d onpea-d URSIN ON[eA Iojowrere
.@@pow.ﬂhoo Q@EU@E@ .@@uow.ﬂhoo Q@E@@E&.—
207 1804 201 180d
QuILT, den)

uO0190970s Iojomrered 10] Suryse) s1sojodAY [eo13IS19e1S 17°7 R,

2.4. Computational results for EA4OP 27

Table 2.2 details the mean gaps, the mean times and the p-values of the tests obtained
during the selection procedure. For instance, based on this information, we have set
pmut parameter to 0.01. In the first step, using Friedman test we obtained that there
are no significant differences in terms of gap between the values of pmut, therefore, all
the values were considered for the next step. Regarding the time, Friedman test gave
that there exist significant differences between the pmut values, so we proceed with the
Finner post-hoc test. Finally, parameter value 0.01 is selected since comparing the gap
between pmut values with no significant differences in terms of computation times it
obtains the lowest gap. After the statistical tests, the following parameter values were
chosen for the computational experiments: ncand = 10, npop = 100, d2d = 50 and
pmut = 0.01.

Tour improvement operator

Preliminary experiments in the 5 instances of the previous training set with 2-opt, 3-opt
and Lin-Kernighan approaches showed that the Lin-Kernighan technique as TSP local
search was the most suitable. We appreciated that the solutions obtained for the OP
using this method were better than with the rest of the techniques, while the time needed
to accomplish the search was not substantially larger.

Stopping criteria

As explained in Section 2.3.6, there are two stopping criteria. The first one, which is
based on the distribution of the fitness, stops the algorithm when the first quartile of
the population’s fitness is the same as the best solution fitness. The second one, which
is a time limitation, stops the algorithm when the execution time exceeds 5 hours.

2.4.2 EA40OP components validation

In this section, we verify that all the components in the EA4OP are necessary to obtain
high quality solutions. We have implemented three algorithms in order to evaluate the
contribution of the components in the EA4OP algorithm.

- Algorithm 3.3.1: This algorithm builds a large random population and applies
the drop and add operators to each individual. We have considered the average
number of solutions used by the EA4OP to set the size of the population, npop, for
Algorithm 3.3.1, for each instance and generation. As we are using a steady-state
algorithm, the amount of solutions used in a run of the EA4OP is equal to the
initial population size plus the number of iterations. Algorithm 3.3.1 is used to
evaluate the contribution of the evolution process of our algorithm.

- Algorithms 3.3.2 and Algorithm 3.3.3: In these algorithms, we consider a EA40OP
but without the crossover. Instead of selecting two parents and crossing them,

28 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

we select only one parent using the procedure of the parents selection operator
and applying the mutation operator. Two different versions of this algorithm
have been tested, both of which differ in the relaxation of the stopping criteria.
Algorithm 3.3.2 stops when all the solutions of the population have the same
fitness. Since Algorithm 3.3.2 obtains lower computation times than EA4OP, we
have also considered Algorithm 3.3.3, which is similar to Algorithm 3.3.2 but stops
when the computation time reaches the mean time used by EA4OP. Algorithms
3.3.2 and 3.3.3 are used to evaluate the contribution of the ER crossover operator.

In order to perform the comparison of these algorithms, all of them have been con-
figured with the same parameters used in EA4OP (ncand = 10, npop = 100, d2d = 50
and pmut = 0.01), except the parameter npop for Algorithm 3.3.1, which has been ex-
plained above. These algorithms have been run in five medium-sized and five large-sized
instances of each generation, which have been selected using the same criteria as in
Section 2.4.1.

Table 2.3: Comparison between the results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3

and EA4OP.
Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P
Generation Size Gap Time Gap Time Gap Time Gap Time

Genl Medium 13.75 10.40 10.71 1.81 9.63 4.64 1.76 4.54

Large 15.19 15468.30 10.07 1527.96 7.44 5501.40 0.00 5500.71
Gen? Medium 13.20 11.96 9.01 1.75 8.43 5.05 1.21 4.93

Large 16.33 16887.87 10.80 1721.30 5.93 6397.23 0.00 6397.06
Gen3 Medium 14.58 12.46 11.32 1.95 10.08 5.45 3.69 5.04

Large 17.15 17635.65 10.94 1719.08 7.95 6241.82 0.00 6241.36

Medium 2.16 6.89 1.28 1.79 1.24 5.66 0.07 5.14
Gen4

Large 16.75 17095.59 10.82 1490.95 7.23 3498.83 0.00 3498.29

The results are summarized in Table 2.3. They show that building a large random
population needs a large amount of time while it does not obtain competitive results
in terms of solution quality. This large amount of time is due to the requirements for
making a random population feasible. It can be concluded that the proposed evolution
speeds up the generation of individuals. Furthermore, it is essential to obtain high
quality solutions.

Table 2.3 also shows that in most of the instances Algorithm 3.3.3 improves the gap
results of Algorithm 3.3.2, however they are still not competitive with those obtained by
EA40OP. Therefore, it can be assumed that the proposed adaptation of the ER crossover

2.4. Computational results for EA4OP 29

operator has an important contribution in the EA4OP.

In view of these results, we assume that the contribution of the evolutionary part
and, specifically, the proposed adaptation of the ER crossover are essential in the overall
algorithm.

2.4.3 Comparison with state-of-the-art algorithms

The experiments have been run on a workstation with Intel(R) Xeon(R) CPU E5-2609
v3 @ 1.90GHz processor using a single thread and a maximum of 4 GB RAM. For the
experiments of this chapter, we have defined a new generation method (generation 4)
involving instances with dg # [0.5-v(T'SP)]. With that in mind, we have considered the
instances with scores of generation 2 and created all the cases with dy = [- v(T'SP)],
where « € {0.05, 0.10, ..., 0.45, 0.55, ..., 0.95}. From these 18 cases we have chosen
the most difficult instance for the B&C in Fischetti et al. [1998]. When all the problems
finish before the time limitation for the B&C, we choose the a whose solution takes
the longest time. Otherwise, when at least one problem reaches the time limitation, we
choose the @ whose solution takes the longest separation time at the end of the time
limitation for the B&C .

The evolutionary algorithm for OP (EA4OP) was implemented in C language. We
have reused the code from the Concorde TSP solver for the routines related to dynamic
k-d trees and the Lin-Kernighan TSP method. The source code has been published with
a GPLv3 license, except the third-party code mentioned above, which has an academic
license. The code is available at https://github.com/bcamath-ds/compass.

For comparison purposes, the following algorithms have been tested: the exact B&C
algorithm from Fischetti et al. [1998] and two heuristics: GRASP-PR Campos et al.
[2014] and 2-P IA Silberholz and Golden [2010]. For each heuristic, 10 runs have been
performed at each instance, while the exact algorithm has been run once. All the ex-
periments have been performed under the same conditions: the same machine, the same
language (C) and the same compiler (gcc 4.8.5) with the same flags (-O3).

For a fair comparison in terms of computational time, the results of the B&C algorithm
have been obtained with CPLEX 12.5.0 instead of the original LP solver CPLEX 3.0.
Note that the papers Campos et al. [2014] and Silberholz and Golden [2010] considered
the results published in Fischetti et al. [1998].

New optimal solutions have been obtained with the updated execution of the B&C
algorithm for all the instances that stopped after 5 hours in Fischetti et al. [1998]:
two in generation 1 (ts225, pr226), four in generation 2 (pr266, pr299, 1in318, rd400)
and four in generation 3 (prl44, pr299, lin318, rd400). The optimal solution for score
generation 2 are 6662, 9182, 10923 and 13652, respectively, while in the paper, the
mentioned solutions after 5 hours of computation were 6615, 9161, 10900 and 13648,
respectively. However, the bounds published for score generation 1 and 3 in the original
paper are higher than the values obtained with the updated software. We conjecture

https://github.com/bcamath-ds/compass

30 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

that, incidentally, upper bounds were published instead of the best known solutions. For
the instances of generation 1, results 125 and 134 appeared in the original paper, and
solutions 124 and 126 are now reported, respectively. For the ones of generation 3, old
results 3809, 10358, 10382 and 13229 are different from new results 3745, 10343, 10368
and 13223.

The parameters used in the compared heuristic algorithms where those reported by
default in the respective papers. However, we have increased two B&C parameters
to take advantage of the resources of the current machines. We have experimentally
checked that the updated parameters improve the results of the originals parameters.
The parameters considered in the runs are as follows:

- B&C: In the cutting plane phase, 200 variables (instead of 100) can be added at
each round of pricing up. Additionally, we resort to branching whenever the upper
bound did not improve by at least 0.001 in the last 20 (instead of 10) cutting-plane
iterations of the current branching node.

- 2-P IA: number of iterations without improvement before termination is 4500, num-
ber of nodes to choose from each iteration of route initialization and the number
of nodes removed from each iterative change are 4.

- GRASP-PR: greediness parameter is 0.2, number of solutions is 100, constructive
methods combine C1 and C2.

Next, the summary results and a comparative analysis is shown for medium-sized
instances and large-sized instances. The detailed numerical results can be seen in B.1.

Comparison for medium-sized instances

The TSPLib instances of medium dimensionality contain 45 problems with 48 to 400
nodes. The Table 2.4 summarises the average quality gap (Gap) and time consumption
(Time) for the four generations according to the size ranges, the best results between
heuristics are highlighted in bold.

Note that all the instances can be solved up to optimality by B&C. However, the
execution time is extremely high for this exact approach. In terms of gap, GRASP-PR
performed better in generations 1, 3 and 4, while 2-P TA obtained better averages in
generation 2, as reported in Tables B.12, B.14, B.16 and B.18.

COMPARISON WITH HEURISTICS IN MEDIUM-SIZED INSTANCES

Taking into account all the medium-sized instances, GRASP-PR obtains the best average
gap. In terms of Time, 2-P TA obtains the best results in all the generations. However,
EA4OP shows competitive results, obtaining similar execution times to those of 2-P TA
in the smallest instances and better time results in the biggest instances.

2.4. Computational results for EA4OP 31

B&C 2-P TA GRASP-PR EA40P
Range # Gap Time Gap Time Gap Time Gap Time
0,50] 12 * 13.97 0.05 0.10 * 016 0.06 0.25

50,100] 56 * 6724 024 0.36 0.10 066 0.25 0.58

(

(

(100,150] 44 * 297.23 0.67 0.77 0.38 2.03 0.67 1.54
(150,200] 24 * 213.34 252 1.90 1.12 440 0.50 2.85
(200,250] 20 * 897.83 2.40 2.45 1.05 10.06 0.74 547
(250,300] 16 * 730.80 3.58 4.33 2.66 11.61 2.18 3.71
(300,350] 4 * 4854.90 3.04 746 342 1990 0.75 7.42
(350,400] 4 * 1429.30 3.80 13.05 4.56 19.35 1.17 17.68
All 180 * 42732 1.31 1.67 0.80 4.32 0.63 2.23
*

: optimal solution achieved

Table 2.4: Algorithms comparison by range in medium-sized instances.

Table 2.6 shows the performance of EA4OP versus 2-P IA and GRASP-PR. The
table summarizes the following information: Gap, number of instances in which an
algorithm’s solution is higher than the other one’s; Time, number of instances in which
an algorithm’s execution time is lower than the other one’s; Pareto, number of instances
in which an algorithm dominates the other algorithm. Pareto efficiency criterion states
that a solution dominates the other one if it obtains better results in at least one of the
objectives while not degrading any of the others (in our case the objectives are gap and
time). Ties are computed in an additional column.

In terms of Gap, EA4OP obtained better solutions than 2-P TA in all four genera-
tions, whereas in terms of Time and Pareto, 2-P IA obtains better solutions in all four
generations. When we compare EA40OP with GRASP-PR, in terms of Gap and Pareto,
EA4OP is better than GRASP-PR in all four generations. In terms of Time, EA4OP
obtains better results in generations 1 and 3, and little worse results in generations 2
and 4.

Comparison for large-sized instances

The TSPLib instances of large dimensionality contain 41 problems within 417 and 7397
nodes. Table 2.5 summarises the quality of solutions (Gap) and execution time (Time)
for the four generations according to the size ranges. The number of solved instances is
detailed in an extra column for B&C and GRASP-PR. The average gap was calculated
excluding the missing solutions, whereas the average times were calculated considering
18000 seconds for problems in which the time limit was reached. The best results between

32 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

heuristics are highlighted in bold.

Most of these instances (130 of 164) can not be solved up to optimality by B&C.
Furthermore, B&C finished unexpectedly for 52 of the instances, not obtaining any
solution. Globally, EA4OP obtained better solutions than B&C in 96 of the 164 cases.

COMPARISON WITH HEURISTICS IN LARGE-SIZED INSTANCES

Compared with the rest of the heuristic algorithms, EA4OP obtained better quality
solutions in all the generations. Additionally, in this large-sized instance set, EA4OP
shows the best performance in execution time compared with the rest of the heuristics
in all the generations.

Note that GRASP-PR was not able to return any solution in 22 instances after the
execution time was exceeded.

Table 2.7 shows that in large-sized instances EA4OP obtains much better solutions in
terms of quality, time and Pareto efficiency, compared with 2-P TA and GRASP-PR for
all the generations.

33

2.4. Computational results for EA4OP

POP99OXa JIWI] 9WII} 193 S[(e[leAR J0U UOIIN[OS | A

POP999Xd SINOT[G JO JIWII OUIT) :-

PoAlllor UOIIN[OS TMOUY IS0 1y

V" 066 9.°0 TF'9%cS ¥9'C ohT LF668T €L°¢ e’eReeT 1¢y CIT ¥91 v
8T'TIIT « - VN 0 9L°06.8T ¥6°CT - wee 1 ¥ [009.°002L)
09°SPLS & - VN 0 6£°189¢T 10°L - 900 T 8 [0009°009¢)
90°SSPT & - VN 0 81°78L 98F - 9T'T T ¥ [008F‘00%F)
1L°698¢ « - VYN 0 1L2S0L T9L - 2601 T ¥ [000%°009€)
96°108 * - 099 ¢ LT6EEE G099 - 698 € 7 [002£0082)
€9°¢€. 9T'0 L67ee8 1¢9 ST EU'TIpel ge¢ - 6L°0T I 9T [00%Z‘000T)
89°96¥ * 88'TLTL LT9 9T 6V 16 99F% - 06°6T TT 9T [000Z'009T)
GE 61T L8°0 GE'6SSF S¥9 8¢ €8°7SE 61°L T1LGG69T €9°¢ ST 8¢ [0091°002T)
19°L9 62T GGFSCT €99 0Z 09691 609 2901691 ¥ZT I 0%z [002T‘008)
G6'GE €8T LETCC €€F 09 GI'6T 687 680706 9T0 GG 09 [008°00%)

ouwILT, dex) owrr, den # ouIL], dexn) ouILJ, dexn) # # osuey

dOvvd Ud-dSVID VI d¢ ond

"SOOUR)SUI POZIS-08IR] Ul d3uel AQ SW}LI0S]e Jo uostreduwo)) :¢'g 9[qe],

Chapter 2. EA40P: An Evolutionary Algorithm for the OP

34

ov 0 0 ov 0 0 ¥ 0 0 L€ 0 0 ojored
¥ 0 0 iz 1 0 Vi I 0 ¥ 0 0 owy,
Vig 0 1 i 0 1 0ig 1 0 L8 0 iZ den
dOPVA o1 Ud-dSVHUD dOPVH o1 UJ-dSVHUD dOPVH o1 Ud-dSVHUD dOPVH o1 Ud-dSVUD
¢ 0 I 62 0 0 e 0 I Gz 0 ¢ ojored
e 0 6 158 1 6 e I 8 Gz 0 91 owy,
68 0 4 8¢ 0 ¢ 0ig 0 1 L8 I ¢ den
dOvvd °n VI d¢ dOvvVd o VI d¢ dOYvVd on VI d¢ dOvvVd i VI d-¢
ﬂgww mﬂw@ NQ@U ﬁg@@
*SEOUR)SUT POzZIs-03Ie] Ul AOUSIDJo 0loIe] PUR oW} ‘A}I[enb Jo SWLIo) UT SOIISLINSY }Ie-0Y)-JO-99e)s jsurede uosLreduro)) 11°C 9Iq%l,
91 0 11 02 0 L 91 0 e 6¢ 0 11 ojIRJ
1C 0 Ve 43 0 e 44 0 eC 4 0 11 ouwILT,
9z 01 6 réé 8 GT réé 01 e1 6 0¢ 9 den
dOVPVH o1 Yd-dSVUD dOVVH °1 Yd-dSVUD dOvvH °1 Yd-dSvUD dOvvdH o1 Yd-dSVUD
4! 0 ST 0T 0 LT GT 0 91 9 0 i ojoIRJ
Al 0 18 91 0 6¢ 61 0 9¢ 9 0 6¢ owIL],
92 11 Q 12 6 ST 44 6 il 0% 1C i den
dOvvH on VI d-¢ dOvvVH on VI d-¢ dOvvVH on VI d-¢ dOvvH on VI d-¢
puen) guan) gueD [ueD)

‘SoouR)SuUl pazis-wunipawr ul %UQQMUEG oOjared pue awar)} "\AHEWNSU JO sunI9} Ul SOTSLINSY jIe-9(}-JO-9)€)s umqﬁdwﬁ QOmM‘HﬁQaOO @N @ﬁﬁ—@rﬁ

2.5. Conclusions 35

2.5 Conclusions

We have presented an efficient evolutionary algorithm for the OP. Essentially, the algo-
rithm follows the steady-state genetic algorithm schema. It differs in that the proposed
method maintains unfeasible solutions during the search and considers specific operators
to recover it when required. An Edge Recombination crossover has been adapted for
the OP, a novel method for node inclusion has been proposed and the Lin-Kerninghan
heuristic has been used to improve route lengths.

The computational experiments have shown that several characteristics are essential
in the effectiveness of the EA4OP. Probably the most relevant feature is the use of un-
feasible solutions during the search process. It allows us to obtain high quality solutions
without being penalized in terms of computational time, as shown in Section 2.4.1. Fur-
thermore, the parameter d2d helps to strike a balance between the solution quality and
the computational time.

To our knowledge, the initialization technique of the solutions used in the EA4OP is
also novel for the OP. In the proposed initialization, the solutions are built based on the
relation between the distance limit and the TSP value of the whole set of nodes (the Lin-
Kerninghan approximation of this value). This relation is used to estimate the amount
of nodes in the optimal solution and then the solutions are built randomly based on this
information. This initialization might be useful, mainly, for population-based algorithms
for the variations of the OP to provide diversity to the initial population.

We consider the adaptation of the ER crossover as a contribution to the solution of
the OP and routing problems in general. In addition to the problems that consist of
permutations, this adaptation also allows us to deal with a wider range of problems
whose solution space consists of simple cycles. Moreover, as shown in Section 2.4.2, the
proposed crossover turns out to be an effective technique to mix solutions in the OP.

Another contribution that we find remarkable for routing problems is the proposed
approach to find the minimum cost insertion in the add operator. When the distance
matrix is given by spatial points, its design allows the use of a data structure, i.e., k-d
tree, that strongly reduces the computational cost, improving the overall results.

All in all, the EA4OP proves to be an efficient algorithm for the OP. Not only does
the EA4OP obtain competitive results in medium-sized instances in comparison to the
state-of-the-art algorithms, but it also achieves outstanding results in terms of quality
in an even lower execution time.

We have tested the EA4OP in 344 instances based on TSPLib. We have found the
EA4OP competitive in medium-sized instances (up to 400 nodes). Comparing the
EA4OP in terms of Pareto efficiency, we have found that from the 180 instances of
the medium-sized set, EA4OP gets 43 Pareto optimums while 2-P TA does so for 72
instances. Also, EA4OP obtains 81 Pareto optimums, while the GRASP-PR does so for
42 instances. As for the medium-sized instances, B&C has been run again with an up-
dated LP solver in a modern machine, and 10 new optimal solutions were found: two in

36 Chapter 2. EA4OP: An Evolutionary Algorithm for the OP

generation 1, four in generation 2 and four in generation 3 (for these instances, execution
in Fischetti et al. [1998] stopped because the time limit was reached).

The computational results on large-sized instances (up to 7397 nodes) are excellent for
the EA4OP in terms of quality and time. Moreover, the EA4OP algorithm found higher
solutions than the ones returned by the exact approach after five hours of computation.
Additionally, the execution time is lower than the ones of the rest of the compared
techniques. Particularly, from the 164 instances of the large-sized set, EA4OP obtained
the Pareto optimum in 118 instances, while the 2-P IA, which turns out to be the most
competitive heuristic algorithm, did it for 5 instances.

Ordering the algorithms in terms of average quality gap, we have obtained the fol-
lowing results: for medium-sized instances, B&C (0.00%), EA4OP (0.63%), GRASP-
PR (0.80%) and 2-P TA (1.31%); and for large-sized instances, EA4OP (0.76%), B&C
(4.21%), 2-P A (5.73%) and GRASP-PR (5.54%).

Ordering the algorithms in terms of average time consumption, we have obtained
the following results: for medium-sized instances, 2-P IA (1.67 sec), EA4OP (2.23 sec),
GRASP-PR (4.32 sec) and B&C (427.32 sec); and for large-sized instances, EA4OP
(990.42 sec), 2-P TA (1899.47 sec), GRASP-PR (5226.42 sec) and B&C (13343.85 sec).

In order to obtain better quality solutions or decrease time consumption, it would
be interesting to advance developing new operators or adapt the ones developed for
other routing problems. Additionally, it could be revelant to build better quality initial
populations. Giving a different a priori probability to each node might contribute to this
aim. Furthermore, it would be challenging to consider the very large-sized instances, in
particular, 26 TSPLib instances left with nodes from 11849 to 85900. Another point
of particular interest would be the application of the EA4OP to solve classical variants
of OP (such as the team OP, the OP with time windows or the time dependent OP)
as well as recent ones (such as the stochastic OP, the generalized OP, the arc OP, the
multi-agent OP or the clustered OP).

CHAPTER 3

Shrinking and Separation Algorithms for Cycle Problems

OUTLINE

In this chapter, we study the shrinking of support graphs and the exact algorithms
for subcycle elimination separation problems. The efficient application of the considered
techniques has proved to be essential in the solution of large-sized Travelling Salesperson
Problem, and this has been the motivation behind this work. Regarding the shrinking
of support graphs, we prove the validity of the Padberg-Rinaldi general shrinking rules
and the Crowder-Padberg subcycle-safe shrinking rules. Concerning the subcycle sep-
aration problems, we extend two exact separation algorithms, the Dynamic Hong and
the Extended Padberg-Grotschel algorithms, which are shown to be superior to the ones
used so far in the literature of cycle problems.

3.1 Introduction

The Travelling Salesperson Problem (TSP) has been the source and the testbed of the
most important techniques developed for the exact solution of combinational optimiza-
tion problems. These techniques have been principally developed in the context of
the Branch-and-Cut (B&C) algorithm, which combines the Branch-and-Bound (B&B)
and the cutting-planes methods, see Applegate et al. [2007] for an historical overview.
Eventually, many of these techniques have been successfully adapted to other related
problems. However, there are procedures, such as the support graph shrinking and some
separation algorithms, that are strongly dependent on the problem peculiarities. As a
consequence, these techniques might not have been adapted yet, or there might still be
room for further improvements.

As TSP is the most well-known cycle problem, we motivate the goals of this chapter
focusing on this problem. When a B&B algorithm is used to exactly solve the TSP,
which is an Integer Problem (IP), the cutting-planes method arises as a natural strategy
to handle at least two situations: the exponential number of constraints of the model

37

38 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

and the consequences of the linear relaxation of the integer problem. Recall that in
a B&B algorithm the branching decisions are made guided by a sequence of Linear
Problems (LP). These LPs are principally obtained by relaxing the integrality and fixing
the variables according to the preceding branching decisions.

Within this approach, the cutting-planes method is required due to the fact that,
in order to define a TSP model, an exponential number of constraints in terms of the
number of vertices in the TSP is needed, see Padberg and Sung [1991]. In order to deal
with this situation, the exact algorithm is initialized with a subproblem of the LP, let us
call this LFPy, that considers a controlled number of constraints. During the algorithm,
the excluded constraints are added to LFP, only if they are required, i.e., if they are
violated by the solution of the LFy. The second reason to consider the cutting-planes
method is that since the variables in the linear relaxation of the TSP are considered
continuous instead of integers, new families of valid inequalities arise (inequalities that
are satisfied by all the cycles), also called cuts, that are not linear combinations of the
constraints defining the TSP. Since the number of branch nodes needed to visit by the
algorithm is reduced, the cutting-planes are very valuable to decrease the solving time
of a B&B algorithm.

Computationally, the most expensive part of the cutting-planes method is to solve the
separation problems. Given a solution of the L Py and an inequality family, the separation
problem for the given family consists of finding either the violated inequalities of the
family or a certificate that no violated inequality of the family exists.

MOTIVATION

The difficulty of efficiently solving the separation problems becomes evident when the
number of vertices of the problem increases. It is well known that, in practice, even a
polynomial time separation algorithm might turn out to be inefficient for certain fam-
ilies. To mitigate this issue, a technique known as shrinking has been exploited in the
TSP, see Crowder and Padberg [1980]; Padberg and Rinaldi [1990b]; Grotschel and Hol-
land [1991]. Shrinking consists of safely simplifying, i.e., without losing all the violated
inequalities of the family, the support graph generated by the solution of the LFPy. This
way, considering that, generally, the separation is harder than the shrinking, the cost
of finding the violated inequalities is reduced because the separation is performed in a
graph involving a lower number of vertices and edges.

In Figure 3.1, a flowchart of a generic B&C algorithm and the separation algorithm
with and without the shrinking.

In the last few decades, many optimization problems have proliferated whose solution
is required to be a cycle, but not necessarily Hamiltonian as in the TSP. This is the case
for some extensions of the T'SP itself, as can be seen in the extensive collection about T'SP
variants of Gutin and Punnen [2007]. For instance, the weighted girth problem, consists
of finding the minimum cost cycle in a weighted graph, see Coullard and Pulleyblank

3.1. Introduction 39

Cutting-planes

A mIEIE R R R R R e e E e

G: G:
support graph support graph
of LP, of LP,
L: a valid inequality family
£: a valid inequality family :>
Shrink G safely for £

Find violated
cuts on £
for G

Find violated
cuts on L
for G

Figure 3.1: In the top, a flowchart of a generic Branch-and-Cut algorithm. BRANCH is an oracle
which returns an unevaluated node in the branching tree. At each action box of the
flowchart the subproblem LP, is updated and solved. In the bottom, the detailed
separation algorithm (SEP) without and with shrinking.

[1989] and Bauer [1997]. Cycles are also the solutions of the Generalized TSP (GTSP)
where the vertices are labeled in clusters and at least one vertex of each cluster is required
to be visited, but not all the vertices, see Fischetti et al. [1995]. Other routing problems,
which are recently gaining popularity because of their wide range of applications, are the
TSP with profits, see Feillet et al. [2005] and Archetti et al. [2014b]. These problems are
the Profitable Tour Problem (PTP), the Orienteering Problem (OP), the Price Collecting
TSP (PCTSP), and their variations. From the TSP with profits, the OP, which consists
of finding the cycle that maximizes the collected vertex profits subject to a cycle length
constraint, is the one which has been most extensively studied. For a recent book on
applications and variants of the OP see Vansteenwegen and Gunawan [2019].

This chapter has three main aims: first, to generalize the shrinking rules (global and
subcycle specific) proposed in the literature of the TSP to the case of cycle problems;
second, to extend in an effective manner the subcycle exact separation algorithms for

40 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

cycle problems; and third, to show experimentally the relevance of the proposed shrinking
rules and separation algorithms. On the one hand, 6 different shrinking rules for cycle
problems are presented in this work, of which three are safe for all the valid inequalities
and three are specifically safe for subcycle elimination constraints. On the other hand,
we extend two exact separation algorithms proposed in Padberg and Grotschel [1985]
and Padberg and Rinaldi [1990b]. We empirically show the contribution of the shrinking
and separation strategies in the time reduction and in the generation of violated subcycle
elimination constraints. For the experiments, we have used 24 instances of the subcycle
separation problem generated in the solution of OP by B&C with up to 15112 number
of vertices. The results show that the speedup of using the combination of the proposed
shrinking and separation techniques is around 50 times in medium-sized instances and
200 times in large-sized instances.

3.2 The Cycle Polytope

Let G = (V, E) be an undirected graph with no loops. Let us define the following sets:

(Q:W):={[u,v] e E:ueQ,veW} QWcv (3.1a)
6(Q)=(Q:V-0Q) QCV (3.1b)
E(Q)=(Q:Q) QCV (3.1¢)
V(T):={veV:TNnW:V)#0} TCFE (3.1d)
N(Q):=V((Q) -@Q QcvV (3.1¢)

where (@ : W) are the edges connecting @ and W, §(Q) is the set of edges in the
coboundary of @ also known as the star-set of @, E(Q) is the set of edges between the
vertices of @, V(T') is the set of vertices incident with an edge set T', and N(Q) are the
neighbour vertices set of Q). For simplicity, we sometimes denote {e} and {v} by e and
v, respectively, e.g., §(v) and V' (e).

We denote by RV and R¥ the space of real vectors whose components are indexed
by elements of V and E, respectively. With every subset T' C E we associate a vector
(vy, x)T = (yT',27) called the characteristic vector of T, defined as follows:

. {1 if v e V(T) o {1 ifecT (52

Yo i = 0 otherwise 0 otherwise

When yl =1, i.e. v € V(T), we say that the vertex v is visited by the edge set 7.

We denote by Cg the set of (simple) cycles of the graph G. We assume that every
cycle 7 € Cg is represented as a subset of edges. Then, the cycle polytope Pg of the
graph G is the convex hull of the characteristic vectors of all the cycles of the graph:

P§ = conv{(y,z)” e RV*E . 7 € Cg} (3.3)

3.2. The Cycle Polytope 41

By definition, a vector (y,x) belongs to Pg if it is a convex combination of cycles of
Cq, ie., (y,z) € Pg if and only if there exists a set of real numbers {)\T}TEcG such that

(ya l’) = Z)\T(y,x)T (3'4)

TECG

Ar > 0 for every 7 € Cg and ZTECG Ar=1.

Similarly, we denote by 7 the set of tours, i.e., Hamiltonian cycles, of the graph G,
and by P:%P the TSP polytope of the graph G. The Pgsp is the convex hull of the
characteristic vectors of all the tours of the graph:

PSop = conv{(y,z)” e RV*E . 7 ¢ T5} (3.5)

Note that, y = 1 is satisfied by every (y,z) € PTGSP. Since, the tours form a subset of
cycles of GG, we have that:
G G
Prsp C PG (3.6)

In order to use Linear Programming based techniques such as the B&C algorithm,
the polytope Pg must be characterized by means of a system of linear constraints. A
complete characterization of the integer points of Pg using only edge variables was given
in Bauer [1997]. In this work, since we find it more convenient to formulate the shrinking
rules of Section 3.3.1 and Section 3.3.2, we consider an equivalent one which uses the
vertex and edge variables for the characterization. For (y,z) € RY*¥ S c V and
T C E, we define y(S) = >, cqyv and z(T) = >°_.p2e. Let us consider the following
constraints:

z(d(v)) — 2y, =0, veV (3.7a)

Yy — Te > 0, YveV, eed(v) (3.7b)

£(5(Q)) — 2 — 2y > 2, veQcv.a<|Ql<|v|-3 (3.7¢)
weV-—-Q

z(F) >3, (3.7d)

1>y, >0, YoeV (3.7e)

ze > 0, Ve e E (3.71)

Ze €7 Ve e E (3.7g)

The degree equations (3.7a) together with the logical constraints (3.7b) and the inte-
grality constraints (3.7g) ensure that the visited vertices have exactly two incident edges
and the unvisited vertices none. The Subcycle Elimination Constraints (SEC) (3.7¢)
ensure that only one connected cycle exists. Throughout the thesis, we use the notation
(Q,v,w) to refer to the SEC defined by the set @ and the vertices v € @ and w ¢ Q.
In the literature, the SECs have also been called Generalized Subtour Elimination Con-
straints (GSEC). The inequality (3.7d) imposes the property that the undirected cycles
contain at least 3 edges. The conditions (3.7¢), (3.7f) and (3.7g) impose that all the vari-
ables are 0-1. Note that the integrality of the y, variables is ensured by (3.7a), (3.7b)

42 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

and (3.7g), and the condition z. < 1 is ensured by (3.7b) and (3.7¢). Considering the
constraints in (3.7), the cycle polytope of a graph G = (V, E) can be expressed as follows:

P& = conv{(y,z) € RV*E : (y,z) satisfies (3.7a), (3.7b), (3.7¢),
(3.7d), (3.7¢), (3.71), (3.7g)} (3.8)

In some problems, for instance OP and PCTSP, a feasible solution must visit a depot
vertex, i.e., yg = 1 for a vertex d € V. In such cases, the family of SECs (3.7c) that
define the cycle polytope can be substituted with the following subfamily:

2(6(Q)) =2y 20, veQCV3<S|QI<[V][-3,d¢Q (3.9)

where each constraint can be represented as (@, v). In a B&C algorithm, where all the
constraints of the model are not considered in the L P, the only advantage by using this
constraint family is that we simplify a vertex in the SEC representation. However, it
has one important disadvantage, in the family (3.9) we might need to consider an SEC
with |Q] > |V|/2, while in the family (3.7¢) it can be considered always a SEC such that
|Q| < |V|/2. Therefore, we always consider the family (3.7c) regardless of whether it is
given a depot or not in the cycle problem.

When a B&C is used to solve a cycle problem, the integrality constraints (3.7g) of the
Pg are relaxed in order to first seek a solution that satisfies the rest of the constraints.
Contrary to this strategy, Pferschy and Stanék [2017] have recently considered again
relaxing the SEC constraints in the TSP, to first solve the resulting problem to integer
optimality with MILP-solvers and then introduce the SECs if required. Despite the
improvement of the new MILP-solvers, this approach is still inferior compared to the
opposite strategy. As a consequence of the continuous relaxation, a solution (y,x) that
satisfies the rest of the constraints of (3.7) might still not belong to Pg . In these
cases, instead of directly resorting to the branching phase to tighten the integrality
gap, we could check if additional (not dominated by those in (3.7)) and facet-defining
valid inequalities for the Pg are violated. The strength of considering additional valid
inequalities was shown in the 1970s in the study of the TSP Grotschel and Padberg [1979].
In Bauer [1997] an extension of the clique trees inequality family (originally defined for
the TSP) was given, which includes the so-called comb inequalities, for cycle problems.

The shrinking rules proposed in Section 3.3.1 are safe for all the valid inequalities for
G

PC .
A polytope that it is closely related to Pg is the so-called lower cycle polytope,

see Bauer [1997]:
LE = conv{P§,(0,0)} (3.10)

where (0,0) € RV*¥ is the vector that represents that no vertex and edges of the graph
are visited. It is easy to see, that for every graph G, so that it contains at least one
cycle, there exist an infinity number of vectors (y,x) € Lo such that z(FE) < 3. Hence,
the polytope Pg is a proper subspace of Lg for every graph G that contains at least

3.2. The Cycle Polytope 43

one cycle. It is crucial to consider the polytope Lg to obtain the shrinking results in
Section 3.3.1.

In a B&C algorithm, it is reasonable to solve the separation problems of the valid
inequality families following an order determined by their complexity. This order defines
a hierarchy of the inequality families and their closure polytopes. We refer to the closure
polytope of an inequality family as the polytope that satisfies all the inequalities of the
given family and its preceding families in this hierarchy.

Without considering the variable bounds (3.7¢)-(3.7f) and the inequality (3.7d), the
simplest inequalities are the degree equations (3.7a) and the logical constraints (3.7b).
These have, respectively, linear and quadratic exact algorithms in terms of the number
of the vertices of G and generally are always included in the LFy. The closure polytope
of the inequalities (3.7a) and (3.7b) (the inequality (3.7d) is excluded to favour the
convexity) turns out to be the undirected Assignment Polytope (with loops), Pf, which
is defined as:

P$ = {(y,z) e RV*F : (y, x) satisfies (3.7a), (3.7b), (3.7¢), (3.70)} (3.11)

Next in the hierarchy comes the SEC family. A straightforward exact separation algo-
rithm for the SECs has O(|V'|*) time complexity (see Section 3.5.3 for further discussion)
and its closure polytope is defined as:

PSpc = {(y,z) € P§ : (y,z) satisfies (3.7¢)} (3.12)

Considering the relationship Pg C PgEC C Pf, the underlying purpose of this chapter
is to effectively determine if a given solution (y,z) € Pf of a LPy belongs to PgEC, or
in case that it does not belong, to provide the violated inequalities.

Throughout the chapter, we make use of the following well-known identity repeatedly.
Given a graph G, a subset S C V and a vector z € R, the identity

2(6(S)) =D x(6(v)) — 22(E(S)) (3.13)

veES

is always satisfied. In addition, if the vector (y,z) € RYV*F satisfies the degree con-
straints (3.7a), then the equations

2(8(8)) = 2y(S) — 22(E(S)) SCV (3.14)

are satisfied by the vector (y,z). Particularly, the identity (3.14) is satisfied by every
vector in Pﬁg P Pg , PEEC and PE.
Let G* = (V*, E*) be the support graph of a given vector (y,x) where
Vi={veV:y, >0} (3.15a)
E*:={ec E:z.>0} (3.15b)

44 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Figure 3.2 shows a support graph obtained when solving the instance pr76 (TSPLIB)
for Generation 1 with B&C, while Figure 3.2 shows its topological representation. In the
figures, the vertices and the edges with value 1 are represented in black. The vertices
and the edges with value in [0.5,1) are represented in red. The vertices in white and
the edges with dashed style represent those with value in (0,0.5). The edges in blue and
double lined style represent those with value greater than 1. The depot vertex of the
OP, the vertex 1, is colored in green.

oo n wa
6s o00g \.4»-01,(/\

oo |
d,

o
'\0//0—"\0/"0/0/ L\»/°‘0/‘4 L<’/

25 26 18 19

° 69

Figure 3.2: Example of a support graph obtained when solving instance pr76-genl by Branch-
and-Cut.

3.3 Shrinking for the Cycle Polytope

Let us introduce the following notation. Given a graph G = (V, E), the vector (y,z) €
RV*F and a subset S C V, we denote by G[S] = (V[S], E[S]) the graph obtained by
shrinking the set S into a single vertex s ¢ V', where the resulting set of vertices and
edges are as follows:

VIS =(V-S)u{s} (3.16a)
E[S]=E(V =S)uU{[s,v]:veV —=Sz(S:v) >0} (3.16D)

and by (y[S], z[S]) € RVISIXEIS] we denote the vector with components

[u,0] Vu,v] € EN E[S] (3.17a)
, (S:v) YoeV -8 (3.17b)
y[S](v) = yy Yo e VNV[S] (3.17¢)

3.3. Shrinking for the Cycle Polytope

45

31

n\ /

?

o
¢
s

:
?
o
*
)
!
°
/

L\
—O.
o S w\,\o\o
(OR'YE \o\o\e
4 N
o ®oq
o %o
@@ © \e»\m\°
®® \o\-/G
@9 M

Figure 3.3: Topological representation of the support graph in Figure 3.2

(3.17d)

Let @ C V be a subset of vertices, we denote with Q[S] the subset derived by shrinking

S

(Q—S)U{s} if SNQ #0

Q otherwise

as-

which has the following associated values:

v@-y@ns)+ N isng 4

y(Q) otherwise

y[SUQIS]) =

(3.18)

(3.19a)

46 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

~ f=((SuQ)) ifSNQ#0
z[S](6(Q[S])) = {m((;@)) therrise (3.19D)
z[S|(E(QLS])) = z(E(Q)) — x(E(QNS)) (3.19¢)

3.3.1 Shrinking for the Cycle Polytope

In this section, we present three shrinking rules that are safe for the Pg . In essence,
we have generalized for every (simple) cycle problem the results obtained by [Padberg
and Rinaldi, 1990b] for Hamiltonian cycle problems. In the following lines, we formalize
the concept of safe shrink for Pg and we prove the lemmas and the theorem in which
shrinking rules for cycle problems are based on. In addition, we show that the three
shrinking rules can be consecutively applied for the Pg .

Based on the definition given in [Padberg and Rinaldi, 1990b] for safe shrinking for
the PTGS p» an analogue definition can be formulated for safe shrinking for the Pg .

Definition 3.1. Given a vector (y,x) ¢ PS, a set S C V is safe to shrink if (y[S], z[S]) ¢
G[S]
pSY.

Note that the definition does not assume a one-by-one relationship between the vio-
lated inequalities of (y,x) and (y[S], z[S]). A set S that is safe to shrink for a separable
solution (y,z) from Pg should be understood as a subset when shrinking it does not
project the solution (y,x) to Pg[s]. When a set S is safe to shrink for a given (y, x), it
is also said that S is shrinkable for (y,).

The definition of shrinkable set does not provide a practical tool for finding them.
Hence, the first goal is to give a set of rules of shrinking for PCG , which are obtained in
Theorem 3.5. The strategy used in [Padberg and Rinaldi, 1990b] to obtain the shrinking
rules for tours cannot be applied directly for simple cycles, because it relies on the fact
that the tours visit every vertex in the graph. So, first we need to obtain the following
lemma.

Lemma 3.1. Let (y,x) € LG be a vector. Suppose that {Q,{u},{v}} is a partition of
V' such that zp,,) = v(u: Q) = z(v: Q) > 0. Then any cycle T of CC that has a positive
coefficient in the convex combination of (y,x), Ay > 0, fulfills one of the following cases:

(i) V(r)c@Q
(i) |TO(u: Q) =lrN(v: Q) =|rN[u,v][=1

Proof. Let Cy, denote the subset of cycles in C that visits the edge [u,v] and has a
positive value, A; > 0. Note that since (y,z) € Lg, then zp,) < vy and zp, 4 < yu. So,
in order to satisfy the degree equations, every cycle 7 in C,, must contain at least an
edge in (u : Q) and (v : Q). Moreover, since 7 is a simple cycle, every T € Cy, crosses

3.3. Shrinking for the Cycle Polytope 47

exactly once (u : @) and (v : Q). Now, let us see that if 7 does not belong to C,, and
Ar > 0, then 7 is contained in). Consider the following inequality:

Thuol = D Acfﬂfu,v] =D A=) A< (3.20a)

CECuw C€Cuv CECuw ec(u:Q)
D30 xal+ Y > Aal=a(u:Q) (3.20D)
CECyw e€(w:Q) CECuv e€(u:Q)

Since xp,) = z(u : Q), we have that x7 = 0 for every e € (u : Q). Similarly, we obtain
that 2 = 0 for every e € (v : Q). Therefore, T is contained in Q. O

Figure 3.4: Illustration of the scenario in Lemma 3.2.

The next result generalizes the main theorem of shrinking in [Padberg and Rinaldi,
1990b]. The principal idea is to use a constant, ¢, to extend the rules of the original paper
(where Vv € V satisfies y,, = 1) for vertices that have fractional value. We also need an
additional hypothesis about the vector (y[W], z[W]) obtained by shrinking the subset
W, the “complement” of S, which is not required for the TSP because it is trivially
satisfied by Hamiltonian cycles.

Lemma 3.2. Given a vector (y,x) ¢ P&, let {S,W,{t}} be a partition of V with 2 < |S|
and ¢ be a constant where 0 < ¢ <1 such that:

(i) y» = c Vv e SU{t}
(ii) x(E(S)) = c-(IS] - 1)
(iii) z(t:S)=c

. G[W
(iv) (yW)xw)) € L™

(v) No cycle in the conver combination of (y[W], x[W]) is contained in S
Then it is safe to shrink S for (y,x).

Proof. Based on the hypotheses i), ii) and iii) of the lemma and the identity (3.14) we
obtain that (S : W) = c and z(t : W) = ¢, as illustrated in Figure 3.4.

48 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Suppose for contradiction that S is not shrinkable, so (y[S],z[S]) € Pg 51 Since

Tisy = x(s: W) =xz(t: W), based on Lemma 3.1, the vector (y[S], z[S]) can be written
as:
(ISl alS]) = Y acly,2)* + Y ally.x) (3.21)

CeEW;S CEWD
where W; is the set of cycles visiting the shrunk vertex s having a¢ > 0 and W) is the
set of cycles contained in W having ozg > (0. Note that Wy might be an empty set. The
. . 0 o
coefficients satisfy > -cpy, ac + 2 cep, ¢ = 1-

By hypothesis the vector (y[W], z[W]) belongs to Lg[m, so (y[W],z[W]) can be writ-
ten as a convex combination of cycles of Cqpy and the vector (0,0). Because of the
Lemma 3.1 and by the hypothesis v) the vector (y[W], z[WW]) can be written as:

W, 2[W]) = > By(y,)" + B0,0)(0,0) (3.22)

nESw

where Sy, is the set of cycles visiting w (the vertex to which W is contracted to) having
By >0, By = 0and 3, s By + Boo =1

Now, considering x(t : s) = x(t : w) = ¢ we have that:

c= Z ar = Z B (3.23)

CGWS nesw

and from the fact that the coefficients sum up to one, we have that:

l—c= Y ad=Bop (3.24)

neEWs

To prove the lemma we follow the “patch-and-weight” strategy used in [Padberg and
Rinaldi, 1990b] for the Pj(-.’YS p whose goal is to reconstruct the cycles and coefficients of
the convex combination of the vector (y,z). According to the vertices in W, we can
partition W; into |W| pairwise disjoint subsets (some of them which be empty). For
j € {1,...,|W]|} let us call Wi the subset of cycles in Wy containing the edge [s, wj],
and denote by C{, ceey C,zj the cycles of W! and by ﬁ{, e ,Bij their coeflicients in the
convex combination. In the same way, we can partition S,, into |S| subsets calling S,
the subset of cycles in S, containing the edge [s;, w]. We denote by 7, ... ,n,ili the cycles
of 8¢ and by ai,... ’O‘?u their coefficients in the convex combination.

The cycles of the convex combination of (y, z) are constructed in two steps. In the first
step, |Sw| copies of each cycle in W, are created. With this goal, for each j € {1,...,|W|}
and for each [€ {1,...,k;}, create |S| copies of the cycle ¢/, and denote them by {77}
for i € {1,...,]S|}. Then, for each j € {1,...,|W|}, foreach ! € {1,...,k;} and for each
i€ {l,...,|S|} create h; copies of Tlij, and denote them by {Tzzl} form e {1,..., h;}. At
this point we have |[Ws|-|Sy| cycles that belong to G[S]. In the second step, these cycles

3.3. Shrinking for the Cycle Polytope 49

of G[S] are extended to cycles of G. To that end, consider each cycle Tgl and remove
the edges [t,s] and [s,w;] and join the resulting path with the path in G[W] obtained
from the cycle 0, by removing the edges [w,t] and [s;, w], and add the edge [s;,w;] to
obtain the extension of Tsz'l to G.

The coefficients of the constructed Tgl cycles are defined in the following way:

ij _ Tlsyuw] 'a{ B;n
ml k. : hi .
erzl Oéi ’ ZT:I 571“
where i € {1,...,|S]}, j e {1,...,|W|}, me{l,...,h} and I € {1,...,k;}. It can be
verified that the coefficients defined this way sum c in total:

Do A= D Ty 1 P (3.262)

(3.25)

ks 1 hi q
ijmid i it Dl O Dy B
= Zx[sﬁqﬂi] =z(S:W)=c (3.26b)
4,J

Then the vector (y,z) can be obtained as a convex combination of the cycles in Wy
and {7,7,} with coefficients {ag} and {\"?}, respectively. We conclude (y,z) € P& which
is a contradiction. O

The lemma gives a sufficient condition for a set to be shrinkable, but still it is not
practical. The next theorem gives three practical scenarios to make use of Lemma 3.2.
Beforehand, let us obtain a useful result for Lg. Consider the undirected version of the
Assignment Polytope (without loops) P} defined as:

Pl = {(y,xz) e RV*F : (y,z) satisfies (3.7a), (3.7b), (3.7f), y = 1} (3.27)

It is a well-known result of the literature that P&, = P} for 3 < |V| < 5 (see [Grétschel
and Padberg, 1979]). This relationship is the key to obtaining the shrinking rules for
the P:% p in [Padberg and Rinaldi, 1990b]. So, we would like to obtain a similar result
for LY and P§. However, LG # P4 when 4 < |V|, as shown in the counterexample of
Figure 3.5. The vector defined in the figure belongs to P§, but it does not belong to
Lg, because it cannot be expressed as a convex combination of cycles.

Nevertheless, we have the following lemma which is enough to prove Theorem 3.5.

Lemma 3.3. Let G = (V, E) be a graph and c be a constant such that 3 < |V| <5 and
0<c<1. If (y,x) € Py such that y, = ¢ for allv € V, then (y,z) € L¢.

Proof. 1t is straightforward that if (y,z) € P4 such that y, = ¢ for all v € V, then
%(y, z) € P}. By the classical result in [Grétschel and Padberg, 1979], since 3 < |[V| < 5,
the equality P}l = Prgp is satisfied. Since PYGS p is contained in Lg, the vector %(y,:c)
belongs to Lg. Then, since both (0,0) and %(y,x) belong to Lg, which is convex, and
0 < ¢ <1 we have that (y,z) € L¢. O

50 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Figure 3.5: An example of a solution that belongs to P§ but not to L& when |V| = 4 (it can
be easily extended for |V'| > 4 by means of subdivisions). All the edges in the figure
have value % The values of the vertices satisfy the degree equations.

Lemma 3.4. Given a graph G such that |V| =5, a vector (y,x) € Lg and 0 < c <1,
suppose that N o) =1 —c. Let {S,{t},{w}} be a partition of V such that wy ., = x(t :
S) =x(w: S) = c, then every cycle T in C& such that \; > 0 is not contained in S.

Proof. Since {S,{t},{w}} is a partition of V, we have that |S| = 3 and |V — S| = 2.
Hence, every cycle in C has vertices in S. According to the number of visited vertices
of S, we can partition C¢ into 3 subsets {C1,C3,C3}. Furthermore, the set C3 can be
partitioned into two subsets, Cg” and C$“, determined by whether the cycles are fully
contained in S or not. Since (y,) belongs to Lg, there is a convex combination of cycles
of C& whose coefficients satisfy

DSTALED A D N > A N =1 (3.28)

TECT T7€Co Tecgut Tecin

Since the cycles in C1, C2 and C§*! have edges in (¢ : S) and (w : S), by the Lemma 3.1,
each cycle has exactly one edge in the mentioned edge sets. Now, consider the hypothesis
that 2(t : S) = ¢ (or z(w : S) = ¢), so the coefficients also satisfy the following identity:

DOMAD N+ DY A= (3.29)

T7eC1 7€Co Tecgut

By hypothesis, we have that A\ = 1 — ¢ and by (3.28) and (3.29), we obtain that
A3 =0 for all T € Cé", which means that every cycle in C¢ contained in S has null
coefficient. 0

Theorem 3.5 (Rules C1, C2 and C3). Given a vector (y,z) ¢ PS5, let S C V with
2<151<3,teV —Sand0<c<1 be such that:

(i) y» = c Vv € SU{t}

(i) x(E(S)) = c- (S| = 1)

(iii) z(t:S)=c

3.3. Shrinking for the Cycle Polytope 51

Then it is safe to shrink S for (y,x).

Proof. Let W =V — (S U {t}) be a subset of V. If the hypotheses are satisfied, note
that T is non-empty. Since 2 < |[S| < 3, we have that 4 < |V[W]| < 5. Notice that,
Yy = c for all the vertices of V[W] and (y[W],z[W]) € Pf[w]. Under these hypotheses,
by Lemma 3.3, the vector (y[W], z[IW]) belongs to Lg[m. When |S| = 2, it does not
exist any cycle contained in S. When |S| = 3, as a consequence of Lemma 3.4, we have
that it does not exist a cycle in the convex combination of (y[W],z[W]) contained in S.
Therefore, the hypotheses of Lemma 3.2 are satisfied and S is shrinkable. O

SHRINKING RULES FOR PCG
From Theorem 3.5, three shrinking rules can be derived, which are summarized in Fig-
ure 3.6: the rules C1 and C2 correspond to the case |S| = 2 and the rule C3 to |S| = 3.

Figure 3.7 shows the resulting graph after applying the C1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.8 shows its topological representation.

.......

.
Saw

Yu =Yv =Yt =C Yu =Y =Yt =C Yu = Yo =Yw =Yt =C
Tlu,p] = € Tlup] =€ Tlu,o] T Tlu,w) + Plo,w) = €
Tltu] =€ Tltu] + Tlgo) = € Tltu) + Tito) T Ttw] = €
Rule C1 Rule C2 Rule C3

Figure 3.6: Hlustration of the three shrinking rules derived from the Theorem 3.5

It is easy to see that rule C2 dominates the rule C1, in fact it is just a particular case
of it. The reason to split them, is that the cost of checking C1 is lower than the cost
of C2. By contrast, rule C3 is not dominated by the rules C1 and C2. In Figure 3.9,
an example is given of a vector (y,z) € P4 in which rule C3 can be applied but not
C1 and C2. For instance, if we consider S = {1,2,3}, W = {4,5,6} and t = 7, then S
is shrinkable by rule C3. Since the vertices and edges have different values, there is no
shrinkable set that can be identified by rule C1 or C2.

A useful property of the rules derived from Theorem 3.5 is that the value of the vertices
is inherited in the shrunk graphs.

Lemma 3.6. Under the hypotheses of Theorem 5.5, y[S](v[S]) =y, for allv € V.

52 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

14 15 37)—(38 60) 61

13 \ 10 59 / 63
. .
33 57 56 70
54
a1 53 o
6 42 6
B8 19
: 00 b ® “
g o " ®
©)

Figure 3.7: Resulting graph after C1 shrinking strategy

60’57

N

/ 33
38
4 \ 13 15 44
\ i
63 2 - / " s
» AN 3
12 e 9 8
2
66 \
27 10 0 2 62
73 2 u /\° A8 5
— @\'
o o
54 @ L 12
. © @ Co
7 52
51 16 @ 5 13 14
° 41
31 a 23 29
o = 20

61 / \ 56 59
00 :

Figure 3.8: Topological representation of the graph after C1 shrinking strategy

Proof. For every v € V —S, we have y[S](v[S]) = y, by definition. Since 2y, = z(4(5)) =
2y, for v € S we obtain the result of the lemma. O

3.3. Shrinking for the Cycle Polytope 53

wino ol

Figure 3.9: Example of a pair G and (y,z) € P4 where rule C3 can be applied but not rules
C1 nor C2. The values of the edges are the ones detailed in the legend and all the
vertices have value 1.

In the preprocess of separation algorithms, it is desirable to perform multiple consecu-
tive safe shrinkings. For that aim, we need to analyse what happens with the hypotheses
of Theorem 3.5 after the contraction of a shrinkable set. More precisely, we need to see
when the shrunk vector belongs to Pf.

Lemma 3.7. Let S be a shrinkable set for (y,x) € Pf obtained from Theorem 3.5 using
the {S, W, {t}} partition. Then, (y[S],z[S]) satisfies the degree equations and the logical
constraints associated with every edge in E(W)U (t: V). In addition, we have either

. G[S
i) (18], 215) € P{, or
i) Jw € W such that y, < ys and yuw < Ty < Ys

Proof. From the definition of the shrunk vector, it is clear that (y[S], z[S]) satisfies the
degree equations. Since v € S satisfies y, < 1, ys = y, also satisfies ys; < 1. Moreover,
Tio = Ys = Y- f x(w : §) < yy for all w € W then (y[S], z[S]) satisfies the logical

constraints and (y[S], z[S]) € Pf[s]. If the previous is not true, there exists a vertex
w € W such that z(w : S) > y, and y,, < ys (because by hypothesis (y,z) € PY).
Therefore, the logical constraint x(,, g < yu, is violated for (y[S], z[S]) by a vertex w € W
such that y,, < ys. O

There are two scenarios where the shrunk vector always belongs to PAG. First, when
all the vertices of V' have the same y value, as is the case when (y,z) € PTGS p, and
secondly, when only rule C1 is applied. The next theorem shows that if (y,z) € P§, it
is possible to shrink a subset S obtained by the rules of Theorem 3.5 and continue with
further safe shrinkings regardless of whether or not (y[S], z[S]) belongs to PE[S].
Theorem 3.8. Given a vector (y,x) € Pf, it is safe to consecutively apply the shrinking
rules derived from Theorem 3.5.

Proof. Let S be a subset obtained from Theorem 3.5 such that (y[S], z[S]) ¢ PE[S]. By
Lemma 3.7 we know that the only violated logical constraints of (y[S],z[S]) consist of

54 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

edges whose vertices, s and v € W, have different values y, < ys. Notice that in the
proof of Theorem 3.5 the hypothesis that the logical constraints are satisfied is used twice.
First in Lemma 3.1, which is applied for vertices having the same value. Secondly in
Theorem 3.5, where it is assumed (y[N], z[N]) € PE[N] for a given subset N of V[S]. In
order to see that this last hypothesis is always satisfied by every shrinkable set candidate,
let us suppose that {M,N,{r}} is a partition of V[S] that satisfies hypotheses i), ii)
and iii) of Theorem 3.5. Then there are two possible cases: v € M U {r} and s € N,
or vice versa. The hypothesis (y[N],z[N]) € PE[N] is satisfied in both cases, because
T < Yn = Yu for u€ M U{r}. O

Another interesting scenario occurs when there is at least a vertex v € V satisfying
1y = 1, as happens in the context of cycle problems with depot. In all these problems,
the case ii) of Lemma 3.7 has a special meaning as shown in Theorem 3.10.

Lemma 3.9. If (y,z) € RV*¥ satisfies the degree equations (3.7a) and u,v € V are two
vertices such that () > yu then x(3({u,v})) < 2y,.

Proof. As (y,x) satisfies the degree equations:
2 < 2pun) = 20 + 250 — 2(6({u,})) (3.30)
0
Theorem 3.10. Given a vector (y,z) € P§, let O = {v € V : y, = 1} be the subset

1
of wertices with value equal to one and S be a shrinkable set for (y,z) obtained from
Theorem 3.5 such that O — S # (). Then, we have either

i) (y[S],2[S)) € PSS, or

it) Jw € V — S such that, for everyu € S and v € O — S, the SEC (S U {w},u,v) is
violated by (y, x).

Proof. Note that, in the case ii) of Lemma 3.7, the vertex w € V' —S cannot be contained
in O because 3, < 1. Now, as a consequence of Lemma 3.9 we can rewrite the second
case.]

3.3.2 Safe Shrinking Rules for the Subcycle Closure Polytope

Depending on the inequality, more aggressive contractions can be employed as a prepro-
cess of separation algorithms. In the TSP, for the subtour separation problem, [Crowder
and Padberg, 1980] introduced subtour specific shrinking rules to simplify the support
graphs before proceeding with the separation algorithms. With the aim of motivating
the concepts in the subcycle-safe shrinking procedure, let us prove the following result.

Lemma 3.11. Given a vector (y,x) € P§ and an edge e € E, let S = V (e) be the subset
associated with the edge e. If (y[S],z[S]) € PgE[SC],, then either

3.3. Shrinking for the Cycle Polytope 55

i) (y,x) € PSGEC, or
it) every violated SEC (Q,r,t) for (y,x) satisfies SNQ # 0 and S — Q # 0

Proof. Let e = [u,v] be the given edge and (@, r,t) be a SEC for (y,x) such that S C @
(or S C V — Q). On the one hand, since (y,z) € P§, we have y[S](u[S]) > y, and
y[S](v[S]) > y». On the other hand, z[S](6(Q[S])) = z(6(Q)) by definition. Then the
SEC (Q[S], r[S],t[S]) for (y[S],z[S]), is at least as violated as (@, r,t) for (y,x). So if
(y[S], z[S]) € Pﬂ%, and (y,z) & P§yq, the only violated SECs for (y, z) are associated
with subsets that separate u and v.]

Recall that we want to search the violated SECs for a vector (y,z) € Pf, which has
been obtained from the LP; subproblem. Let us assume that we have defined a first
shrinking rule that contracts edges by avoiding the scenario ii) of Lemma 3.11. So if

(y,x) ¢ PgEC, as a consequence of the lemma, (y,z) ¢ ngscl In this case, the vector
(y[S], z[S]) does not belong to the closure of SECs because either there exists violated
logical constraints, SECs or both. Let us suppose that we have a second shrinking rule
that identifies (and saves) the violated logicals and “fixes” them. Repeatedly applying
the second rule, we will eventually reach a vector that satisfies the logical constraints.
Now, we are in a similar situation to the starting point, so we can try with the first rule
again and so on. This is the main idea exploited in the subcycle-safe shrinking process.

Definition 3.2. Given a vector (y,z) € RV*F that satisfies the degree equations, a set
S = {u,v} C V is subcycle-safe to shrink if at least one of the following conditions is
satisfied:

. G[S
i) (ylS).lS]) ¢ PSeer or
it) if there exist violated logical constraints for (y,x), these are associated with the edge
[u, v]

Note that the second condition does not require the existence of violated logical con-
straints for (y,z), which enables the subcycle-safe shrinkable set definition for vectors
(y,x) in P§po to be used. Furthermore, this condition means: if we have already found
a violated constraint, we should not worry if later the shrinking the vector is projected to
the subcycle closure polytope, since we have already achieved the goal of the separation
problem.

In some sense, from Theorem 3.13 we derive the first shrinking rule of the motivation
above and from Theorem 3.14 the second shrinking rule. The condition that avoids
the case ii) of the Lemma 3.12 is the hypothesis x(, ,) > max{y,,y»} in the theorems.
Actually, the hypothesis that (y,z) € Pf of the first rule can be replaced with the
hypothesis that all the logical constraints associated with vertices u and v (excluding
the one with [u,v]) are satisfied, which is a consequence of the hypothesis Tlyp] >
max{yy, Yy }. Let us address the next lemma as an intermediate step.

56 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Lemma 3.12. Given a vector (y,xz) € RV*F that satisfies the degree equations, let
S ={u,v} CV be a subset such that x,) > max{yu,yv}. Then, if (y,x) & Pf, at least
one of the following conditions is satisfied:

i) (ylS),z[S]) ¢ PS™, or

i) if there exist violated logical constraints for (y,x), these are associated with the edge
[u, V]

Proof. On the one hand, since z({u,v} : w) > @[, and z({u,v} : w) > T, for all
w € V — {u, v}, every violated logical constraint for (y,z) associated with the vertices
in V' —{u, v} can be adapted to violated constraints for (y[S], z[S]). On the other hand,
since Ty,) > max{yy, Yy } and the degree equations are satisfied, we have that Zluw] < Yu
and [,] < yy for all w C V —{u,v}. Therefore, if (y[S], z[S]) € PE[S], the only possible
violated logical constraints associated with the vertices of S correspond with the edge
[u, v]. O

The SEC inequalities (3.7¢) are defined for sets, @, such that 3 < |Q| < |[V]| — 3.
However, if (@, u, v) violates for (y,) the inequality of (3.7¢) but |Q| = 2 or |Q] = |V|-2,
then a violated logical constraint can be identified and therefore we also know that
(y,x) ¢ P§yq. For instance, if ({u,w},u,v) does not satisfy the inequality (3.7c), then
Tuw < Y 18 a violated constraint. In the following proofs, the term violated SEC,
embracing the cases |Q[S]| = 2 and |Q[S]| = |V[S]| — 2, refers to its associated violated
logical constraint when required.

Theorem 3.13 (Rule S1). Given a vector (y,z) € RV*F that satisfies the degree equa-
tions, let u,v € V' be two vertices such that xj,] = yu = Yo = c. If there exists a vertex
w eV —{u,v} such that y,, > ¢, then it is subcycle-safe to shrink S = {u,v}.

Proof. Assume the vector (y,) belongs to P{, i.e., only violated SECs exists for (y, z),
otherwise the theorem is satisfied by Lemma 3.12. Let (Q,r,t) be a violated SEC for
(y,x), and without loss of generality, suppose that S N Q # (. The goal is to see that
for a violated SEC for (y, z), there is a violated SEC for (y[S], z[S]).

First, let us suppose that S C @, where z[S](0(Q[S])) = z(6(Q)) is satisfied by def-
inition. The only case that is needed to check is when r € S. Without loss of generality,
suppose that r = v. By hypothesis yu, = z[,), 50 2y» = 2(3(S)) = 2y[S](v) and
(Q[S], y[S](s),y[S](r)) define the desired SEC for (y[S], z[5]).

z[S](6(Q[S])) = x(6(Q)) < 2yv + 2y — 2 = 2y[S](s) + 2y[S](t) — 2 (3.31)

Next, let us analyze the case SN Q #) and Q — S # (. Without loss of generality,
suppose that u € @ and v,w € V —). The subcase that requires a special attention is
when 7 = u and t = v. Note that, since (y, x) satisfies the degree equations and, also by
hypothesis, y, = 2[,,), we have that z(v: V — Q) < x(v : Q), and therefore:

z[S](6(Q[S])) = z(6(Q U S)) (3.32a)

3.3. Shrinking for the Cycle Polytope 57

=z(0(Q)) + z(6(v)) — 2z(v : Q) (3.32b)
=2(0(Q)) +z(v:V-Q)—z(v:Q) <z(6(Q)) (3.32¢)
<O+ 2y, — 2= 2+ 2 — 2 = 2[S)(r) 1 2(S)(w) 2 (3:320)

Hence, there also exists a violated SEC (or logical constraint) for (y[S],z[S]) and the
set S is subcycle-safe to shrink. O

Figure 3.10 shows the resulting graph after applying the S1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.11 shows its topological representation.

73

Figure 3.10: Resulting graph after S1 shrinking strategy

Clearly, the shrinking rule S1 dominates the rules C1 and C2 of Theorem 3.5. For
every scenario where rules C1 or C2 can be applied, rule S1 is also applicable, since the
existence of w € V — {u,v} is determined by the vertex t € V' — {u, v} in Theorem 3.5.
Moreover, rule C3 should not be combined with rule S1, since might exist vertices with

the same y value whose connecting edge has a greater value in the shrunk graph obtained
by S1.

Theorem 3.14 (Rule S2). Given a vector (y,z) € RV*F that satisfies the degree equa-
tions, let u,v € V' be two vertices such that xj,] > max{y,, Yy} then it is subcycle-safe
to shrink S = {u,v}.

Proof. The theorem is a direct consequence of Lemma 3.12. O
Note that, if (y,x) € Pf and S is a shrinkable set obtained from Theorem 3.5, then

by Lemma 3.7 we have that x. < max{y,,y,} for every e = [u,v| € E[S]. Hence, it only
makes sense to use the rule S2 in combination with the rule S1.

58 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

74

33 73

49

46

/
oy v,
1

; 15
42 13 9 10 "
0o : -
67 31 a
44 . n
57 58 o 54

®
?
°

Figure 3.11: Topological representation of the graph after S1 shrinking strategy

Figure 3.12 shows the resulting graph after applying the S1 shrinking strategy to the
support graph in Figure 3.2, while Figure 3.13 shows its topological representation.

73 72
7

20 24 4347 66

Figure 3.12: Resulting graph after S1S2 shrinking strategy

If a subcycle-safe rule is applied, we know that all the SECs have not vanished. How-
ever, new violated SECs for (y[S], z[S]) might have appeared, which cannot be adapted

3.3. Shrinking for the Cycle Polytope

29

59 57 54

67

51 50 49
68 32 5
2 29 25 24 .
(319}
69 34 12 56
1 / 10
31
. . @
27 / X 66
42 7 38\ 33 37
75
7 5 /

70 L

1
35 . ’/ \
-Q\
40
14 S
8

2y @ 19

22

e @ L ow
44

23

47

41
20 4
30
65

28

62
53

61

- T 63

Figure 3.13: Topological representation of the graph after S1S2 shrinking strategy

to a violated one for (y,z). This situation would lead to identifying unnecessary cuts for
(y, x) and therefore to slowing down the separation algorithm (the cut generation part).
It is reasonable to ask when the violated SECs for (y[S], z[S]) can be transformed to vio-
lated SECs for (y,x) and when not. Let us define the mapping by mg : P(V[S]) — P(V)

7TS(Q):{Q—{s}us ifseQ 5.35)

Q otherwise

For a given S, the inverse, 7T§1, of the mapping g is the set shrinking defined in (3.18),
ie, m5'(Q) = Q[S]. We have that Q = mg'(7g(Q)) for all @ C V[S] and Q C
ms(mg(Q)) for all Q C V. An important property of the mapping 7g, by the defi-
nition (3.19¢), is that 2(d(7s(Q))) = z[S](6(Q)) for all @ C V[S]. In some cases, we will
need to refer to the set obtained by unshrinking completely the contracted sets, where
multiple shrinking might have been performed, e.g., G[S1][S2]. In such cases, we simplify
the notation and denote 7(Q), e.g., 7(Q) = 7s, (75, (Q))-

When an inequality family is targeted in a separation problem, knowing the represen-
tation of such inequalities, as is the case for the SECs, is very valuable to study how
an inequality is transformed when shrinking and unshrinking a set. Moreover, since
z(6(rs(Q))) = z[S](6(Q)) for all @ C V[S], understanding the relationship between y
and y[S] values is the key point to see how the violated SEC inequalities behave under
the different shrinking rules.

Lemma 3.15. Given a vector (y,x) € RV*E that satisfies the degree equations and a
subset S = {u,v} of V. The following holds:

Z) y[S](U[S]) > Yo Z'fw[u,v] < Yu

60 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

7’7’) y[S](U[S]) < Yo ifx[u,v] > Yu
iti) y[S1(v[S]) = yv i Tfu) = Yu

Proof. 1t is a consequence of the definition of y[S] and the identity (3.14). O

Lemma 3.16. Under the hypotheses of Theorem 3.13, y[S](v[S]) =y, for allv € V.

Proof. For every v € V. — S, we have y[S](v[S]) = y, by definition. For u,v € S, since
Yu = Yv = T[yn], We obtain the equality by Lemma 3.15. O

Lemma 3.17. Let G be an undirected graph, (y,z) € RY*E be a vector and a vertex
subset S C V. Suppose that y[S](u) < y(v) for all w € VI[S] and v € wg(u). Then, for
each SEC for (y[S], z[S]) there exists at least one SEC as violated as it for (y,x).

Proof. Note that, if r € Q and t ¢ @ then u € 75(Q) and v ¢ 7wg(Q) for all u € wg(r)
and v € mg(t). Let (@, r,t) be a SEC inequality violated by (y[S], z[S]). Therefore, the
SEC inequality (7s(Q), u,v) is violated by (y,z) where u € mg(r) and v € 7g(t).

3(73(5(735(62))) — 2y — 2y, < x[S](0(Q)) — 2y[S](r) — 2y[S](t) u € mg(r) and v € wg(t)
3.34
OJ

Corollary 3.18. Let G be an undirected graph and (y,z) € RV*F be a vector. If S is
a shrinkable subset obtained by rules C1, C2, C3 or S1, then (y,x) ¢ PgEC if and only

. G[S
if (yIS], 1)) ¢ PSie-
Proof. 1t is a consequence of Lemma 3.6 and Lemma 3.16. 0

When rule S2 is applied, as a consequence of Lemma 3.15, some vertices of the shrunk
graph will have lower values than the original ones. Although, by the definition of
subcycle-safe shrinking, all the violated SECs for (y,x) are not vanished, we might lose
some of them in the shrinking process. However, it could be interesting to identify
and save those excluded violated SECs if possible. For that aim we consider a vector
m[S] € RVIY! defined as m[S](v) = max{y, : u € mg(v)}. It is clear that if only the
rules of Theorem 3.5 and the rule S1 are applied, m[S](v) = y[S](v) for all v € VIS].
Considering the vector m[S], we evaluate a SEC (Q, u,v) for a given vector (y[S], z[S])
by the expression

z[S](6(Q)) — 2m[S](u) — 2m[S](v) > -2 (3.35)

and only if this is violated, we save the SEC (Q, u,v) for (y,z).

3.4. Separation Algorithms for Subcycle Elimination Constraints 61

3.4 Separation Algorithms for Subcycle Elimination Constraints

In this section, we present two exact separation algorithms for SECs in cycle problems.
Given a vector (y,x) € P§, an algorithm which finds violated SECs for (z,y) is called a
separation algorithm for SECs. A separation algorithm is called exact if it always finds
violated inequalities when they exist, otherwise it is called heuristic.

Before delving into the separation algorithms in depth, we need to make an observation
which has important consequences for SEC separation problems in cycle problems. In
the TSP, the y values are fixed to 1, so the constraints in the family (3.7¢) only depend
on the star-set value of subsets of vertices. For this reason, the SEC separation problem
for the TSP is closely related with the minimum cut problem, particularly, the most
violated SEC for (y,z) is in correspondence with the global minimum cut of G*.

SEC SEPARATION PROBLEM AND MINIMUM CUT PROBLEM

In cycle problems in general, the SECs (C, v, d) obtained from the global minimum cut
of G*, z(C : V — (), might not be violated, although other violated SECs for (y,z) can
exist.

This scenario is shown in the example in Figure 3.14. The global minimum cut in the
figure is obtained by C' = {4} and because |C| < 3, by definition (3.7¢), there is no vio-
lated SEC inequality of type (C,v,u) (or equivalently of type (V —C, v, u)). However, the
SECs ({2,3,8},2,6) (or ({1,4,5,6,7,9},6,2)), ({2,3,4,8},2,6) (or ({1,5,6,7,9},6,2))
and ({2,3,4,5,8},2,6) (or ({1,6,7,9},6,2)) are violated for the vector (y, x) represented
in Figure 3.14.

W NI~ = 00

Figure 3.14: An example of a vector (y,x) where the associated SEC with the global minimum
cut of the support graph is not violated, while violated SECs for the vector exist.
The edge values of the vector (y,x) are detailed in the legend, while the vertex
values are derived by the degree equations.

The straightforward exact algorithm to find violated SECs for (y,), consists of solving
(‘V;‘) number of (s,t)-minimum cuts problems on G*, one for each pair of different
vertices, and then evaluating the associated inequality (3.7c¢) using the y values of the
pair of vertices. When using the push-relabel algorithm in [Goldberg and Tarjan, 1988]

62 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

with highest-level selection and global relabeling heuristics to solve the (s,t)-minimum
cut problems (or better said, to solve its dual: the (s,t)-maximum flow problems), the
straightforward exact strategy has a O(|]V*|*\/|E*|) time complexity. Note that for
cycle problems in general, the algorithm in [Hao and Orlin, 1992] cannot be used to
find the most violated SEC. Although this algorithm solves the global minimum cut in
O(|V*|?2\/|E*|) steps, which might be very useful, particularly for the TSP, in a general
cycle problem the global minimum cut might not correspond with a violated SEC as
shown above.

The proposed separation algorithms in this chapter, the Dynamic Hong’s algorithm
and the Extended Padberg-Grotschel algorithm, are two exact algorithms for cycle prob-
lems that run in O(|V*|3/|E*|). They are motivated by two observations made in [Fis-
chetti et al., 1997]. First, for a given pair of different vertices u,v € V', the most violated
SEC, (@, u,v), corresponds to the subset @ such that (Q : V — Q) is a (u,v)-minimum
cut. Secondly, for a given subset @, the most violated SEC, (Q, u, v), corresponds to the
vertices u = argmax{y, : w € Q} and v = argmax{y,, : w € V — Q}. The next two
algorithms exploit these two observations, in order to guarantee that the most violated
SEC for (y,x) is identified.

3.4.1 Dynamic Hong’s Exact Separation Algorithm

The Hong’s exact approach, which emerged in the context of the TSP, consists of solving
only |V*| — 1 number of (s,¢)-minimum cut problems, by fixing a random vertex, s, as
the source of all the minimum cut problems, at the expense of possibly losing a subset
of violated cuts, see [Hong, 1972].

This exact approach can be extended for cycle problems, by selecting s as a vertex of
V* with maximum y value. Based on the second observation in [Fischetti et al., 1997],
an s selected this way will belong to the most violated SEC corresponding to every
subset Q). However, since to define a SEC we need to select another vertex in V* — {s},
based on the first observation, we consider for each ¢ € V* — {s} the subset @ such
that (Q : V — Q) is a (s, t)-minimum cut. This shows that the extension of the Hong’s
approach for cycle problems is also an exact separation algorithm.

Let us suppose that the vertices V* = {v], ... ’UI*V*I} are ordered decreasingly by ¢ and
define the source s; = v{ and the sink ¢; = v}, for all i € {1,...,|V*| —1}. In [Fischetti
et al., 1998] and [Bérubé et al., 2009], after each (s;,t;)-minimum cut, (Q : V — @), they
increase the weight of the edge [s;,t;] by 2 — 2(0(Q)), in order to prevent collecting the
same SEC in subsequent iterations. A disadvantage of this strategy is that the degree
equations are not satisfied anymore. In Theorem 3.20 we achieve the same objective by
shrinking the set {s;,¢;}, with the extra feature of reducing the size of the graph for the
following iterations.

The underlying idea of Theorem 3.20 comes from the shrinking rule for minimum cut
problems, Theorem 3.3, in [Padberg and Rinaldi, 1990a]. This theorem says that the

3.4. Separation Algorithms for Subcycle Elimination Constraints 63

edges having a value greater than or equal to the upper bound of the minimum cut can
be contracted. However, this rule is not safe for SECs in cycle problems. For instance,
based on Theorem 3.3, in Figure 3.14 we would shrink the set {2,6} because the value of
the edge [2, 6] is equal to the global minimum cut value z(C : V — C'). However, because
all the violated SECs in the figure consider the vertices 2 and 6 as disjoint ones, it is not
safe to shrink the set {2,6}.

Lemma 3.19. Given a vector (y,x) € RV*F that satisfies the degree constraints and
four vertices u,v,u ,v" € V* such that yy + yy > Yy T Y, let (Q:V*—Q) be a (u,v)-
minimum cut and (Q : V* — Q') be a (u',v")-minimum cut in G*. If (Q',u',v") is a
strictly more violated SEC' than (Q,u,v), then both u,v vertices belong either to Q' or

’

V- Q.

Proof. Suppose that (Q',u',v) is a strictly more violated SEC than (Q,u,v), then:

2(6(Q)) — 2yu — 2y0 +2 > 2(8(S)) — 2y, — 2y, +2 (3.36a)

2(6(Q)) > 2(8(5)) + 2yu + 2yy — 2,/ — 2y, (3.36b)

2(6(Q)) > 2(5(9)) (3.36¢)

Since z(6(Q)) = z(Q : V* — Q) is the value of the (u,v)—min/imum cut z/md x(é(Q’)) is
strictly smaller than it, then both u and v belong either to @ or V — @ . O

Theorem 3.20 (Rule S3). Given a vector (y,x) € RV*E satisfying the degree equations,
consider u,v € V* such that min{y,, y,} > yw for allw € V*—{u,v}. Then, after solving
the (u,v)-minimum cut problem and collecting, if any, the associated violated SECSs, it
is subcycle-safe to shrink S = {u,v}.

Proof. The theorem is a direct consequence of Lemma 3.19. O

The dynamic Hong’s algorithm is based on Theorem 3.20, and it takes its name because
the source, s, for the (s,¢)-minimum cut problems might not be the same as in the
classical approach. The algorithm works as follows: suppose that the vertices of V*
are ordered decreasingly by y, and set for the first minimum cut problem s; = v} and
t1 = v3. Next, we solve the (s1,t;)-minimum cut problem, evaluate the obtained SEC
candidates and, thereafter, shrink {s;,#1}. To proceed with the subsequent iteration,
we need to know if the ordering of the vertices has changed after the {s1,¢;} shrinking,
so we consider the Lemma 3.15. When the logical constraint x,, ;] < ys, is satisfied,
we have that y[{s1,t1}](s1[{s1,t1}]) >y, > y» for all v € V* — {s1,¢1}, and, hence, the
vertex s1[{s1,t1}] will be “again” the source of the subsequent minimum cut problem.
However, when zs, ;) > ys,, it might happen that y[{s1,t1}](s1[{s1,%1}]) < y» for some
v € V*—{s1,t1}. In this situation, after shrinking the set {s1,¢;}, we will need to reorder
the vertices of V*[{s1,t1}] decreasingly by y (rearrange si[{s1,?1}] in the set V*). So
now, to proceed, we set as s9 and to, the first two vertices of V*[{s1,t1}], continue by
solving the (s2,t2)-minimum cut problem, evaluating the possible violated SECs and
shrinking {sq, 2}, and so on.

64 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

3.4.2 Extended Padberg-Grotschel Exact Separation Algorithm

[Padberg and Grotschel, 1985], showed a different exact separation algorithm for SECs in
the TSP, whose key component is the multitermal flow algorithm proposed in [Gomory
and Hu, 1961]. A multitermal flow algorithm is solved, in turn, using the so-called
Gomory-Hu tree, which can be constructed solving a |V*| — 1 number of (s, ¢)-minimum
cut problems.

In [Fischetti et al., 1997] it was mentioned that an analogue approach to the one given
for the TSP might be used for the SECs in the cycle problems, but no details were given
to illustrate how this approach should be extended. However, note that the adaptation
of the Padberg-Groétschel approach for cycle problems is not trivial. The algorithm
in [Padberg and Grotschel, 1985] for the TSP relies on the correspondence between the
most violated subtour elimination constraint for (y,z) and the global minimum cut of
G*, which is not always the case in general cycle problems (this might not even be
violated while other exist).

In cycle problems, Gomory-Hu trees were used to find violated SECs in [Bauer et al.,
2002] for the Cardinality Constrained Cycle Problem (CCCP) and in [Jepsen et al.,
2014] for the Capacitepd Profitable Tour Problem (CPTP). Nevertheless, in absence of
details of the approach used to identify the violated SECs, we understand that in both
papers the selected inequality corresponds with the global minimum cut. Therefore,
these separation algorithms for SECs should be considered as heuristics. As far as we
know, an exact extension for the Padberg-Grotschel separation algorithm for SECs in
cycle problems has not been detailed in the literature.

In order to extend the separation algorithm for cycle problems, we need to construct a
Gomory-Hu tree, T = (V*, Ar), of the support graph G* with weights (y, z). However,
unlike in the original approach, the tree 1" has to be constructed as a directed rooted
tree, where the root is set as a vertex of V* with maximum y value. Let us denote by
A(v) the set of descendant vertices of v € V* and by r the root of the tree 7. We
consider that every vertex is descendant of itself, i.e., v € A(v). Suppose that the arcs
of Ar are in the descendant orientation, and call h. the head vertex of an arc a. Given
a € Ap, we define

ug =argmax{y, : v € A(hg)} (3.37a)
v =argmax{y, : v € V* — A(hy)} (3.37Db)

which identifies the vertices, u, and v,, with the maximum y value for each of the two
connected components of the graph (V*, Ar — {a}). Note that, from the way that we
have chosen the root, we can assume that v, = r. Then, once the directed rooted
Gomory-Hu tree is constructed, the violated SECs are collected in O(V*) computational
time. With that aim, we check for each arc a € Ap (|Ap| < |V*|) if the inequality
Wq — 2Yu, — 2yr > —2 is violated, being w, the weight of the arc a in the Gomory-Hu
tree T representing the (s,t)-minimum cut for the two extreme vertices of the arc a. If
this happens, the violated SEC is defined by (A(hy), ug, 7).

3.4. Separation Algorithms for Subcycle Elimination Constraints 65

Note that this can be done efficiently because the u, vertices of the arcs can be updated
without an extra computational overhead. At every step of the Gomory-Hu algorithm,
when a new arc is added to the tree, the descendant vertices are identified, which can be
grasped to update the u, vertices. Also, with a proper implementation of the Gomory-
Hu algorithm, it is possible to maintain the subset that contains the selected r as the root
of the subsequent trees. For more details, see the pseudocode in the Appendix A.1.3.

In a similar way to the extension of Hong’s approach, it can be shown that the ex-
tension of Padberg-Grotschel is exact for cycle problems. In this case, the root vertex r
plays the role of s, whereas each arc a € Ay identifies simultaneously a vertex in V — {r},
t = hg, and its associated (s,¢)-minimum cut. Furthermore, it goes one step beyond,
based on the second observation, it considers u, instead of h,. Hence, the number of
violated cuts found by the extension of the classical Hong’s approach is dominated by
the extension of the Padberg-Grotschel approach.

According to our experiments in Section 3.5, the Extended Padberg-Grotschel ap-
proach consumes a much lower computational time than the Extended Hong approach,
although both approaches have the same worst case running time complexity. This
happens because the subsequent (s,¢)-minimum cut problems are solved in subgraphs
of G* in the Gomory-Hu tree based approach. When the problem size increases, the
time needed for the shrinking and unshrinking operations during the Gomory-Hu tree
construction is insignificant compared to the time needed to solve the (s,t)-minimum
cut problems. Therefore, in addition to potentially finding more violated SECs, the
Extended Padberg-Grotschel is a faster exact separation algorithm than the Extended
Hong’s Algorithm.

In Figure 3.15, we illustrate the Extended Padberg-Grotschel approach to find the
violated SECs for the vector (y, z) defined in Figure 3.14. The weight w, of each a € Ap
in the tree is detailed above the arcs, and the y values of the vertices u, and v, are
detailed inside a box, at the top and at the bottom respectively, near the head vertex of
the arc. Two violated SECs are identified ({2,3,4,5,8},2,6) and ({2,3,8},2,6). Note
that, if in this particular tree, the vertex 2 is chosen to be the root, only the violated
SEC ({1,6,7,9},6,2) (equivalent to ({2,3,8},2,6)) is collected, which shows that the
exact algorithm is sensible to the directed rooted Gomory-Hu tree construction.

Although, the detailed approach until now always finds violated inequalities when
they exist, extra violated SECs can be collected using a more exhaustive search whose
cost is O(|[V*|?). Observe that z(6(A(hq) U A(hy))) < w, + wy for every a, f € Ar.
Then, we can define () = max{yu,, yu, } and check if w, +wy — 2y (4 5) — 2yr < —2
for each pair arcs of Ap. This way, the violated SEC ({2, 3,4, 8},2,6) in Figure 3.15 can
be identified. We have not made use of this kind of extra SECs in our experiments.

66 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Figure 3.15: An example of the directed rooted Gomory-Hu tree for the SEC separation problem
of Figure 3.14. The u, (below) and v, (above) values are detailed in the boxes. The
arc weights are detailed next to the arcs.

3.5 Computational Experiments

In this section we describe the results of the computational experiments for the shrinking
and the exact separation algorithms for SECs. These experiments have been designed
with two goals in mind. First, to show the importance of the shrinking technique for
cycle problems, and second, to evaluate the performance of different combination of
shrinking and separation algorithms for SECs.

The computational study of this section is inspired by two studies for the minimum
cut algorithms: [Jiinger et al., 2000] and [Goldberg and Tsioutsiouliklis, 2001]. In both
papers, the minimum cut algorithms are tested in instances originated, among others,
from the solution of the T'SP by a B&C algorithm. Note that, as explained in Section 3.4,
the global minimum cut algorithms tested in these papers are not suitable for our aim.

[Jinger et al., 2000] studied the performance of different algorithms in combination
with the shrinking rules defined for the minimum cut problems in [Padberg and Ri-
naldi, 1990a]. Similarly, in this chapter, we show the performance of the combination
of shrinking rules and separation algorithms for SECs in cycle problems. [Goldberg and
Tsioutsiouliklis, 2001] compared different Gomory-Hu tree building strategies: [Gusfield,
1990] implementation and three variants of the classical implementation. It was shown,
for the SEC separation problem in the TSP, that the classical Gomory-Hu building
based strategies outperform Gusfield’s implementation, whereas they have not obtained
significant differences among the variants of the classical implementation. The directed
rooted Gomory-Hu tree algorithm presented in Section 3.4 can be considered within the
class of classical implementations.

3.5. Computational Experiments 67

3.5.1 Benchmark Instances

The cycle problems could have a very large variety of origins, where the cycle constraints
might be combined with additional constraints (e.g., a limit in the length of the cycle)
and different objective functions (e.g., maximizing the profits and/or minimizing the
length). These different natures of the cycle problems might vary the results obtained
by each proposed strategy. However, we assume that in general terms the behaviour of
the strategies for SECs is similar for all the cycle problems. So, instead of presenting
an extensive comparison for different cycle problems, we focus our experiments on a
well-known cycle problem, the Orienteering Problem (OP).

With the purpose of evaluating our shrinking and separation algorithms for SECs,
we have built the SEC separation instances by obtaining vectors (y,z) ¢ Pg during a
B&C algorithm for the OP. The OP instances are constructed based on the TSPLIB
instances in [Reinelt, 1991] following the approach in [Fischetti et al., 1998]. Particularly,
we have chosen the TSPLIB instances selected in [Goldberg and Tsioutsiouliklis, 2001]:
pr76, attb32, vm1084, rl1323, vim1748, r15934, usald509, d15112. Based on these 8
TSP instances, we have constructed 24 OP instances following the approach in the OP
literature. The depot vertex is considered to be the first vertex of the TSPLIB instance,
the maximum cycle length in the OP is set as half of the TSP value of the instance
(values reported in [Applegate et al., 2007]) and the profits of the vertices are generated
in three different ways: Genl, all the vertices have equal profit; Gen2, the scores are
generated pseudorandomly; and Gen3, the vertices which are further from the depot
vertex have a greater profit. Once the OP instances have been constructed, the SEC
separation instances are generated by considering the first support graph during a B&C
algorithm for the OP which satisfies the degree constraints, the logical constraints and
the connectivity. We have classified the instances into two equal-sized groups: Medium,
instances whose original OP problem has less than 1500 vertices, and Large, the rest
of the instances. All the used OP instances and SEC separation problem instances are
available in https://github.com/gkobeaga/cpsrksec.

3.5.2 Shrinking Strategies for SECs

Relying on the results of Section 3.3.1 and Section 3.3.2, we have considered 5 different
shrinking strategies for SECs. We have named the obtained strategies, by concatenating
the names of the involved rules: C1, C1C2, C1C2C3, S1, S1S2. The pseudocodes of
these strategies are detailed in Appendix A.

In each strategy, each involved rule is applied exhaustively. For instance, for the rule
C1, the hypotheses of Theorem 3.5 are checked for every possible set S C V* and vertex
t € V* — S. Moreover, when a shrinkable set S is found and shrunk, new shrinkable
sets might appear in the graph obtained after applying the shrinking. In order to handle
these scenarios, we make use of a heap set, H C V*, which stores all the vertices that
need to be checked to see whether they belong to a candidate S. For that, first, the set

https://github.com/gkobeaga/cpsrksec

68 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

H is initialized considering all the vertices of V*. During the search procedure, whenever
the heap set H is not empty, we draw one of its vertex, v, and consider it as contained
in S. Then, we find neighbour vertices of v that, if they incorporate to S, might make
S shrinkable. If a shrinkable set S is found, first we remove the vertices in the set S
from H, and then we shrink the graph G* and the vectors (y, z) and m (remember that
my = max{y, : u € m(v)} for v € V*). Immediately thereafter, we add the newly created
vertex s and its neighbours to the heap H. Additionally, when the support graph has
vertices with value one, we check if violated SECs exist as suggested by Lemma 3.9 and
Theorem 3.10.

3.5.3 Exact Separation Algorithms for SECs

We study the performance of four exact separation algorithms for SECs:
i) Algorithm EH: Extended Hong’s algorithm.
ii) Algorithm DH: Dynamic Hong’s algorithm.
iii) Algorithm DHI: Dynamic Hong’s algorithm with internal shrinking.
iv) Algorithm EPG: Extended Padberg-Grotschel algorithm.

The Algorithm EH is the Hong separation algorithm extended for cycle problems
in [Fischetti et al., 1997]. The Algorithm DH refers to the Dynamic Hong separation
algorithm explained in Section 3.4, i.e., after each minimum cut, we shrink the source
and sink vertices based on rule S3. In Algorithm DHI, in analogy to the approach
used in [Applegate et al., 2007] for the TSP, inside the DH separation algorithm, after
shrinking the source and the sink vertices, we apply the given shrinking strategy to the
newly obtained graph. The Algorithm EPG refers to the extended Padberg-Grotschel
algorithm explained in Section 3.4.

When a violated SEC, (@, u,v), is found, we save in a repository only the @ set of the
violated SEC. During the whole separation procedure each @ set is saved only once to
avoid generating unnecessary cuts. Moreover, if |Q| > |V*|/2, we save V* — @ instead of
Q@ in order to decrease memory resource requirements. Once the separation algorithm
is completed, we generate the SEC cuts from the saved @ sets in the following way: we
consider for candidate vertices, u and v, the vertices with maximum y value inside @,
MQ) ={u € Q:yy >y, Yo € Q}, and outside Q, M(V* — Q) = {u € V' —Q :
Yu = Yo Yo € V* — Q}. Since the amount of generated SECs might be huge (producing
memory problems) and it is likely unnecessary to consider all of them, we consider only
kin and ko randomly selected vertices from M (Q) and M (V* — @), respectively. Note
that in a cycle problem with depot, we have either d € M(Q) or d € M(V* — Q) for
every (J, so it would be sufficient to select the depot instead of the randomly selected
vertices. In other words, in these problems, it is enough to consider uv = d and k;,, = 1
if d e M(Q) and v = d and ky, = 1 otherwise. However, with the aim of obtaining
insights about the SEC generation process in general cases, in the experiments, we have

3.5. Computational Experiments 69

ignored that the OP is a cycle problem with depot.

The pseudocodes of the considered shrinking and separation strategies can be found
in Appendix A and the source code of the implementation used for the experiments is
publicly available in https://github.com/gkobeaga/cpsrksec.

3.5.4 Results

For the experiments, we have run 10 times each combination of shrinking and separation
strategies with two objectives in mind: evaluate the influence of the random choices
during the algorithm (ties are broken randomly when ordering V*; source and sink
vertices are selected randomly in the Gomory-Hu tree construction) and obtain a better
approximation of the running times. We have divided the process of finding the violated
cuts into three parts: (1) the preprocess, which considers the shrinking carried out
before the separation, (2) the separation, which consists of finding the @ sets that define
violated cuts, and (3) the generation of the violated SEC from the @ sets. Since the
SEC generation is closely related to the obtained @ sets in the previous parts, and it is
independent of the considered shrinking and separation strategies, we have limited the
discussion of results to the preprocess and the separation parts.

The computational results are summarized in two tables. In Table 3.1, we present
the information about the graph simplification and the relative time needed by each
combination of strategies compared to the reference strategy (Algorithm EH with NO
shrinking). In Table 3.2, we show the absolute values (on average) about the collected Q
sets and the time needed (in milliseconds) by each combination of strategies. Although
these tables give a general picture of the behaviour of the strategies, we consider that the
results reflect what happens instance by instance. The detailed results of the experiments
can be found in Appendix B.2.

In Table 3.1 it can be seen that the graph is contracted considerably by means of
the shrinking, especially in large problems. The largest contractions are achieved with
strategy S1S2. An interesting point of the results is that with the rules derived from
Theorem 3.5 (C1,C2,C3) the support graph is simplified significantly, which encourages
us to apply the shrinking preprocess for other valid inequalities, such as combs. Note
that, rule C3 does not contract the graph more than what is already achieved by the
combination of rules C2 and C3, see Section 3.6 for the discussion concerning this result.

Regarding the speedup up obtained by the shrinking strategies, the results are clear
and show the importance of performing the shrinking preprocess before the separation
algorithms. If we observe the column related to Algorithm EH in Table 3.1, the speedup
obtained by each shrinking strategy is meaningful. In Medium instances, on average, the
speedup is about 6 times for the least aggressive strategy (C1), and 17 times in Large
instances. By means of the most aggressive strategy (S1S2) the speedup on average is
17 for Medium-sized instances and 53 in Large-sized instances.

With respect to the time needed, the separation algorithms, Algorithm DH and Al-

https://github.com/gkobeaga/cpsrksec

70 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

Preprocess Separation
Graph Size Speedup
Size Shrinking %\ V¥ %|E*| EH DH DHI EPG
Medium NO 100.00 100.00 1 9 9 9
C1 42.55 50.61 6 29 23 19
C1C2 39.73 46.40 7 32 27 20
C1C2C3 39.73 46.40 7 33 25 20
S1 22.88 26.43 16 57 51 28
S1S2 21.26 24.53 17 60 53 27
Large NO 100.00 100.00 1 15 15 16
C1 30.45 37.88 17 107 74 139
C102 27.95 34.10 20 122 86 151
C1C2C3 27.95 34.10 20 121 80 150
S1 16.15 19.91 44 221 203 215
S1S2 14.34 17.43 53 252 227 225

Table 3.1: Average speedup of the proposed algorithms using the Algorithm EH with no shrinking
preprocess as a baseline.

3.5. Computational Experiments 71

gorithm EPG, are both faster than the commonly used Algorithm EH, which shows
the relevance of the detailed exact separation algorithms in Section 3.4. If we compare
Algorithm DH and Algorithm EPG, without considering any shrinking strategy, the
speedups on average are similar (9 and 9 times, respectively) and Algorithm EPG in
larger instances (15 and 16 times, respectively). The table also suggests, based on the
results of Algorithm DH and Algorithm DHI, that it is not convenient in the Dynamic
Hong’s separation algorithm to internally carry out extra shrinking procedures.

SPEEDUP OF SEC SEPARATION ALGORITHMS

Taking into account jointly the shrinking and separation strategies, the largest speedups
are obtained when rules S1 and S2 are combined in the preprocess and, after that,
alternatives to the standard Hong separation algorithms are used. In terms of running
time, the Algorithm DH with the S1S2 shrinking preprocess obtains the best results in
the experiments, with an average speedup of 60 in Medium-sized instances and 252 in
Large-sized instances. The results obtained by Algorithm EPG with the S1S2 preprocess
strategy are also outstanding, especially in large-sized instances with an average speedup
of 225.

Apart from the running time, an aspect to consider when making a choice about
the separation algorithm is the number of violated cuts found. As we have already
mentioned, in the cycle problems, the number of collected violated SECs is closely related
with the Q sets obtained by the separation algorithms. Therefore, we have measured
the obtained amount of Q sets instead of the number of violated SECs. In Table 3.2,
the average number of Q) sets and time of each combination of strategies is shown.

The first aspect to note is that, by means of the shrinking preprocess, which is con-
siderably faster than the exact separation procedure, we are able to find violated SECs
in many instances (via Theorem 3.10 and Lemma 3.9). These violated SECs might be
enough for the separation goal and, in practice, we could skip the exact separation algo-
rithm if violated inequalities are found in the preprocess. In the separation process, in
general, the largest amount of Q sets are obtained by Algorithm EPG, as was anticipated
theoretically in Section 3.4. Note that, the quantity of obtained () sets is sensitive to
the randomness of the shrinking and separation strategies (it can be concluded because
#Q is not always an integer).

In the view of these results, the S1S2 shrinking strategy is the best choice to use as
the preprocess of SEC separation algorithms. Bearing in mind both the time and the
obtained amount of @ sets, either Algorithm DH or Algorithm EPG might be a good
choice as the separation algorithm. However, it is not clear from these results which of
the two exact approaches should be used in practice. It probably depends on the nature
and the size of the cycle problem under consideration.

Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

72

1'16 0'8cs G'16 evLe 9€8 G'ole G'LaV 1°€6¢ €4C 88T GSIS
L¥6 1206 8€0T 0L8 796 0°L8¢ Va1g V'Gce 1'6¢ ¢691 1S
¢'9¢l 8LIL TLLe GT1LC O'I8T G'1LC 0°T2eT 9991 ¢'€c 891 €0CDTO
¢'GC€T 6°LIL <¢'LSC LTLC €6LT LTILG 0°0ceT 8991 8¢c 0Ll ¢O1D
LIrT 994L 8G6¢ 899¢ L€0C 899¢ VeIsT ¢l ¢¢cc 00 D
8'8C8T 1'96€¢ 00¥Ic 9¢lE 00VIC 9¢LeE ¢'8LS9C T'6L9 6°6 00 ON odreT
L] €86 8¢ 6°69 i 069 g6 8°8¥ 60 ree GSIS
€g €10l 6C €9 9°¢ €9 ¢01 ey 60 €6¢ 1S
V'L 86ET 6°G V64 oy v'6¢ G'Ge 9'1€ 60 a'q €0¢OI1D
€L L6l 9'G V64 9v v'6s G'G¢ 9'1¢€ 80 a'q GOTD
8L 06¥L 99 784 (] 784 ¢'0¢ 8°LC 80 00 D
€91 68y TLI 6°6.L LT 664 9°11¢ 8€8 g0 00 ON WnIpajy
ouny D#F euwnL D#F ouwnL DF ounL DF oulL DF SubuMyg ozIg
Ddd IHA HA HH v
uoryeredog ssoooxdarg

Table 3.2: On average, the number of @) sets found and the time needed by strategy and size.

3.6. Discussion 73

3.6 Discussion

Finally, we would like to open a discussion about the following concerns as a consequence
of the computational results. It might be helpful, to look at the detailed computational
results in Appendix B.2 to understand the motivation behind the discussion below.

In Figure 3.9, an example of a vector (y,z) € Pf was shown where rule C3 can be
applied but rules C1 nor C2 cannot. However, in the experiments, although rule C3 has
been applied in some instances, we have not obtained any situation in which rule C3
was able to simplify the support graph more than with the rest of the rules. An open
question is then to explain why rule C3 does not improve the results obtained by means
of the rules C1 and C2. We believe that this is related with the planarity property of
the support graphs, which is satisfied in the considered instances. Note that the graph
in the example of Figure 3.9 is not planar because the complete graph of 5 vertices, K,
is a subgraph of it.

Conjecture 3.21. Given a graph G, let (y,z) € Pf be a vector. If the support graph
G* of (y,x) is planar, then the combination of the rules C1 and C2 dominate the rule
Cs3.

Note that the rules C1, C2, and C3 induce a contraction of an edge (a sequence of
contractions for C3), which is a closed operation in planar graphs. Therefore, if G* is
planar then G*[S] is also planar for every subset S obtained from these rules. While
working with the OP, we have empirically seen that in geometrical instances the support
graph obtained within a B&C is planar most of the time.

Another interesting fact that can be extracted from the experiments is that the number
of vertices and edges in the shrunk graph (the final result) is independent of the ordering
of the considered rules and the shrinkable sets. This suggests the idea that the obtained
shrunk graphs are isomorphic.

Conjecture 3.22. Given a graph G, let (y,z) € Pf be a vector and SRK € {C1, C1C2,
C1C203, S1, S152} be a fized shrinking strategy, then the graphs obtained by applying
SRK to (y,x) are isomorphic.

If the conjecture is true, the complexity of the separation algorithm carried out in the
shrunk graph does not depend on the different implementations of a shrinking strategy.
As a consequence, in the future, we might focus on identifying the implementations of
the shrinking strategies that might obtain the largest amount of @) sets, especially for
the preprocess, e.g., by reordering the vertices in the heap.

3.7 Conclusions

In this chapter, for cycle problems, we have successfully generalized the global (C1, C2
and C3) and SEC specific (S1, S2 and S3) shrinking rules proposed in the literature of

74 Chapter 3. Shrinking and Separation Algorithms for Cycle Problems

the TSP. The obtained computational results for the shrinking in the OP are remarkable
and, hence, very promising for other cycle problems. The results clearly show that the
shrinking technique considerably improves the running time of the separation algorithm
for SECs. This opens the possibility to investigate in two directions in cycle problems:
(1) studying the shrinking for other valid cycle inequalities of the OP (e.g., combs)
and (2) evaluating for other cycle problems the shrinking technique in SEC separation
problems.

Part of the chapter focuses on exact SEC separation algorithms for cycle problems.
We have extended from the TSP two exact algorithms (Algorithm DH and Algorithm
EPG). The proposed separation algorithms were shown to be more efficient in the OP
than the exact algorithm used so far in the literature (the adaptation of the classical
Hong’s approach). The importance of the detailed extension of the Padberg-Grotschel
approach, Algorithm EPG, lies in the fact that in cycle problems, in general, the global
minimum cut of a support graph might not generate a violated SEC, while violated SECs
in the same graph exist. An example is given where this claim is shown, which implies
that the adaptions of the Padberg-Grétschel approach used so far in the literature of
cycle problems should be viewed as heuristic separation algorithms. Therefore, this
might be the first exact extension of the Padberg-Grotschel approach in the literature
for cycle problems.

CHAPTER 4:

RB&C: Revisited Branch-and-Cut Algorithm

OUTLINE

In this chapter, we present an exact algorithm for the OP. These contributions deal with
the separation algorithms of inequalities stemming from the cycle problem (SECs and
comb inequalities), the design of the separation loop, the pricing of variables for the
column generation and the calculation of the lower and upper bounds of the problem.

4.1 Introduction

The OP can be defined by a 5-tuple (G, d, s, 1, dy), where G = K,, = (V, E) is a complete
graph with vertex set V' and edge set F; d = (d.) where d, is the positive distance value
(time or weight) associated to each e € E; s = (s,), where s, is a positive value that
represents the score (profit) of vertex v € V; 1 € V is a vertex selected as the depot;
and dy is a positive value that limits the cycle length.

The OP goal is to determine a simple cycle that maximizes the sum of the scores of
the visited vertices, such that it contains the depot node 1 € V and whose length is
equal to or lower than the distance limitation, dy. Then, the OP can be formulated as
the following 0-1 Integer Linear model:

max Z SoYo (4.1a)
veV
5.t > dexe < do, (4.1b)
ecl
z(d(v)) — 2y, =0, velV, (4.1c)
z(0(H)) — 2y — 2yr > —2, leHCV,reV —H, (4.1d)

3<[H[<|V[-3,

75

76 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Yy — Te > 0, veV,eed(v), (4.1e)
0<y, <1, vev, (4.1f)
0<z <1, ec kb, (4.1g)

g =1, (4.1h)
Ze €L ecel (4.11)

where the objective function (4.1a) is to maximize the total collected profit. The
constraint (4.1b) limits the total cycle length. The Subcycle Elimination Constraints
(SEC) (4.1d) ensure that only one connected cycle exists. Throughout the chapter, we
use the notation (H,[,r) for the SEC defined by the set H C V and the vertices | € H
and r ¢ H. The constraints (4.1g) and (4.1i) impose that the edge variables are 0-1,
consequently, considering these together with the Logical Constraints (4.1e) and the
bounds (4.1g), the vertex variables are also 0-1. The constraint (4.1h) defines the depot
condition.

As mentioned in the introduction, the OP can be seen as a combination of the TSP-
decision and the KP problems. Particularly, the OP is a Cycle Problem (CP) where the
solutions, which are cycles, need to satisfy a certain length constraint. This relation with
the two classical optimization problems is useful when identifying the valid inequalities
and their respective separation algorithms for OP. Let us show how the solution space
of OP is related to those well-known problems. The OP Polytope (Pop) of the complete
graph K, is defined by:

Pop = conv{(y,z) € RV*F : (y,z) satisfies (4.1b), (4.1¢), (4.1d), (4.1e),
(4.11), (4.1g), (4.1h), (4.11)} (4.2)

The Knapsack Polytope (Pgp), see Balas [1975], is a well-studied polytope closely
related to the Ppp:

Pip := conv{z € RF : satisfies (4.1b), (4.1g), (4.1i)} (4.3)

Since the solutions of the OP are cycles, the Cycle Polytope (Pcp), presented in Chap-
ter 3, plays a crucial role when solving the OP with B&C.

We have the following relationship:

Pop C Pep N (RY x Pgp)N{(y,z) € RV*E .y =1} (4.4)

Consequently, the potential valid inequalities for the OP are those which are valid
for Pop and the Pxp. However, the Pop and the intersected polytopes in the relation-
ship (4.4) are not equal and alternative valid inequalities are needed to deal with the OP.
Figure 4.1 shows an example of a vector (y,z) in PopN(RY x Pxp)N{(y,x) : y1 = 1} but
not in Pop. Let G be the complete graph generated by the set V= {1,2,3,4,5}, and Pop
be the OP polytope of (G, d, s, 1,dy) where d is the 2-dimensional euclidean distance de-
termined by the numbers of the figure, s is any positive vector and the distance constraint

4.2. Valid Inequalities 77

Figure 4.1: Example of a vector in Pop N (RY x Pxp) N {(y,x) : y1 = 1} but not in Pop.

is set as dy = 5. The (y, x) vector is defined as follows: it is assumed that the degree equa-
tions are satisfied, and the dashed edges of figure have 0.5 value, 1 value the solid edges
and 0 otherwise. On the one hand, the vector (y, z) belongs to Pop. Consider the cycles
a = ([1,2],[2,3],[1,3]) and c2 = ([1, 2], [2,4], [4, 5], [3, 5], [1,3]) whose characteristic vec-
tors, (y°, 2) and (y2, x?), belongs to Pop. We have that (y, x) is a convex combination
of the characteristic vectors of ¢; and co, ie. (y,2) = $(y™,2) + 3(y2,2?). On the
other hand, the vector x belongs to Pxp. Consider the sets k; = {[1, 2], [1, 3], [2, 3], [2,4]}
and ko = {[1,2],[1,3],[3,5],[4,5]} whose characteristic vectors, " and z*2, belong to
Prp. We have that x is a convex combination of the characteristic vectors of k1 and ko,
ie x= %IL‘kl + %:U’”. However, (y,z) does not belong to Ppp since there is no cycle in
Pop containing node 4 (or node 5). It can be easily verified that a cycle containing 1

and 4 (or 5) and having at least three edges has a length strictly larger than 5.

4.2 Valid Inequalities

In this section, we present valid inequalities for the OP. The straightforward inequalities,
as motivated in Section 4.1, are based on the Pxp (Edge Cover inequalities) and Pop
(Comb inequalities) relaxations of the Pop and they were mainly proposed in Fischetti
et al. [1998] and Gendreau et al. [1998b]. Additional valid inequalities to those based on
Pxp and Pgp have also been proposed in the literature: the Connectivity Constraints
in Leifer and Rosenwein [1994], the Vertex Cover inequalities in Gendreau et al. [1998b],
and the Cycle Cover and the Path inequalities in Fischetti et al. [1998]. The novelty of
this section is an alternative representation of comb inequalities, which is then used for
the efficient pricing in Section 4.5.

4.2.1 Connectivity Constraints

The Connectivity Constraints (CC) are well-known inequalities for the OP, e.g. Gendreau
et al. [1998b] and Leifer and Rosenwein [1994], and are a particular case of the conditional
cuts proposed in Fischetti et al. [1998]. The CCs exploit the depot constraint (4.1h).
Given a lower bound, LB, of the OP, let T' be a subset of nodes such that 1 € T, |T| > 2

78 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

and), o Sy < LB. The inequality defined by T
z(6(T)) > 2 (4.5)

is valid for the OP. Since z(§(T")) = x(6(V —T')), the inequality can also be defined for
T C V such that 1 ¢ T and ngT sy < LB. So, it is always possible to assume that
] < [VI/2.

4.2.2 Comb Inequalities

The comb inequalities were generalized from the TSP to cycle problems in Bauer [1997].
A comb is a tuple (H,{Ti,...,T;},L,R) of three vertex subsets and a family 7 =
{T1,...,T;} of vertex subsets such that satisfies the following properties:

i) t > 3 and an odd integer

i) TNTj=0forl1 <i<j<t

i) GTNH#AQand T; — H #(Q fori=1,...,t
iv) L={l;} such that ; e T, N H fori=1,...,t
v) R={r;} such that r; € T, — H fori =1,...,t

The set H is called the handle, the sets in 7 are called the teeth, the set R is called
the Root set, and L is called the Link set. Then, the inequality

111

w(6(H)) + Y w(8(1))) = 2y(R) — 2y(L) > 1 (4.6)
j=1

is facet-defining for Pop, as was shown in Bauer [1997], and therefore, a valid inequality
for OP. When all the teeth consist of exactly two vertices, the comb inequalities are
known as blossom inequalities.

4.2.3 Edge Cover Inequalities

The maximum length constraint (4.1b), which is a capacity constraint for the edge
variables, defines a K P polytope, as explained in Section 4.1. For every feasible (y, z),
the edge variable, x, belongs to Pxp. For the OP, the Edge Cover inequalities are the
cover inequalities of the associated Pxp (Balas [1975]). These inequalities were first
introduced for the OP in Leifer and Rosenwein [1994] and also used in Fischetti et al.
[1998] and Gendreau et al. [1998b]. Let F' C E be a subset with) . de > do, then:

2(F) < |F| -1 (4.7)

defines an Edge Cover inequality for the OP. We assume that F' is a minimal cover,
i.e. for every Fy C F, we have ZeeFO d. < dp.

4.3. Initialization 79

4.2.4 Cycle Cover Inequalities

Every feasible cycle F' C FE satisfies the equation xz(F) = y(V(F)). Let F' C E be a
subset that defines a cycle with) . de > do, then the inequality

z(F) <y(V(F)) —1 (4.8)

is valid for the OP. These cuts were used in Fischetti et al. [1998] and Gendreau et al.
[1998b].

4.2.5 Vertex Cover Inequalities

Let UB be an upper bound of the OP and @ C V be a subset with Z,UGQ sy > UB,
then:

y(@) <lQf -1 (4.9)

defines a Vertex Cover inequality for the OP. We assume that S is a minimal cover.
These inequalities were first used for the OP in Gendreau et al. [1998b].

4.2.6 Path Inequalities

The goal of these cuts is to exclude the paths that due to the length constraint (4.1b)
cannot be part of a feasible solution. Let P = {[i1, i2], [i2, i3], ..., [ix—1,1k]} be any simple
path through V(P) = {i1,...,ix} CV — {1}, and define the vertex set:

W(P):={veV —=V(P):dii + Y de+din+dss <do} (4.10)
ecP
Then the following Path inequality

2(P)—y(VP) +y1 4y — Y. Tipw <0 (4.11)
veEW (P)
is valid for the OP, see Fischetti et al. [1998].
In Figure 4.2 a flowchart representing a simplified B&C algorithm can be consulted.

4.3 Initialization

First of all, we obtain an initial heuristic solution. To that aim, we make use of the
EA40OP metaheuristic in Kobeaga et al. [2018] considering a small size population.

Next, we build the initial subproblem, LPy. Given the computational requirements of
considering all the variables and constraints that define the OP, an initial subproblem
LPy is built. The LPg is initialized considering the following subset of constraints and
variables:

80 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

INITIALIZATION BRANCH-AND-CUT
LI SR N AR R N R N NN NN R LI A T N R R A N A N NN R N A N AL NN A AR N RN AN NN RE N RN NN NN »

Primal
Heuristic

Initial
Heuristic

LP,
subproblem
of LP.

Pricing

Infeasible
or LB >
lBY]

Infeasible
or LB >
|UBY|

No more
cuts to
add

Add cuts

P R R TR A O R AR N A N AN AL N O N A N R N NN A N AN NN AR NN N N RN N RN NN
AR RE R N R RN [N N NN NN NN R NN N RN N N NN NN NN NN NN NN NN N NN N NN RN NN NN NN NN NN NN N
PIE AR AL TR AR AT N AR R AR AR R R AR AN AN AR RN AR N AN NE R AR AR N NERE NERE NE RN AN 3

Figure 4.2: Flowchart of the Branch-and-Cut algorithm considered in this work. BRANCH is an
oracle which returns an unevaluated node in the branching tree. SEP refers to the
separation algorithms. At each action box of the flowchart the subproblem LPFP; is
updated and solved.

i) All the vertex variables.

ii) Edges in the 10 nearest neighborhood graph.

iii) Maximum length constraint (4.1b), degree constraints (4.1c), and depot constraint (4.1h).

)
)
)
iv) Variable bounds, (4.1f) and (4.1g).

Immediately after the initialization, the edge variables are priced, see Section 4.5. In
the rest of the chapter, we use the LPg symbol to refer to any subproblem of the OP,
regardless of whether it is the initial one or not.

4.4 Separation algorithms

In this section, we present the heuristic and exact separation algorithms used to find
the violated inequalities. Our contributions are concentrated in the separation algo-
rithms for SECs, CCs and blossom inequalities. Hence, we only give details of these

4.4. Separation algorithms 81

separation algorithms in the section. The details of separation algorithms for the rest of
the inequalities (Logical Constraints, Edge Cover, Vertex Cover, Cycle Cover, and Path
inequalities) can be found in Fischetti et al. [1998].

In this section, we present the heuristic and exact separation algorithms used to find
the violated inequalities. Our contributions are concentrated in the separation algo-
rithms for SECs, CCs and blossom inequalities. Hence, we only give details of these
separation algorithms in the section. The details of separation algorithms for the rest of
the inequalities (Logical Constraints, Edge Cover, Vertex Cover, Cycle Cover, and Path
inequalities) can be found in Fischetti et al. [1998].

Let (y*, x*) be a solution of a particular LP(problem and define V* = {v € V : y > 0}
and E* = {e € E : 2} > 0}. Then, G* = (V*, E*) is called the support graph associated
with the solution (y*, z*).

4.4.1 SECs and CCs

Violated SECs (4.1d) and CCs (4.5) are found using a common separation algorithm.
This is natural since, in both constraint families, the incidence vector of the arcs, x in
the inequality can be written as the star-set value, x(0(Q)) of a subset @ of vertices.
Since §(Q) is the cut associated with @, the separations of both inequalities are closely
related to the minimum cut problem. In Kobeaga et al. [2020a] it was shown that the
shrinking techniques substantially speed up the SEC separation algorithms. However,
as explained below, the shrinking might also have a negative impact on the finding of
violated CCs. In this section, we study how to efficiently use the shrinking to speed up
the joint separation algorithm by reducing the adverse effects for CCs.

Given a solution (y*,z*) and a subset @, the subset @ could generate at the same
time a violated SEC and a violated CC for (y*,x*). Since the CCs do not depend on
the value of the vertices, while the SECs do, the CCs tend to be more violated and more
stable, i.e., remain active in subsequent updates of the LPy, than the SECs. Therefore,
we treat the CCs with a higher priority.

Although SECs are part of the OP model, in order to control the size of the working
LPy, they are included only when required. This strategy is reasonable since there exist
polynomial exact separation algorithms for SECs. In contrast, the separation problem
for CCs is not known to be polynomial, and it can be modeled as follows:

min 2 Z Y2y — 2 Z T(y,u) 20 %u (4.12a)
veV* veV*
s.t: stzv < LB (4.12Db)
veS
z1=1 (4.12¢)

2 €{0,1} WYweV (4.12d)

82 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

where z = (z,) are binary variables whose values are z, = 1 if the node v is selected
and 0 otherwise. The problem (4.12) is a Quadratic Knapsack Problem (QKP) with a
fixed variable. Consequently, there exists a violated CC for (y*,z*) if and only if the
optimal solution of Problem (4.12) has a value lower than 2. Taking into consideration
that repeatedly solving QKPs during the B&C is not viable, the CCs are not separated
exactly, but in a heuristic manner take advantage of the SEC separation algorithm. The
well-known approaches for the separation of SECs in the TSP, the connected component
heuristic and Hong’s approach can be extended to jointly separate the SECs and CCs:

Connected components heuristic. The straightforward heuristic to find violated SECs
and CCs is to search for the connected components of G* using the depth-first-search
algorithm. When a connected component contains the depot vertex 1 and the sum of
the vertices scores in the component is lower than LB, we record the associated CC of
the component, otherwise, we record the associated SECs.

Extended Hong’s approach. There are two main strategies to exactly separate SEC
inequalities in cycle problems, which are extensions of Hong’s approach and the Padberg-
Grotschel approach (also known as the Gomory-Hu tree-based approach) for the TSP,
see Kobeaga et al. [2020a]. In both approaches, the separation is carried out by solving
a sequence of |[V*| — 1 (s,t)-minimum cut problems. On the one hand, in the extended
Hong’s approach, the vertex with a higher y* value (the depot vertex 1) is fixed to be
the source, s, and the sink vertices, ¢, are chosen from the set V* — {1}. On the other
hand, the extended Padberg-Groétschel approach is based on the so-called Gomory-Hu
tree (directed and rooted in 1), which is constructed by solving |V*| — 1 (s, ¢)-minimum
cut problems.

As mentioned above, and as already proposed in the literature, the SEC separation
strategies are leveraged to find violated CCs as well. Although the extended Padberg-
Grdtschel approach obtains a larger number of violated SECs, it is not appropriate to find
violated CCs, since the obtained sets do not contain the depot vertex 1. Contrarily, the
extended Hong’s approach for SECs can be easily adapted to additionally find violated
CCs. It can be achieved, by solving at each step of the separation algorithm the (1, v)-
minimum cut (useful to find violated SECs) and (v, 1)-minimum cut (useful to find
violated CCs) problems. For these reasons, we use the extended Hong’s approach as the
base strategy for the joint separation algorithm.

The running time of these SEC separation algorithms can be improved using the
shrinking techniques for cycle problems, as was seen in Kobeaga et al. [2020a]. In this
publication, three general shrinking rules (C1, C2, and C3) and three SEC specific
shrinking rules (S1, S2, and S3) for cycle problems were presented. However, although
the shrinking is a key strategy for efficiently separating the SECs, it might be unfavorable
for the separation of CCs. The point is that when the vertices are contracted and
grouped, the chance to obtain the subset of vertices with a score sum lower than LB
decreases, consequently, some violated CCs might vanish. Note that, the mentioned

4.4. Separation algorithms 83

shrinking techniques are safe for valid inequalities of the cycle polytope and CCs are not.
Therefore, since CCs are important cuts for OP, shrinking might have a negative impact
on the performance of the overall B&C algorithm for the OP. One contribution in this
chapter is to propose strategies to minimize the possible disadvantages of the shrinking
(which is important to speed up the separation) in the joint separation algorithm for
SECs and CCs.

Following this, not all the shrinking strategies for cycle problems described in Kobeaga
et al. [2020a] are adequate for the OP problem. Particularly, we exclude the S2 shrinking
rule (which leads to excessively aggressive shrinking strategies and hence to vanish vio-
lated CCs in some cases) and only consider the shrinking strategies C1C2 and S1 in the
preprocess of the joint separation algorithm. Once entered in the separation algorithm,
the shrinking rule S3, which contracts the sink and target of the solved minimum cut,
contributes positively to separating both families of constraints since it enables a wider
family of subset candidates to be obtained. Hence, the S3 rule is used in combination
with the C1C2 and S1 shrinking strategies in the separation algorithm. After the S3
rule is applied, we search for new shrinkable sets using the selected shrinking strategy.

Classically, the candidate subsets for SECs and CCs are obtained by the minimum
cut algorithm. However, considering the importance of CCs, we intensify the search for
extra candidate subsets for CCs, which is made more efficient by taking advantage of
the vertex clustering obtained by the shrinking. We propose new strategies based on the
following lemma:

Lemma 4.1. Let (y,x) be a vector that satisfies the degree constraints. If U and W are
subsets of V' such that W C U, the following inequality is satisfied:

z(6(U—-W)) <z(6(U)) + z(6(W)) (4.13)
Proof. When (y,x) satisfies the degree constraints, the identity x(d(7)) = 2y(T) —

2x(E(T)) is valid for every T' C V. Replacing the respective expressions in the inequal-
ity (4.13) we obtain:

2y(U = W) = 22(E(U = W)) < 2y(U) = 22(E(U)) + 2y(W) = 2z(E(W))
Considering the hypothesis W C U, we have y(U — W) = y(U) — y(W).
2(EU)) = z(E(U = W)) < 2y(W) — z(E(W))

(4.14a)
Also, it W C U, the equality E(U — W) = E(U) — E(W) —6(W)N E(U) holds.
2(E(U)) — z(E(U)) + 2(E(W)) + z(6(W) N E(U)) < 2y(W) — 2(E(W))
z(6(W) N EU)) < 2y(W) = 2z(E(W))
z(@(W)NEU)) < z(5(W))

This last inequality is satisfied due to §(W)N E(S) C §(W), which proves the lemma.
O

84 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Let G[S] = (V[S], E[S]) be the graph and (z[S], y[S]) the vector obtained by applying
a shrinking strategy to G* and (y*,xz*), respectively, and 7 : P(V[S]) — P(V) the
unshrinking function. Let @ be the subset obtained by the (¥, 1)-minimum cut (where
1 is the contracted vertex such that contains the depot vertex 1, i.e. 1 € m(1)), so
1 € m(Q), and suppose that z(6(Q)) < 2. Note that, z(6(Q)) = z[S](6(Q)), where
Q = m(Q). If ZUEQ us, < LB, the subset @) defines a violated CC. Otherwise, after
each (¥, 1)-minimum cut problem is solved, and in the case that x(3(Q)) < 2, we test
the following strategies to find candidate subsets for CCs:

i) First, when |7(1)| > 2, we check if y[S](1) < 1 and ver(1) Sv < LB. If this is the
case, the subset Q = m(1) defines a violated CC.

ii) Then, we check if there exists © € V — 1, such that x[S](6(Q)) + 2y[S](v) < 2 and
Zvew(Q %) Sv < LB. If both inequalities are satisfied for v, the subset W(Q —0)
defines a violated CC.

iii) Finally, we sort the vertices in Q — 1 in non-decreasing order of 7, and check
greedily for the greatest subset Q' = {v1,...,0;} of Q such that z[S](6(Q)) +
2> e ylSI(0) < 2. I 3, g-q) Sv < LB, the subset 7(Q — Q') defines a vio-
lated CC.

4.4.2 Comb Inequalities (blossoms)

For the B&C presented in this work, we only use the blossom subfamily of comb inequal-
ities. In this section, we present two heuristics to search for violated blossom inequalities
in cycle problems, and in particular, for the OP. The heuristics are extensions of the Pad-
berg and Hong [1980] and Grotschel and Holland [1991] separation algorithms, developed
in the context of the TSP.

The key point of the heuristics for blossom inequalities is to identify a subset of
candidate handles to restrict the search of violated blossoms. In the literature of OP, a
heuristic to find handle candidates is detailed in Fischetti et al. [1998]. In this heuristic,
the search is guided by the greedy algorithm of Kruskal for the Minimum Spanning
Tree. At each iteration of the Kruskal algorithm, a new edge is inserted into the tree,
and the connected component containing the edge is chosen as a candidate handle. In
this work, we consider two alternative approaches to finding candidate handles: the
Extended Padberg-Hong heuristic and the Extended Grétschel-Holland heuristic.

Ezxtended Padberg-Hong heuristic (EPH). Padberg and Hong [1980] proposed a blossom
separation heuristic for the TSP, which is known as the odd-component heuristic. In
this heuristic for the TSP, the violated blossoms are found by restricting the set of
candidate handles to the connected components of the fractional graph G7 = (Vj*, EY),
where Ef = {e € E* : 0 <z} < 1} and V}* = V(EY).

4.4. Separation algorithms 85

EXTENDING BLOSSOM HEURISTIC FOR CYCLE PROBLEMS

We generalize the blossom heuristic for the general cycle problems by applying the
algorithm by levels. A level, A, is defined by each different value of the set {y;},. We
call L the set of distinct levels. Note that, the number of levels, |L|, is bounded by |V|.
Associated with a level we have the level graph G = (V¥¥, EY), where EY = {e € E* :
0 <z} < A} and V' = V(EY).

A faster heuristic to find the handle candidates can be designed by omitting some
connected components of G. At every level, A, we discard the connected components,
C’i)‘, such that y, # A for all v € C’i)‘. Now, we identify the connected component of
vertices with y, = A. So, in total, we search for |V*| different connected components of,

in the worst case, G7J.

Once we have identified an initial list of candidate handles, the next step is to find
the associated teeth for these handles. Let H be a candidate handle, and define the set
of teeth as Ty = {e € §(H) : } > A}. Recall that the teeth of blossoms are edges. Not
all the teeth families obtained using this strategy satisfy the comb (blossom) definition.
If two teeth overlap in v ¢ H, then these two teeth are removed from the family of
teeth 7Ty and the handle is updated as H = H U {v}. If, eventually, the list of teeth Tz
consists of an odd number of at least three disjoint teeth, (H, 7, L, R) forms a blossom
inequality where L; = T/ NH and R; = T/ — H. If there is just one tooth i.e., Ty = {T'},
we test if H defines a violated CC. In the case that it does not, then H alone defines a
violated SEC.

Eztended Gritschel-Holland heuristic (EGH). Another fast heuristic for the TSP was
proposed in Grotschel and Holland [1991] whose aim was to minimize the influence of
small perturbations of x* in the separation algorithm. We have adapted this heuristic for
the OP using the strategy of levels mentioned above. In this approach, the handles are
considered as the vertex sets of the connected components of the graph G} , = (V*, EX. o)
where

Eye={ecEy:e<a; < (1—-¢)N}
for a small €, 0 < € < 1. Let H denote the vertex set of such a component, a candidate
handle, and let ey, ..., e; be the edges in the set

Ty ={e€6(H)C E* % > (1—e)A}

in the non-increasing order of z. If t is even, then append to 7Ty the edge with the
highest z} in

{e€d(H) C E":z; <€}
If the edges intersect, the strategy outlined above is followed to obtain a handle H and
a teeth family Ty that satisfies the blossom definition.

In Figure 4.3 we illustrate the EPH blossom heuristic for cycle problems. In Figure
4.3.a) the given support graph is presented, where there are three distinct levels, L =

86 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Q. - © y=12 () w=1/4 = o'=1 = =34 — 2*=1/2 — a*=1/4

Figure 4.3: Tllustration for the Extended Padberg-Hong blossom heuristic. Figure a) represents
the support graph, with the vertex and edge values detailed in the bottom legend.
Figure b) shows all the handle candidates obtained by the heuristic. Figure c) a
violated blossom found by the heuristic involving vertices with different y values.

{1,1/2,1/4}. In Figure 4.3.b) the candidate handles are presented. Three candidate
handles are obtained in level 1: {1,2,3}, {5,6,7} and {10,11,12,13,14,15,16}. Two
candidate handles are obtained in level 1/2: {10,11,12} and {14,15,16}. There are no
candidate handles obtained in level 1/4. Next, we check for violated cuts. The star-set of
{10,11,12,13,14, 15,16} is formed by two non-overlapping edges, so it is excluded. The
candidates {5,6, 7} and {10, 11,12} define violated blossoms, e.g., ({10,11, 12}, {{8, 10},
{9,11},{12,13}}, L, R) where L = {10,11,12} and R = {8, 9, 13} shown in Figure 4.3.c).
The candidates {1,2,3} and {14,15,16} define violated SECs, e.g. ({1,2,3},1,4) and
({14,15,16},14, 1), but first for {1, 2, 3} it should be checked whether it defines a violated
CC.

4.5 Column Generation

During the B&C algorithm, only a subset of edges is included in the working LPj.
At certain points of the algorithm, we need to price the excluded edge variables, and
add to the LPg: 1) to guarantee that the working relaxation is an upper bound of the
problem or branched subproblem and 2) to recover, whenever it is possible, a feasible
LPg after feasibility breaking cuts have been added to the LPy. Taking into account that
usually only a small subset of variables is included in the LPg, and that the excluded
variables could participate in multiple cuts of the LPg, the pricing phase could constitute
a bottleneck of the B&C algorithm. In this section, we develop a technique, inspired by
that used in Applegate et al. [2007], which enables us to avoid repetitive calculations
and to skip the exact calculation of the reduced cost of some variables.

4.5. Column Generation 87

Let us call £V the family of SECs (4.1d), CC (4.5), and comb (4.6) cuts. In these cuts,
the edge variables with non-negative coefficients can be represented as the sum star-set
of subsets of vertices. Complementarily, let us call £F the family of Logical (4.1¢), Edge
Cover (4.7), Cycle Cover (4.8) and Path (4.11) cuts. Note that the Vertex Cover (4.9)
inequalities do not contribute to the reduced cost of the edge variables. So, in the OP,
the reduced cost of an edge variable, e = [v, w], can be calculated by:

TCe = —deTgy — My — Ty + rc;/ + ch (4.16)
where 7,4, is the dual variable of the maximum length constraint (4.1b), 7, and 7, are
the dual variables of the degree constraints (4.1c) of v and w respectively, and rc! and
rcE are the contributions made by the cuts in £V and LF, respectively. We will see
that the rcZ values can be obtained in linear time in terms of |V| and |£F|, and we
will reproduce the pricing strategy used in Applegate et al. [2007] to calculate the rc¥
values.

It can be seen that the cost of the calculation of all the rcZ is O(|£F||V]). To that aim,
it is sufficient to check that the number of edges with a non-negative coefficient in each
cut of £F is bounded by |V|. In the case of Logical, Cycle Cover, and Path inequalities,
it is derived from the definition of the valid inequality. For Edge Cover inequalities, this
bound is obtained in Lemma 4.2.

Lemma 4.2. Let T C E denote a subset defining a violated cover inequality. If the
degree equations (4.1c) are satisfied by (y,z) € RV*E then |T| < |V].

Proof. When the degree constraints are satisfied by (y, x), as a consequence of the well-
known equality z(0(S)) = 2y(S) — 2z(E(S)), the inequality z(E(V(T))) < y(V(T)) is
always satisfied. Suppose that T" violates the cover inequality (4.7) then

7] =1 <2(T) <z(E(V(T))) <y(V(T)) < |V (4.17)

O

Calculating all the rc) values has a O(|£Y||V|?) complexity when the cuts are stored
externally as edge variable coefficient arrays. The strategy used in Applegate et al. [2007]
speeds up the pricing by obtaining a fast lower bound of the reduced cost rcg (TSP is
a minimization problem) and excluding for exact pricing the edges that have a negative
lower bound. In order to use this strategy for the OP, first, the edge variables of the cuts
in £V must be represented and stored as a family of subsets of vertices, as we have done
in Section 4.2. Let S = F1 U...UF, be the family of all the subsets involved in the cuts
of LY where F; = {H;} UT;. For combs, H; and T; represent the handle and teeth set,
respectively. For SECs and CCs we can assume that 7; = () and H; = (), respectively.

Based on the representation of the cuts in £ by means of subsets of vertices, the cuts
are stored in an efficient data structure by pointing to the subsets involved in the cut.

88 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

This way each subset is saved once at most for all the cuts. Moreover, it allows us to
speed up the evaluation of rcg values as explained below.

Since the OP is a maximization problem, during the pricing, we need to identify the
edge with positive reduced cost. We aim to define upper bounds, 7c., of the reduced
costs rce, to exclude for exactly pricing the edges that have a non-positive upper bound

SV
rc, .

For each subset, S € S, let us call mg the dual of the subset S defined as:

T =3 x;(9)m; (4.18)
j=1

where x;(S) = 1if S € F; and 0 otherwise, and 7; is the dual variable associated with
the cut j. Then, the contribution of the cuts in £ in the reduced cost of an edge e can

be written as:
red = Y 7y (4.19)

SeF
V(e)NS#D
V(e)—S#0
where 7g is the dual of a subset S. Since, for the edge e = [v,w], each S must contain
either v or w, an upper bound, TACX, of cm can be obtained by:

TACZ:Zﬂs—FZﬂS

SeF SeF
vES weSs

which satisfies r¢! < 7c!. Therefore, we have the desired upper bound:

Ve = —deTpi1 — Ty — T + 1¢F + 1Y (4.20)

PRICING: COST AND STRATEGY

Note that, each edge appears at most twice in a comb inequality, so the calculation of
all the 7°cY has a O(M|LY||V|) time complexity where M is the maximum number of
subsets involved in a cut. Therefore, the calculation of all the rc, has a O(M|LY||V])
time complexity. In our B&C, the value of M is related to the number of teeth in the
combs. To ensure a true linear time complexity procedure, one could limit the number
of teeth in the combs. However, in practice, the number of teeth tends to be small and
it can be assumed that M << |V|. The edges that r¢. < 0 can be excluded for exactly
pricing .

For those edges that r¢. > 0, the exact reduced cost, rc., can be calculated by using
the upper bound value:
TCe = TCe — 2 Z Tg (4.21)

SeF
Vie)csS

4.6. Separation Loop 89

The pricing loop is done in batches. In the first step, a fixed number of rc. are
calculated, the first batch of variables and those with positive values are preselected. In
the next step, for those preselected variables, we calculate the exact reduced cost, rc.,
and add to the LPg the edges whose value is positive. Then, the LPq is updated. Next,
we select the second batch of variables and we repeat the procedure. When the pricing
aims to obtain the upper bound of the branched subproblem, we exit the pricing loop
when a whole round of evaluation is performed without introducing a variable to the
LPy. When the pricing aims to recover a feasible LPg, we exit the pricing loop once a
feasible LPg is obtained without the need to price all the excluded variables.

4.6 Separation Loop

The separation loop to find the violated cuts is accomplished in three subloops. In
the inner loop, we consider the separation of logical constraints (4.1e) and the connected
components heuristic for SECs and CCs. In the middle loop, we consider the separations
of cuts which are related to the cycle essence of the OP, i.e., SECs, CCs, blossoms, and
Cycle Cover cuts. In the outer loop, we consider the rest of the cuts, i.e., the Edge
Cover, Vertex Cover, and the Path inequalities. The separation loop is illustrated in
Figure 4.4.

At each subloop, the separation of the considered cuts is performed sequentially, in-
stead of restarting from the beginning of the list. This is, we always carry out the next
separation in the subloop list, regardless of whether or not we are coming from an in-
terior subloop. This way, we give the same chance to all separations in a subloop and
decrease the probability of bounding in the same separation algorithm in consecutive
iterations of the subloop.

The separation algorithms of the inner loop are fast since both have a O(|E*|) time
complexity. First, we carry out the connected components heuristic and then the sep-
aration of logical constraints. In the inner loop, intending to keep it as a fast loop, we
price the edge variables only when the floor part of the objective value is equal to the
lower bound of the OP, i.e., if |s-y*| = LB. When both separations fail and no new
edges have been added, we find a feasible solution using the PB primal heuristic (see
Section 4.7) and update the LB if needed. We add the associated CC of the heuristic
solution if it is violated and then we price the variables. When a new CC cut or a priced
edge has been added to the LPg, the inner loop is repeated. Otherwise, we return to the
middle loop.

The middle and outer loops only differ in the considered constraint families. In the
middle loop, we consider the separation algorithms in the following order: the extended
Padberg-Hong algorithm for blossom, the extended Grotschel-Holland algorithm for blos-
som, the joint SEC/CC separation algorithm, and Cycle Cover separation algorithm. In
the outer loop, we consider the Edge Cover algorithm, the Vertex Cover algorithm, the
Path algorithm.

90 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

OUTER LOOP

R e e N I e T T e TN TR T I e A T N T P A e NI T TR NI PO AP TE PR T AT TEPE T IE AT N
; :
- 1
n -
- 1
1 !
- "
H !
i i
H MIDDLE LOOP]
B E i mE ;
' 1 1
L] - - 2
- : Go t !
5 L IN i o o 1
" H H * Middle loop H
' . 1
LA INNER LOOP ' '
1. e mmmmimmm s e e, : Price !
- ' ! '
- ! ! I H
PR H Go to ' [
H L 1 T Inner loop L PB Primal 1
- n 5 n] Heuristic)
n - L - - -
- ' ! '
i Yo ' Price ['
- [] = [] L] n
1 -] - I : b
-] =] 1

- |] - - -
- Connected [- O Edge Cover i
- " - components 1 PB Primal H H
L] H L H Heuristic H H
n - i - = O @ -
- [] = [] [] n
[- u - = -
P i '] i
= L] - |] 1 1
1 = " = = 2
7 Yoo ' EPG blossom ' Vertex Cover '
A Logical 1 [i
- [] - |] L] n
M -] - - 2
' P i i
- ' []

- |] - - -
- i 1 i 1 i
1 - " - = :
- " - |] n L]
- ' H Path '
H L 1 L EPH blossom L inequalities L
- [] = [] [] n
1 -] - - b
- . []

- |] - - -
i oo : : i
- ! ! '
- H | ! -
- ! ! '
- ' SEC/CC . !
- [] = [] L] n
[- u - = -
- ' ' L]
- ' <> ' 1
- " - |] n L]
[H I ' '
: Yo ! ! '
- [] = [] [] n
1 -] - - b
H " 5 L] Cycle Cover n 1
= L] - |] n 1
] - " - - -
- H ! -
- ! ! '
O 1 ! '
- PB Primal L L] 1
H ' 1 Heuristic [f i
= L] i [] 1 1
u H . H FP‘,value H H
: [: i 1m>prlo‘;/(ed i H
- n - . 2 o H i
[- u - = -
O ' ' '
- Price ' ' '
- L] - " n n
n - L - - -
- ! ! '
- ! L '
- ! ! H
- ' ' L]
- H H !
- ' ! '
- ! ! '
- ! ! H
- ! H H
F- [' ' '
- H ! !
- ! ! '
- ! ! '
- T ! '
- ' ' L]
;Yo ' H '
- " ; |] n L]
' i H ;
[I E - i
LN L Iy

Figure 4.4: Illustration of the separation loop. The symbol & represents that some cuts have
been added to the LPg.

4.7. Primal Heuristics and Lower Bounds 91

SEPARATION LOOP STRATEGY

When we enter in any of the separation loops, the first step is to execute the lower level
subloops. Then, we start with the first algorithm on the list. If no violated cuts are
found we move on to the next algorithm. If violated cuts are found, we first add the cuts
and optimize the LPy. Then, we search for a feasible solution using a primal heuristic
and update the LB if needed. We add the associated CC of the heuristic solution in case
it is violated and then we price the variables. At this point, we move to the lower level
loop and continue with the next separation in the list.

In the separation loop, after adding the violated cuts found in a separation algorithm,
we check if any edge variable or constraint can be removed from the LPgy. We remove an
edge variable from the LPy if, during a number of consecutive evaluations, its associated
value, =}, has been zero. We remove a constraint from the LPy if during a number of
consecutive evaluations its slack has been higher than zero.

4.7 Primal Heuristics and Lower Bounds

We use two primal heuristics to obtain feasible solutions from a fractional solution
(y*,z*). In the first heuristic, we obtain a single solution, by using the z* values related
to edges, inspired by the heuristic proposed in Fischetti et al. [1998]. In the second
heuristic, first, we build a population of cycles and then evolve it using the EA4OP
metaheuristic, see Kobeaga et al. [2018]. The cycles in the population are constructed
by selecting first the subset of vertices in each cycle using the y* values.

Path Building primal heuristic (PB). The PB heuristic was presented in Fischetti et al.
[1998]. First, the edges e € E* are sorted in decreasing order of z}, and the ties are
randomly broken. The procedure starts with an empty path T = (). At each step we
select an edge e € E* whose x} has the largest value from the set of edges which have
not been considered yet. If the inclusion of e in T" does not lead to a vertex with a
degree larger than 2, then T'= T U {e} otherwise we exclude e and repeat the process.
The path building heuristic finishes when the inclusion of e leads to 7" being a cycle or
when there are no edges left to check. If the depot vertex is not in one of the paths in
T, it is included as a single point path. If T" consists of multiple paths, we extend it to a
cycle by randomly connecting the extreme vertices (in the original paper the paths were
joined using the nearest neighbor heuristic). Since this primal heuristic is fast, it is used
in the separation loop.

Vertex Picking primal heuristic (VP) with the EA{OP metaheuristic. In the VP
heuristic, we first select a collection of vertices in V* and then build a random cycle
through the selected vertices. Each vertex v is selected according to a Bernouilli dis-
tribution with parameter y;. By applying multiple times the VP strategy to obtain
feasible solutions from (y*, z*), we build a small population. Then, as explained below,

92 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

we ensure that the solutions in the population are feasible and improve when it is pos-
sible. Once we have a population with feasible solutions, it is evolved using the EA4OP
metaheuristic proposed in Kobeaga et al. [2018]. The EA4OP with VP heuristic is used
to find feasible solutions after an edge is branched, as shown in Figure 4.2.

For solutions obtained by PB and VP heuristics, we improve the route lengths using
the Lin-Kernighan heuristic for the TSP, and then first check if it satisfies the con-
straint (4.1b). If it does not, we apply the drop operator which consists in deleting
vertices from the solution until the cycle satisfies the length constraint. Then we try
to improve the solution by the k-d tree based vertex inclusion procedure as explained
in Kobeaga et al. [2018].

4.8 Branching and Upper Bounds

The branching is carried out in a classical way following a depth-first-search, where the
edges are branched first to 1 and then to 0. In order to select the edge variable to branch,
we use the classical branching strategy: the edge e, with the fractional value closest to
0.5 is selected, i.e., the edge that minimizes |z} — 0.5].

GLOBAL AND BRANCH NODE UPPER BOUNDS

The global upper bound and branch node upper bound are calculated just before pruning
a branch. The branch node upper bound, UB", is used to verify the pruning, i.e, that
LB > |UBY|. The global upper bound is calculated with two aims: firstly, to use
it in Vertex Cover separation, and secondly, to compute the optimality gap when the
algorithm finishes due to time limitations.

The global upper bound, UB® of OP, is obtained using the dual solution 7* of the
solution (y*,z*) of the LPg:

Zﬂ' bi +rcj + Z rc, + Z T, (4.22)

veV—{1} eck
rck>0 rcg >0

where the reduced costs rc;, and rc; are calculated using the dual variables 7 and c is

the number of constraints.

The upper bound of a branch node, UBY, can be calculated by subtracting the contri-
butions of the branched edges to UB®. Let By, By C E be the subset of edges branched
to 0 and 1, respectively. Then, we obtain UB by:

Zﬂb+rcl+ Z Tc+ZchZrc+Zrc: (4.23)

veV — {1} EEE eGBO BEBl
rcs>0 rcg>0 rci>0 rci<0

4.9. Computational results 93

4.9 Computational results

In this section, we present the results of the computational experiments. Firstly, we
evaluate the new designed components for the revisited B&C algorithm (RB&C); and
secondly, we compare the performance of RB&C with state-of-the-art B&C and heuristic
algorithms. The software used for the experiments is publicly available on https://
github.com/gkobeaga/op-solver.

The experiments are carried out using well-known instances in the literature. These
instances, which are based on the TSPLIB library, were first proposed in Fischetti et al.
[1998] and then extended to larger problems in Kobeaga et al. [2018]. The instances
are split into two groups: medium-sized instances (up to 400 nodes) and large-sized
instances (up to 7397 nodes). In total, we consider 258 benchmark instances. They are
also classified into three generations (Genl, Gen2 and Gen3) according to the definition
of scores, see Fischetti et al. [1998]. For all of these three generations, the distance
limitation is set as half of the TSP solution value.

In order to measure the performance of the algorithms, we compare the quality of the
returned best solutions (LB) and the mean running time (in seconds) of the algorithms.
In addition, in the case of the B&C algorithms, we also compare the obtained upper
bounds (UB). All the experiments for the compared algorithms have been carried out
using a 5-hour time limit.

In Table 4.1, we detail the values of the common parameters for all the simulations of
the RB&C algorithm. They were chosen inspired by the parameters used in Applegate
et al. [2007] and our preliminary experiments for the OP.

4.9.1 Evaluation of Components

In this section, we evaluate the designed components for the RB&C algorithm. We have
carried out experiments with several alternative configurations of the components. To
that aim, a subset of 15 OP instances were selected: 5 TSP instances (pr76, att532,
vm1084, rl11323 and vm1748, inspired by the subset selected in Goldberg and Tsiout-
siouliklis [2001]) with their respective score generations proposed in Fischetti et al. [1998].
Then, for each instance and generation, we have executed the different B&C configura-
tions 5 times.

In order to evaluate our contributions, we have chosen a reference configuration, REF-
ERENCE, that incorporates the components proposed in this chapter and compared it
with its alternative configurations. The reference RB&C algorithm considers the follow-
ing components:

- SEC/CC separation algorithm (Section 4.4.1):
i) SRK=S1S3: Uses shrinking rules S1 and S3.
ii) CC STRATS: Uses strategies to find extra violated CCs.

https://github.com/gkobeaga/op-solver
https://github.com/gkobeaga/op-solver

Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Table 4.1: Common parameters.

Parameter Value Description

ZERO 10~7 Sensibility of fractional numbers

ADD_CUT_ BATCH 250 Maximum number of cuts added to the LPq at once
ADD_MIN_ VIOL 10=® Minimum violation of a cut to include it in the LPg
SUBLOOP_IMPR 1% Minimum improvement to repeat the subloops

ADD SEC PER SET 50 Amount of SECs considered for each subset
ADD_PATH_MAX 500 Maximum cuts for Path inequalities separation

ADD EGH_ EPSILON 0.3 Epsilon value for the EGH blossom heuristic
PRICE_MAX ADD 200 Maximum number of variables added to the LPg
PRICE _RC THRESH 107 Minimum penalty of a variable to add to the LPg
DEL_DUST_ VAR 107® Minimum y value to consider an edge as active
DEL_DUST_CUT 107® Maximum slack value to consider a cut as active
DEL MAX AGE CUT 5 Consecutive inactivity to delete a cut from the LPg
DEL MAX AGE VAR 100 Consecutive inactivity to delete an edge from the LPg
XHEUR_ GREEDY_ XMIN 0.3 Use arcs larger than this value in PB primal heuristic
XHEUR EA40P POP_SIZE 10 Population size for EA4OP

XHEUR_EA40P_D2D 5 Iterations before checking feasibility in EA4OP
XHEUR_EA40OP_NPAR 3 Number of parents preselected in EA4OP

Blossom separation algorithms (Section 4.4.2):
i) EPH BLOSSOM: Uses Extended Padberg-Hong blossom heuristic.
ii) EGH BLOSSOM: Uses Extended Grotschel-Holland blossom heuristic.

Separation algorithms from the literature:

i) CYCLE: Uses Cycle Cover inequalities.
ii) EDGE: Uses Edge Cover inequalities.
iii) PATH: Uses Path inequalities.

- Separation Loop strategy:

i) SEP=THREE SUBLOOPS: Uses the separation loop strategy presented in
Section 4.6.

Primal heuristics (Section 4.7):

i) XHEUR=VP + EA4OP: Constructs a small population using VP heuristic
and evolves it with EA4OP.

ii) SEP XHEUR=PB: Constructs a single solution using PB in the separation

4.9. Computational results 95

loop.

The alternative configurations are obtained by modifying a single component in REF-
ERENCE, while the rest of the components remain untouched. These changes to REF-
ERENCE are made by deleting a component(-), adding a new component(+) or replacing
a component (COMP=). The tested alternative strategies are the following:

- SEC/CC separation algorithm:

i) -SRK: Does not use any shrinking technique. As a consequence, CC STRATS
are not used either.

ii) SRK=C1C2S3: The shrinking rule S1 is replaced with the rules C1C2.
iii) -CC STRATS: Does not use strategies to find extra violated CCs.
- Blossom separation algorithms:

i) -EPH BLOSSOM: Does not use the Extended Padberg-Hong blossom heuris-
tic

ii) -EGH BLOSSOM: Does not use the Extended Grétschel-Holland blossom

heuristic

iii) +FST BLOSSOM: Uses the blossom separation heuristic in Fischetti et al.
[1998]

- Separation algorithms from the literature:
i) -CYCLE COVER: Does not use Cycle Cover inequalities
ii) -EDGE COVER: Does not use Edge Cover inequalities
iii) +VERTEX COVER: Uses Vertex Cover inequalities
iv) -PATH: Does not use Path inequalities
- Separation Loop strategy:

i) SEP=TWO SUBLOOPS: The separations algorithms in the outer subloop
are appended to the middle subloop.

- Primal heuristic in the branch node:
i) XHEUR=PB: Constructs a single solution using PB heuristic.
ii) XHEUR=VP - EA4OP: Constructs a single solution using VP heuristic.

In Table 4.2 we summarize the mean relative difference to the best achieved LB and
UB, as well as the mean relative difference to the best performing configuration in terms
of running time. The results grouped by instances are presented in Appendix B.3.1.

The results show that the alternatives decrease the performance of the REFERENCE
configuration for the RB&C algorithm either in terms of solution quality, upper bound
value, or running time. The experiments restate the importance of the shrinking tech-
niques for the SEC/CC separation algorithm, as can be seen in the results for -SRK.

96 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Table 4.2: Results of the alternative configurations for RB&C. In bold, the values of the alter-
natives that are worse than those obtained by the REFERENCE configuration.

Gap
Genl Gen2 Gen3
Strategy LB UB Time LB UB Time LB UB Time
REFERENCE 0.05 0.00 262.06 0.05 0.04 23.11 0.02 0.01 44.02
- SRK 0.13 0.00 532.37 0.10 0.04 25.86 0.02 0.02 134.74
SRK=C1C2S3 0.02 0.00 88.32 0.09 0.04 31.72 0.01 0.01 79.81
- CC STRATS 0.02 0.00 115.91 0.04 0.01 21.85 0.01 0.01 449.90
- EPH BLOSSOM 0.09 0.15 208.65 0.12 0.15 33.64 0.10 0.22 199.79
- EGH BLOSSOM 0.02 0.00 296.71 0.04 0.04 26.18 0.03 0.01 91.83
+ FST BLOSSOM 0.00 0.00 345.32 0.04 0.00 26.43 0.04 0.00 66.54
- EDGE COVER 0.11 0.00 137.73 0.13 0.04 30.04 0.05 0.01 35.50
- CYCLE COVER 0.06 0.00 124.79 0.02 0.04 25.60 0.03 0.01 48.18
- PATH 0.08 0.00 183.86 0.10 0.04 32.00 0.03 0.01 69.01
+ VERTEX COVER 0.05 0.00 61.10 0.03 0.04 22.33 0.03 0.01 104.82

SEP: TWO SUBLOOPS 0.05 0.00 315.34 0.06 0.04 17.05 0.03 0.01 164.44

XHEUR=PB 0.08 0.00 179.14 0.12 0.01 2.37 0.04 0.01 62.74
XHEUR=VP - EA40P 0.02 0.00 222.46 0.07 0.04 7.17 0.01 0.01 168.63

It is not only worse not using the shrinking in terms of time, but indeed, the obtained
LB values are also worse. In addition, the results suggest that the S1 shrinking tech-
nique, which is considered in REFERENCE, might be preferable to the C1C2 technique.
Regarding the CC STRATS, the results for Gen3 suggest that not considering the strate-
gies to find extra violated CCs might have a negative impact on the running time of the
algorithm.

Next, looking at the separation algorithms for blossoms, the results show that the
EPH heuristic is crucial in the RB&C, particularly, if we focus on the obtained LB and
UB values. From the table, we can also extract that the EGH heuristic improves the
running time of the B&C algorithm. Alternatively, although the FST blossom heuristic
might improve the quality of the solutions, it reports worse running times.

With respect to the rest of the separation algorithms proposed in the literature for the
OP, we include in REFERECE all but Vertex Cover inequalities. This way, the RB&C
uses the same families of cuts as in Fischetti et al. [1998], which enables us to evaluate
the contributions in this chapter in a better way.

Finally, the experiments show that the VP primal heuristic plays an important role
in obtaining better LB values, particularly for large problems, as can be seen in the
detailed results in Appendix B.3.1. However, solving the VP primal heuristic in the
branch node is more costly than PB primal heuristic, hence the running time of the

4.9. Computational results 97

RB&C is worsened in the smallest instances. Similarly, by using the EA4OP to improve
the results by VP heuristic, the obtained LB values are improved in large problems at
the expense of worsening the running time in the smallest instances.

4.9.2 Comparison with state-of-the-art Algorithms

The proposed reference RB&C has been compared with the state-of-the-art B&C al-
gorithm in Fischetti et al. [1998] (FST) and two state-of-the-art heuristics, Kobeaga
et al. [2018] (EA4OP) and Santini [2019] (ALNS). The detailed results can be found in
Appendix B.3.2.

Three notes before moving on to the discussion. First, the FST code reports the
running times using one trailing digit while the rest of the algorithms report the times
using two trailing digits. In order to make use of the reported times in the literature
of the FST, we round the obtained times by the RB&C to one trailing digit when we
compare it with the FST algorithm. Secondly, the FST returns a false optimum for
pab61 in Genl. We assume that this is a consequence of the rounding sensibility and we
accept as valid the rest of the reported optima by FST. Thirdly, eight instances (rat99,
rat195, tsp225, pab61, rat575, rat783, nrwl379, and fnl4461) of Gen3 have been excluded
for the comparison of the RB&C with the EA4OP and the ALNS, due to an issue in the
generation of scores of the instances used by those algorithms. Since the results of the
current comparison are clear enough, we have discarded rerunning the experiments with
the updated scores.

First, we compare the RB&C algorithm with the B&C by Fischetti et al. [1998]. The
results of the FST algorithm were updated using CPLEX12.5 in Kobeaga et al. [2018],
which is the same version of CPLEX used for the experiments of RB&C. Moreover,
the new experiments are run on the same machine with the same amount of reserved
memory (4GB). In Table 4.3 we summarize, by size and generation, the number of
instances returning a feasible solution, #, the obtained optimality certifications, OPT,
the number of best-known solution (LB), and upper bound (UB) values.

In Table 4.3 it can be seen that the RB&C algorithm is able to obtain the best-known
solutions value in all the medium-sized instances.

COMPARISON WITH FST ALGORITHM

Moving on to large-sized instances, the superiority of the RB&C algorithm compared to
the FST approach becomes evident. While the FST algorithm fails to output a solution
in almost half of the instances (mainly because of running out of memory), the RB&C
algorithm returns a solution for every instance. Moreover, it obtains the best-known
solution in significantly more instances than FST (245 against 170) and UB (249 against
173) values. Even more, it obtains more optimality certifications (180 against 165).

98 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Table 4.3: Comparison of the number of instances in which a feasible solution (#), an optimal
(OPT), a best-known solution (LB) or a best upper bound value (UB) were obtained.

OoPT LB UB
Size Gen FST RB&C FST RB&C FST RB&C FST RB&C
Medium Genl 45 45 45 44 45 45 45 44
Gen2 45 45 45 45 45 45 45 45
Gen3 45 45 45 45 45 45 45 45
Large Genl 21 41 12 24 13 39 13 40
Gen2 22 41 9 10 9 36 13 38
Gen3 29 41 9 12 13 35 12 37
All 207 258 165 180 170 245 173 249

Table 4.4: Comparison of the number of obtained optimal solutions (OPT), number of best-
known solutions (LB) and number of best upper bounds (UB) in the instances that
FST does return a solution.

OPT

LB

UB

Time

FST RB&C FST RB&C FST RB&C FST RB&C

Genl 66 1 4 0 6 2 8 15 40
Gen2 67 1 0 0 11 3 9 25 27
Gen3 T4 1 3 1 14 4 17 23 33
All 207 3 7 1 31 9 34 63 100

In Table 4.4 we compare the quality of the solutions and running times, restricted to
those instances in which FST actually returns a solution. We particularly focus on the
number of solutions (optimality certifications, best-known solutions and upper bounds)
that are new in the literature, i.e., values not obtained by the rest of the algorithms.
Thus, for the lower-bound values, we also take into account the results obtained by the
EA40P and ALNS heuristics. Additionally, we show the number of instances in which
the considered B&C algorithms are faster than the competitor. When we restrict the
considered instances to the instances where the FST obtains a feasible solution, the
RB&C outperforms the results of the FST. While the FST obtains 1 new best-known
solution (not obtained by any other algorithm) and 9 new UB values, the RB&C obtains
31 LB and 34 UB new values. In the same set of instances, the FST obtains 3 optimality
certifications that the RB&C is not able to obtain, while the RB&C obtains 7 optimality
certifications that the FST is unable to obtain. Moreover, it turns out that the RB&C

4.9. Computational results 99

is faster than the FST in 100 instances while the FST is faster than the RB&C in 63
instances.

Next, we compare the RB&C algorithm against state-of-the-art algorithms in terms
of solution quality, running time, and Pareto efficiency. In Table 4.5 and Table 4.6 the
algorithms are compared pairwise and instance-by-instance for medium-sized and large-
sized instances respectively. The aim is to measure the number of instances where an
algorithm is simultaneously as least as fast as the opponent and obtains a better quality
solution.

Table 4.5: Comparison in medium-sized instances against state-of-the-art algorithms in terms of
quality, time and Pareto efficiency.

Genl Gen2 Gen3

EA40P tie RB&C EA40P tie RB&C EA40P tie RB&C

Quality 0 30 15 0 14 31 0 15 27
Time 15 0 30 37 0 8 39
Pareto 7 0 30 10 0 8 13

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 0 40 5 0 29 16 0 29 13
Time 1 0 44 4 0 41 8 0 34
Pareto 1 0 44 1 0 41 5 0 34

FST tie RB&C FST tie RB&C FST tie RB&C

Quality 0 45 0 0 45 0 0 45 0
Time 14 6 25 17 2 26 18 1 26
Pareto 14 6 25 17 2 26 18 1 26

COMPARISON IN MEDIUM-SIZED INSTANCES

Table 4.5 shows that the RB&C algorithm is competitive in medium-sized instances.
Compared to the ALNS heuristic and FST algorithm, it obtains better Pareto efficiency
results in the three generations. Comparing it to EA4OP, the Pareto efficiency is lower
because the heuristic is a faster algorithm. Nevertheless, the RB&C obtains much better
quality solutions.

100 Chapter 4. RB&C: Revisited Branch-and-Cut Algorithm

Table 4.6: Comparison in large-sized instances against state-of-the-art algorithms in terms of
quality, time and Pareto efficiency.

Genl Gen2 Gen3

EA40P tie RB&C EA40P tie RB&C EA40P tie RB&C

Quality 1 0 40 5 0 36 3 0 33
Time 39 0 2 40 1 0 35 1 0
Pareto 1 0 2 5 0 1 3 0

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 2 2 37 4 1 36 4 0 32
Time 6 11 24 13 25 3 13 19 4
Pareto 4 0 34 5 0 24 4 0 20

FST tie RB&C FST tie RB&C FST tie RB&C

Quality 0 13 28 0 9 32 3 11 27
Time 1 5 35 8 13 20 5 17 19
Pareto 1 1 39 8 0 33 7 2 32

COMPARISON IN LARGE-SIZED INSTANCES

Table 4.6 shows that RB&C is the best performing algorithm in large-sized instances.
Particularly, it behaves better than the FST algorithm, obtaining the best quality and
time solutions in most of the instances, hence obtaining better Pareto results. The ALNS
algorithm is able to return some solutions with better quality or running time, however,
overall, the RB&C performs better in large-sized instances. The EA4OP metaheuristic
is faster than the B&C but, in general, obtains worse quality solutions.

Finally, in Table 4.7, we summarize the new best-known results obtained in the ex-
periments. The RB&C algorithm obtains 18 new optimality certifications, 76 new best-
known solution values and 85 new upper-bound values.

4.10 Conclusions

We have presented a revisited version of the B&C algorithm for the OP that brings
multiple contributions together. We have proposed a joint separation algorithm for SECs

4.10. Conclusions 101

Table 4.7: New best-known optimum, lower bound and upper bound values.

OPT LB UB

Genl 12 25 28
Gen2 2 27 28
Gen3 4 24 29

All 18 76 85

and CCs, which efficiently uses the shrinking technique for cycle problems by reducing
the adverse effects of the shrinking for CCs. We have developed two blossom heuristics
for cycle problems which generalize the well-known approaches in the literature of the
TSP. We have designed an efficient variable pricing procedure for the OP which enables
us to avoid repetitive calculations and to skip the exact calculation of the reduced cost
of some variables. We have proposed a separation loop for the OP that takes into
consideration the different contributions and separation costs of the valid inequalities.
We have used alternative primal heuristics, one of which is based on a metaheuristic,
and a mechanism to update the global upper bound during the branching phase to
tighten the lower and upper bounds for the cases when the algorithm finishes without
an optimality certification.

The experiments have shown that the RB&C algorithm for OP is a more efficient
approach than the state-of-the-art B&C algorithm. The introduced algorithm has in-
creased the number of solved problems, obtained better running times in more instances,
succeeded in returning new optimality certifications, new best known solutions, and new
upper-bound values for large problems. Additionally, it has been shown that the RB&C
algorithm obtains better quality solutions than the state-of-the-art heuristics for the OP
within the 5-hour running time limit.

Nevertheless, there are many research lines that remain open after this work. One of
the most demanding aspects to improve in the presented approach is the implementation
of advanced branching techniques. The use of more general cuts, such as combs and
clique trees, and the development of their respective separation algorithms for cycle
problems might help to improve the performance of the RB&C algorithm. All these
future contributions might help to solve the remaining instances until optimality, but
we can anticipate it will not be an easy challenge. Implementing the contributions in
this chapter to other cycle problems which are different from the OP will definitely help
to comprehend their importance in the context of cycle problems with a more general
view.

CHAPTER 5

Software for OP

The implementation of the proposed algorithms has been an important part of this thesis.
Although we have released a repository of software for each chapter, all the algorithms
implemented during the thesis have been included in our last software repositoy for
the B&C algorithm. This repository, which is publicly available under the Apache 2.0
license at https://github.com/gkobeaga/op-solver, is an extensive work written in
C. In table 5.1 a summary of the repository contents can be seen.

Table 5.1: Summary of the repository contents.

Language Files Lines Code Blanks

Bash 1 7 7 0
Automake 28 414 321 85
C Header 25 2654 2269 385
C 139 26972 23649 3317
Total 193 30047 26246 3787

A large part of the source code related with the B&C algorithm has been inspired by
the Concorde solver developed in Applegate et al. [2007] for the TSP, which is publicly
available at http://www.math.uwaterloo.ca/tsp/concorde.html. We have also used
the implementation of the B&C proposed in Fischetti et al. [1998], which had been
provided by the authors, as a reference for some of the separation algorithms.

When implementing the algorithms for the OP, particularly the B&C algorithm, the
are several subproblems (Minimum Cut Problem/Maximum Flow Problem, Minimum
Spanning Tree Problem, Knapsack Problem, Linear Problem, Integer Problem, Cycle
Problem) and data-strucures (Graph, Spatial Data) involved. The repository is struc-
tured as follows:

103

https://github.com/gkobeaga/op-solver
http://www.math.uwaterloo.ca/tsp/concorde.html

104

Chapter 5. Software for OP

e Data-sctructures:
(a) Graph
i. Constructors
ii. Hash
iii. Connected components
iv. Minimum-cut problem
v. Gomory-hu trees
vi. Minimum Spanning Tree
(b) Data
i. Read distance
ii. Nearest Neighbor (k-NN)
i. k-d trees (Concorde)
e Problems:
(a) Knapsack Problem
i. Initialization
ii. Exact
i. Branch-and-Bound
(b) Linear Problem
i. External LP sover: IBM ILOG CPLEX
(¢) Integer Problem
i. Dependency: LP
ii. Exact
i. Branch-and-Bound
(d) Travelling Salesperson Problem
i. Dependency: CP
ii. Initialization
iii. Heuristic
i. k-opt
ii. Lin-Kernighan (Concorde)
(e) Cycle Problem
i. Dependency: LP, IP, KP, TSP

[graph
[graph/graph.c
[graph/arc_hash.c
[graph/connect.c

[graph/{maxflow.c, mincut.c}

]

]

]

]

]
[graph/ghtree.c]
[graph/mst.c]
[data/]
[data/io/]
[data/nearest/]
]

[data/nearest/kdtree

[prob/kp]

[prob/kp/exact]
[prob/kp/exact /bab.c]
[prob/Ip]
[prob/Ip/lib/cplex.c]
[prob/ip]

[prob/ip/exact]
[prob/ip/exact /bac]
[prob/tsp]

[prob/tsp/init]
[prob/tsp/heur]
[prob/tsp/heur/kopt]
[prob/tsp/heur/linkern]
[prob/cp]

5.1. Installation 105

ii. Initialization [prob/cp/init]
iii. Exact [prob/cp/exact]
i. Branch-and-Cut [prob/cp/exact /bac]
iv. Heuristic [prob/cp/heur]
i. Evolutionary Algorithm [prob/cp/heur/eal

e Each problem (and algorithm) has an associated enviroment where the specific
enviromental variables (i.e. verbosity), parameters and statistics are stored:

Problem Enviroment [prob/* /env.c]
i. Parameters [prob/* /param.c]
ii. Statistics [prob/* /stats.c]
iii. Initialization Enviroment [prob/*/init/env.c]

i. Parameters [prob/*/init /param.c]
ii. Statistics [prob/*/init /stats.c]
iv. Heuristic Enviroment [prob/* /heur/env.c]
i. Parameters [prob/* /heur /param.c]
ii. Statistics [prob/* /heur /stats.c]
v. Exact Enviroment [prob/* /exact/env.c|
i. Parameters [prob/*/exact /param.c]
ii. Statistics [prob/* /exact /stats.c]

5.1 Installation

The software is build using the GNU Autools suite. First, download the source code,

Listing 5.1: Clone the repository

git clone https://github.com/gkobeaga/op-solver
cd op-solver

install the dependencies,

Listing 5.2: Install the dependencies

sudo apt install autoconf automake libtool m4 libgmp-dev

and generate the configure script.

Listing 5.3: Generate the configure script

106 Chapter 5. Software for OP

./autogen.sh
mkdir -p build && cd build

Since the external LP solver is proprietary software, there are two options to install
our software: to build only the heuristic algorithm or to build both the heuristic and
the exact algorithms.

5.1.1 Install Heuristic Algorithm

By default, the solver is built only with the heuristic algorithm:

Listing 5.4: Build only the heuristic

make clean
../configure
make

5.1.2 Install Heuristic and Exact Algorithms

To build the exact algorithm, you need to have the IBM ILOG CPLEX installed in your
system. To build the ‘op-solver* with the exact algorithm:

Listing 5.5: Build the heuristic and the B&C algorithm

make clean
../configure --with-cplex=<CPLEX_PATH>
make

For instance, if CPLEX is installed in /opt/ibm/ILOG/CPLEX Studiol25/cplex/
the configuration is carried out as follows:

Listing 5.6: Example of the configuration with cplex

../configure --with-cplex=/opt/ibm/ILOG/CPLEX_Studiol25/cplex/ J

5.2 Usage

In order to use the OP solvers, download first the benchmark instances for the OP:

Listing 5.7: Download the OP instances

cd build
git clone https://github.com/bcamath-ds/0PLib.git

5.2. Usage 107

To solve the problem using the EA4OP algorithm:

Listing 5.8: Solve OP with EA40P

./src/op-solver opt --op-exact O OPLib/instances/gen3/kroA150-gen3
-50.0plib

To solve the OP using the revisited Branch-and-Cut algorithm(RB&C):

Listing 5.9: Solve OP with RB&C

./src/op-solver opt --op-exact 1 OPLib/instances/gen3/kroA150-gen3
-50.0plib

You can increase the verbosity of the RB&C with:

Listing 5.10: Increase verbosity

./src/op-solver opt --op-exact 1 --op-exact-bac-verbose 1 OPLib/
instances/gen3/kroA150-gen3-50.0plib

When the B&C algorithm finishes, it writes the solution in the “solution” directory:

Listing 5.11: Solution file for kroA150-Gen3

NAME : kroA150

TYPE : 0P

DIMENSION : 150
COST_LIMIT : 13262.00
ROUTE_NODES : 79
ROUTE_SCORE : 5039.00
ROUTE_COST : 13246.00
NODE_SEQUENCE_SECTION
1

93

28

58

61

25

81

69

64

40

54

2

144

114

44

50

108

Chapter 5. Software for OP

116
82
126
95
13
76
33
146
103
37

52
78
96
39
101
121
30
107
112
132
29
46

14
48
100
71
41
136
128
43
123
115
120
149
55
83
34
135
140
125
51
87
145

117

57

5.2. Usage

109

20
12
27
86
150
62
60
77
110
23
98
91
109
47
-1

DEPOT_SECTION

1
-1
EQF

It also writes the execution statistics in the “bac-stats.json” file in the following format:

Listing 5.12: Statistics for kroA150-Gen3

"prob":

{

"name": "kroAl50",

Ilnll:
IIdOH :
T,

"sol":

150,
13262

{

"val": 5039,
"cap": 13246,

"sol_

n 1bl| :
n ub n :

¥,

ns": 79,
5039,
5039

"param": {

"sep_
"sep_
"sep_
"sep_

logical": 1,

sec_comps": 1,
sec_exact": 3,
sec_cc_2": 0,

"sep_sec_cc_extra":
"sep_blossom_£fst":
"sep_blossom_eph":
"sep_blossom_egh":

1,

b

b

110

Chapter 5. Software for OP

T,

"sep_cover_edge": 1,
"sep_cover_vertex": O,
"sep_cover_cycle": 1,
"sep_path": 1,
"sep_loop": 1,
"sep_srk_rule": 4,
"sep_srk_s2": O,
"sep_srk_s3": 1,
"sep_srk_extra": 1,
"xheur_vph": 1,
"xheur_vph_meta": 1

"stats": {

"time": 34427,
"active_sep_logical": 2207,
"success_sep_logical": 265,
"total_sep_logical": 460,
"active_sep_sec_comps": 2207,
"success_sep_sec_comps": 31,
"total_sep_sec_comps": 664,
"time_sep_sec_comps": 151,
"active_sep_sec_exact": 891,
"success_sep_sec_exact": 726,
"total_sep_sec_exact": 6072,
"time_sep_sec_exact": 3171,
"active_sep_blossom_fast": 914,
"success_sep_blossom_fast": 127,
"total_sep_blossom_fast": 274,
"time_sep_blossom_fast": 315,
"active_sep_blossom_ghfast": 897,
"success_sep_blossom_ghfast": 94,
"total_sep_blossom_ghfast": 149,
"active_sep_blossom_mst": O,
"success_sep_blossom_mst": O,
"total_sep_blossom_mst": O,
"time_sep_blossom_mst": O,
"active_sep_cover_edge": 486,
"success_sep_cover_edge": 48,
"total_sep_cover_edge": 48,
"time_sep_cover_edge": 941,
"active_sep_cover_cycle": 851,
"success_sep_cover_cycle": 2,
"total_sep_cover_cycle": 2,

5.2.

Usage

111

"time_sep_cover_cycle": 52,
"active_sep_cover_vertex": O,
"success_sep_cover_vertex": O,
"total_sep_cover_vertex": 48,
"time_sep_cover_vertex": O,
"active_sep_path": 482,
"success_sep_path": 22,
"total_sep_path": 111,
"time_sep_path": 196,
"time_sep_sep_loop": 12164,
"time_sep_sep_loop_it": O,
"time_sep_sep_loop_inner": 2830,
"time_sep_sep_loop_inner_it": 1015,
"time_sep_sep_loop_middle": 10833,
"time_sep_sep_loop_middle_it": 9368,
"time_sep_sep_loop_outer": 12164,
"time_sep_sep_loop_outer_it": 2450,
"time_age_cut": 687,
"time_age_vars": 907,
"time_add_vars": 6216,
"time_add_cuts": 4957,
"time_xheur_branch": 30,
"time_xheur_sep": 2330

},

"timestamp": 1606759120605,

"event": "stats_summary",

"env": "cp_exact_bac",

"seed": 127591,

"pid": 148865

CHAPTER 6

Conclusions, Future Work and Contributions

6.1 Conclusions

In this thesis, we have developed two algorithms to solve large-scale orienteering prob-
lems: a heuristic evolutionary algorithm and an exact Branch-and-Cut algorithm. As
part of the research carried out for the exact algorithm, we have extended, from the
literature of the TSP, the support graph shrinking tecniques for cycle problems.

In Chapter 2 of this work, we have presented an efficient evolutionary algorithm for the
OP. Essentially, the algorithm follows the steady-state genetic algorithm schema. The
proposed method maintains unfeasible solutions during the search and considers specific
operators to recover it when required. It allows us to obtain high quality solutions
without being penalized in terms of computational time. Furthermore, the parameter
d2d helps to strike a balance between solution quality and computational time.

The Edge Recombination crossover, originally proposed for the TSP, has been adapted
for the OP. We consider this adaptation of the Edge Recombination crossover as a
contribution to the solution of cycle problems in general. In addition to the problems
that consist of permutations, this adaptation also allows us to deal with a wider range
of problems whose solution space consists of simple cycles.

Another contribution that we find remarkable for routing problems is the proposed
add operator. When the distance matrix is given by spatial points, its design allows
the use of a data structure, i.e., k-d tree, that strongly reduces the computational cost,
improving the overall results.

The computational experiments have shown that several characteristics are essential
for the effectiveness of the EA4OP, the use of unfeasible solutions during the search
process being the most relevant feature. All in all, the EA4OP proves to be an efficient
algorithm for the OP. In comparison to the state-of-the-art algorithms, not only does
the EA4OP obtain competitive results in medium-sized instances, but it also achieves
outstanding results in large-sized instances in terms of quality with low execution times.

113

114 Chapter 6. Conclusions, Future Work and Contributions

In Chapter 3 of this dissertation we have successfully generalized, for cycle problems,
the global (C1, C2 and C3) and SEC specific (S1, S2 and S3) shrinking rules proposed
in the literature of the TSP. The obtained computational results for the shrinking in the
OP are remarkable. The results clearly show that the shrinking technique considerably
improves the running time of the separation algorithms for SECs.

Part of the chapter focuses on exact SEC separation algorithms for cycle problems.
We have extended from the TSP two exact algorithms (Algorithm DH and Algorithm
EPG). The proposed separation algorithms were shown to be more efficient in the OP
than the exact algorithm used so far in the literature (the adaptation of the classical
Hong’s approach). The importance of the detailed extension of the Padberg-Grotschel
approach, Algorithm EPG, lies in the fact that in cycle problems, in general, the global
minimum cut of a support graph might not generate a violated SEC, while violated
SECs in the same graph exist.

In Chapter 4 a revisited version of the B&C algorithm for the OP that brings multiple
contributions together is presented. We have proposed a joint separation algorithm for
SECs and CCs, which efficiently uses the shrinking technique for cycle problems by
reducing the adverse effects of the shrinking for CCs. Two blossom heuristics for cycle
problems which generalize the well-known approaches in the literature of the TSP have
been developed. We have designed an efficient variable pricing procedure for the OP
which enables us to avoid repetitive computations and to skip the exact calculation of
the reduced cost of some variables. A separation loop for the OP has been proposed
which takes into consideration the different contributions and separation costs of the
valid inequalities. Alternative primal heuristics are used, one of which is based on a
metaheuristic, and a mechanism to update the global upper bound during the branching
phase to tighten the lower and upper bounds for the cases when the algorithm finishes
without an optimality certification.

The experiments have shown that the RB&C algorithm for OP is a much more efficient
approach than the state-of-the-art B&C algorithm. The introduced algorithm has in-
creased the number of solved problems, obtained better running times in more instances,
succeeded in returning new optimality certifications, new best-known solutions, and new
upper-bound values for large problems. Additionally, it has been shown that the RB&C
algorithm obtains better quality solutions than the state-of-the-art heuristics for the OP
within the 5-hour running time limit.

Finally, in Chapter 5 we show how to install and use the software developed during
the thesis period.

In conclusion, we have proposed two algorithms in this thesis that are state-of-the-art
in their respective fields for the OP, especially for instances with a large number of nodes.
Depending on the goal, one can take advantage of the exact RB&C algorithm or the
heuristic EA4OP algorithm. The proposed exact algorithm was shown to be the most
appropriate when the available computational time to obtain a solution is high since it
obtains the best quality solutions and returns the best upper bound of the problems.

6.2. Future Work 115

Conversely, if a quick solution is required, the EA4OP was shown to be the fastest in
large-sized instances, while still providing acceptable solution quality.

6.2 Future Work

Although the results of the EA4OP and the RB&C are outstanding, there are some
aspects of these algorithms that could be improved:

(1)

Improve the solution initialization

In Chapter 2 we have proposed a strategy to select a subset of vertices to include
in the initial solutions, where all the nodes were sampled using the same proba-
bility parameter for the Bernoulli distribution. However, giving a different a priori
probability to each node might contribute to obtain better initial solutions. These
probabilities might depend on the score of the node, the distance from the depot,
or the number of nodes in the neighborhood.

Study the k-d tree based node insertion local search with more detail.

We have extensively used the k-d tree based local search in both algorithms. This
choice was made based on the preliminary experiments carried out in a subset of
instances of the OP, where a considerable speedup was seen. We believe that the k-d
tree based node insertion is a remarkable contribution, not only for the OP but, for
problems where only a subset of vertices might be visited. A detailed comparison,
in multiple related problems, against commonly used node insertion procedures in
the literature would help to understand the real contribution of the new local search
approach.

Apply the shrinking either for other valid cycle inequalities of the OP or for other
cycle problems.

In Chapter 3 we studied the contribution of the shrinking in accelerating the SEC
separation for OP. However, three of the presented rules (C1, C2 and C3) are safe
for all the valid inequalities. It would be interesting to analyze if the shrinking
preprocess is also useful to speedup the separation of other valid inequalities for OP.
Another possibility to extend the work is to evaluate the shrinking technique in the
separation problems for other cycle problems.

Use advanced branching techniques in the RBEC.

The branching in the RB&C has been carried out in a classical way following a
depth-first-search, where the edges are branched first to 1 and then to 0. In order to
select the edge variable to branch, we used the classical branching strategy: the edge
e, with the fractional value closest to 0.5 is selected. This is the simplest possible
branching strategy and more sophisticated alternatives should be studied.

Use more general valid cuts in the RBEC.

The use of more general cuts, such as combs and clique trees, and the development

116 Chapter 6. Conclusions, Future Work and Contributions

of their respective separation algorithms for cycle problems might help to improve
the performance of the RB&C algorithm.

(6) Parallelize the EA4OP and RBEC.

Both proposed algorithms in the thesis were implemented sequentially and it would
be interesting to study the parallelization of these algorithms. Regarding the EA4OP,
the solutions initialization, the local search and feasibility recover procedures are
easily parallelizable. The parallelization of the RB&C is more complicated, but an
effort in this direction could provide new results.

(7) Apply the EA4OP and RBEC to variants of the OP.

Another research line of particular interest is the application of the EA4OP and the
RB&C to solve variants of OP presented in Chapter 1.

(8) Improve the availability and usability of the software

The software have been developed with its extension to cycle problems and OP
variants in mind. We plan to improve its availability to allow other researchers and
developers to use it.

6.3 Contributions

Publications:

- [Kobeaga et al., 2018] An Efficient Evolutionary Algorithm for the Orienteering
Problem, G. Kobeaga, M. Merino, and J.A Lozano. In Computers & Operations
Research, volume 90, pages 42-59.

- [arXiv:2004.14574]. On solving Cycle Problems with Branch-and-Cut: Extending
Shrinking and Exact Subcycle Elimination Separation Algorithms, G. Kobeaga, M.
Merino, and J.A Lozano. Submitted to Annals of Operations Research.

- [arXiv:2011.02743]. A revisited branch-and-cut algorithm for large-scale orienteer-
ing problems, G. Kobeaga, M. Merino, and J.A Lozano. Submitted to Computers
and Operations Research.

Presentations in International Conferences and Summer Schools:

- A revisited branch-and-cut algorithm for the orienteering problem, G. Kobeaga,
M. Merino, and J.A Lozano, 30th European Conference on Operational Research
EURO in Dublin (Ireland), June 2019.

- An evolutionary algorithm to solve large orienteering problems efficiently, G. Kobeaga,
M. Merino, and J.A Lozano, Metaheuristics Summer School MESS in Acireale-
Catania (Italy), July 2018.

- Adapting efficient TSP exact algorithms for large orienteering problems, G. Kobeaga,
M. Merino, and J.A Lozano, ECCO XXXI Conference in Fribourg (Switzerland),

https://arxiv.org/abs/2004.14574
https://arxiv.org/abs/2011.02743

6.3. Contributions 117

June 2018.

- Solving large-sized orienteering problem instances using an evolutionary algorithm,
G. Kobeaga, M. Merino, and J.A Lozano, Joint EURO/ORSC/ECCO Conference
in Koper (Slovenia), May 2017.

Diffusion activities:

- Algorithms for large orienteering problems, G. Kobeaga, M. Merino, and J.A
Lozano, Operational Research Group in Brescia (Italy), October 2019.

- Orientazio Problemak. G. Kobeaga. Zientzialari 98 irratsaioa (https://www.
bilbohiria.eus/56107). Bilbao Hiria Irratia (Radio Bilbao Hiria), 2019/04/25.

- Orientazio problema handiak ebazteko algoritmo zehatzak arintzen, G. Kobeaga,
M. Merino, and J.A Lozano, Matematikari Euskaldunen III. Topaketak in UEU
Eibar July 2018.

- Orientazio Problema. G. Kobeaga. Euskal Herriko Unibertsitatearen (UPV/EHU)
Kultura Zientifikoko Katedra (https://vimeo.com/266644370). 2018/04/26.

- On solving the Orienteering Problem via an efficient Evolutionary Algorithm. G.
Kobeaga, M. Merino, J. A. Lozano. In 6as Jornadas de Investigacién de la Facultad
de Ciencia y Tecnologia, in UPV/EHU Leioa, 2018.

- Integer programming for combinatorial optimization problems, G. Kobeaga, M.
Merino, and J.A Lozano, Intelligent Systems Group Seminar in UPV/EHU Donos-
tia, March 2018.

- Un algoritmo evolutivo eficiente para el Problema de Orientacion, G. Kobeaga, M.
Merino, and J.A Lozano, Grupo de Optimizacién Estocastica, UPV/EHU Leioa,
December 2017.

- Ordering nodes for insertion procedures in the Orienteering Problem, G. Kobeaga,
M. Merino, and J.A Lozano, Intelligent Systems Group Seminar in UPV/EHU
Donostia, May 2017.

- Orientazio Problema, G. Kobeaga, M. Merino, and J.A Lozano, Matematikari
Euskaldunen II. Topaketak, in UEU Eibar, July 2016.

- Orienteering Problems, Intelligent Systems Group Seminar, UPV/EHU May 2016

- Ba al dago matematikaririk Marten? G. Kobeaga, M. Merino. Blog de la catedra
de Cultura Cientifica de la UPV/EHUko Kultura Zientifikoko Katedra, Zientzia
Kaiera, 2016-02-29.

Contributed Presentations:

- Stochastic Network Optimization for Intelligent Transport and Logistics. U. Alda-
soro, L. Aranburu, I. Eguia, L.F. Escudero, M. A. Garin, I. Gago, G. Kobeaga, M.
Merino, G. Pérez, C. Pizarro and A. Unzueta. In 7as Jornadas de Investigacién de
la Facultad de Ciencia y Tecnologia, 2020.

https://www.bilbohiria.eus/56107
https://www.bilbohiria.eus/56107
https://vimeo.com/266644370

118

Chapter 6. Conclusions, Future Work and Contributions

Optimization and Risk Management. In U. Aldasoro, L. Aranburu, I. Eguia, L.F.
Escudero, M. A. Garin, G. Kobeaga, M. Merino, G. Pérez, C. Pizarro and A.
Unzueta. In 6as Jornadas de Investigacion de la Facultad de Ciencia y Tecnologia,
2018.

Software and Research Material:

https://github.com/bcamath-ds/compass: implementation of the evolutionary
algorithm for the OP. Software used in Kobeaga et al. [2018].

https://github.com/gkobeaga/cpsrksec: implementation of the shrinking and
exact SEC separation algorithms for cycle problems. Software used in Kobeaga
et al. [2020a].

https://github.com/gkobeaga/op-solver: implementation of the Branch-and-
Cut algorithm for the OP. Software used in Kobeaga et al. [2020b].

https://github.com/bcamath-ds/0PLib: A repository of the benchmark instances
for the OP.

https://github.com/bcamath-ds/compass
https://github.com/gkobeaga/cpsrksec
https://github.com/gkobeaga/op-solver
https://github.com/bcamath-ds/OPLib

References

Angelelli, E., Archetti, C., Filippi, C., and Vindigni, M. (2017). The probabilistic ori-
enteering problem. Computers € Operations Research, 81:269 — 281.

Angelelli, E., Archetti, C., and Vindigni, M. (2014a). The clustered orienteering problem.
European Journal of Operational Research, 238(2):404 — 414.

Angelelli, E., Bazgan, C., Speranza, M. G., and Tuza, Z. (2014b). Complexity and
approximation for traveling salesman problems with profits. Theoretical Computer
Science, 531:54 — 65.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied Mathemat-
ics). Princeton University Press, Princeton, NJ, USA.

Archetti, C., Corberan, A., Plana, I., Sanchis, J. M., and Speranza, M. G. (2016). A
branch-and-cut algorithm for the orienteering arc routing problem. Computers &
Operations Research, 66:95 — 104.

Archetti, C., Speranza, M. G., Corberan, A., Sanchis, J. M., and Plana, I. (2014a). The
team orienteering arc routing problem. Transportation Science, 48(3):442-457.

Archetti, C., Speranza, M. G., and Vigo, D. (2014b). Vehicle routing problems with
profits. In Vehicle Routing: Problems, methods, and applications, chapter 10, pages
273-297. MOS-SIAM Series on Optimization.

Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming,
8(1):146-164.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks,
19(6):621-636.

Bauer, P. (1997). The circuit polytope: Facets. Mathematics of Operations Research,
22(1):110-145.

Bauer, P., Linderoth, J., and Savelsbergh, M. (2002). A branch and cut approach to the
cardinality constrained circuit problem. Mathematical Programming, 91:307—348.

119

120

Bentley, J. L. (1990). K-d trees for semidynamic point sets. In Proceedings of the Sixzth
Annual Symposium on Computational Geometry, SCG ’90, page 187-197, New York,
NY, USA. Association for Computing Machinery.

Bérubé, J.-F., Gendreau, M., and Potvin, J.-Y. (2009). A branch-and-cut algorithm for
the undirected prize collecting traveling salesman problem. Networks, 54:56-67.

Bianchessi, N., Mansini, R., and Speranza, M. G. (2018). A branch-and-cut algorithm for
the team orienteering problem. International Transactions in Operational Research,
25(2):627-635.

Bouly, H., Dang, D.-C., and Moukrim, A. (2010). A memetic algorithm for the team
orienteering problem. JOR-A Quarterly Journal of Operations Research, 8(1):49-70.

Boussier, S., Feillet, D., and Gendreau, M. (2007). An exact algorithm for team orien-
teering problems. 4OR quarterly journal of the Belgian, French and Italian Operations
Research Societies, 5:211-230.

Campbell, A. M., Gendreau, M., and Thomas, B. W. (2011). The orienteering problem
with stochastic travel and service times. Annals of Operations Research, 186:61-81.

Campos, V., Marti, R., Sanchez-Oro, J., and Duarte, A. (2014). Grasp with path
relinking for the orienteering problem. Journal of the Operational Research Society,
65(12):1800-1813.

Chao, I., Golden, B. L., and Wasil, E. A. (1996a). A fast and effective heuristic for the
orienteering problem. Furopean Journal of Operational Research, 88(3):475 — 489.

Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996b). The team orienteering problem.
European Journal of Operational Research, 83(3):464 — 474.

Chen, C., Cheng, S.-F., and Lau, H. (2014). Multi-agent orienteering problem with time-
dependent capacity constraints. Web Intelligence and Agent Systems, 12:347-358.

Coullard, C. R. and Pulleyblank, W. R. (1989). On cycle cones and polyhedra. Linear
Algebra and its Applications, 114-115:613 — 640. Special Issue Dedicated to Alan J.
Hoffman.

Crowder, H. and Padberg, M. W. (1980). Solving large-scale symmetric travelling sales-
man problems to optimality. Management Science, 26(5):495-509.

Dang, D.-C., El-Hajj, R., and Moukrim, A. (2013). A branch-and-cut algorithm for
solving the team orienteering problem. In Gomes, C. and Sellmann, M., editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 332-339, Berlin, Heidelberg. Springer Berlin Heidelberg.

Dell’Amico, M., Maffioli, F., and Varbrand, P. (1995). On prize-collecting tours and the
asymmetric travelling salesman problem. International Transactions in Operational
Research, 2(3):297-308.

121

Feillet, D., Dejax, P., and Gendreau, M. (2005). Traveling salesman problems with
profits. Transportation Science, 39(2):188-205.

Ferreira, J., Quintas, A., Oliveira, J. A., Pereira, G. A. B., and Dias, L. (2014). Solving
the Team Orienteering Problem: Developing a Solution Tool Using a Genetic Algorithm
Approach, pages 365-375. Springer International Publishing, Cham.

Fischetti, M., Salazar-Gonzélez, J. J., and Toth, P. (1995). The symmetric generalized
traveling salesman polytope. Networks, 26(2):113-123.

Fischetti, M., Salazar-Gonzalez, J. J., and Toth, P. (1997). A branch-and-cut algo-
rithm for the symmetric generalized traveling salesman problem. Operations Research,
45:378-394.

Fischetti, M., Salazar-Gonzélez, J. J., and Toth, P. (1998). Solving the orienteering
problem through branch-and-cut. INFORMS Journal on Computing, 10:133-148.

Garcia, S., Fernandez, A., Luengo, J., and Herrera, F. (2010). Advanced nonpara-
metric tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: Experimental analysis of power. Information Sciences,
180(10):2044 — 2064. Special Issue on Intelligent Distributed Information Systems.

Geem, Z. W., Tseng, C.-L., and Park, Y. (2005). Harmony search for generalized orien-
teering problem: Best touring in china. In Wang, L., Chen, K., and Ong, Y. S., editors,
Advances in Natural Computation, pages 741-750, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postoptimization
procedures for the traveling salesman problem. Operations Research, 40(6):1086-1094.

Gendreau, M., Laporte, G., and Semet, F. (1998a). A tabu search heuristic for the
undirected selective travelling salesman problem. Furopean Journal of Operational
Research, 106(2):539-545.

Gendreau, M., Laporte, G., and Semet, F. (1998b). A branch-and-cut algorithm for the
undirected selective traveling salesman problem. Networks, 32:263-273.

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum-flow
problem. J. ACM, 35(4):921-940.

Goldberg, A. V. and Tsioutsiouliklis, K. (2001). Cut tree algorithms: An experimental
study. Journal of Algorithms, 38(1):51 — 83.

Golden, B. L., Levy, L., and Vohra, R. (1987). The orienteering problem. Naval Research
Logistics, 34:307-318.

Golden, B. L., Wang, Q., and Liu, L. (1988). A multifaceted heuristic for the orienteering
problem. Naval Research Logistics (NRL), 35(3):359-366.

122

Gomory, R. and Hu, T. (1961). Multiterminal network flows. Journal of The Society for
Industrial and Applied Mathematics, 9.

Grotschel, M. and Holland, O. (1991). Solution of large-scale symmetric travelling sales-
man problems. Mathematical Programming, 51(1):141-202.

Grotschel, M. and Padberg, M. (1979). On the symmetric travelling salesman problem
I: Inequalities. Mathematical Programming, 16(1):265-280.

Gunawan, A., Lau, H., Vansteenwegen, P., and Lu, K. (2017). Well-tuned algorithms
for the team orienteering problem with time windows. Journal of the Operational
Research Society, 68.

Gunawan, A., Lau, H. C., and Vansteenwegen, P. (2016). Orienteering problem: A
survey of recent variants, solution approaches and applications. European Journal of
Operational Research, 255(2):315 — 332.

Gusfield, D. (1990). Very simple methods for all pairs network flow analysis. SIAM
Journal on Computing, 19(1):143-155.

Gutin, G. and Punnen, A. P. (2007). The Traveling Salesman Problem and Its Variations
(Combinatorial Optimization). Springer.

Hao, J. and Orlin, J. B. (1992). A faster algorithm for finding the minimum cut in a
graph. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 92, pages 165-174. Society for Industrial and Applied Mathematics.

Hong, S. (1972). A Linear Programming Approach for the Traveling Salesman Problem.
Ph.D. Thesis. Johns Hopkins University, Baltimore, Maryland, USA.

Ilhan, T., Iravani, S., and Daskin, M. (2008). The orienteering problem with stochastic
profits. IIE Transactions, 40:406-421.

Jepsen, M. K., Petersen, B., Spoorendonk, S., and Pisinger, D. (2014). A branch-and-cut
algorithm for the capacitated profitable tour problem. Discrete Optimization, 14:78 —
96.

Jinger, M., Rinaldi, G., and Thienel, S. (2000). Practical performance of efficient min-
imum cut algorithms. Algorithmica, 26:172-195.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85-103. Springer
US, Boston, MA.

Keller, C. (1989). Algorithms to solve the orienteering problem: A comparison. Furopean
Journal of Operational Research, 41(2):224 — 231.

Keshtkaran, M., Ziarati, K., Bettinelli, A., and Vigo, D. (2015). Enhanced exact solu-
tion methods for the team orienteering problem. International Journal of Production
Research, ahead-of-print:1-11.

123

Kobeaga, G., Merino, M., and Lozano, J. A. (2018). An efficient evolutionary algorithm
for the orienteering problem. Computers & Operations Research, 90:42 — 59.

Kobeaga, G., Merino, M., and Lozano, J. A. (2020a). On solving cycle problems with
branch-and-cut: Extending shrinking and exact subcycle elimination separation algo-
rithms. arXiv:2004.14574.

Kobeaga, G., Merino, M., and Lozano, J. A. (2020b). A revisited branch-and-cut algo-
rithm for large-scale orienteering problems. arXiv:2011.02743.

Labadie, N., Melechovsky, J., and Calvo, R. (2011). Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. J. Heuristics,
17:729-753.

Laporte, G. and Martello, S. (1990). The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2):193 — 207.

Leifer, A. C. and Rosenwein, M. B. (1994). Strong linear programming relaxations for
the orienteering problem. FEuropean Journal of Operational Research, 73(3):517-523.

Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44(10):2245-2269.

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498-516.

Marinakis, Y., Politis, M., Marinaki, M., and Matsatsinis, N. (2015). A Memetic-GRASP
Algorithm for the Solution of the Orienteering Problem, pages 105-116. Springer
International Publishing, Cham.

Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., and Zabielski, P. (2017).
Evolution-inspired local improvement algorithm solving orienteering problem. Annals
of Operations Research, 253(1):519-543.

Padberg, M. and Grotschel, M. (1985). Polyhedral computations. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan, and D. B. Shimoys, editors, The Traveling Salesman
Problem, pages 307-360. John Wiley & Sons, Chichester, UK.

Padberg, M. and Hong, S. (1980). On the symmetric travelling salesman problem: A
computational study, pages 78-107. Springer Berlin Heidelberg, Berlin, Heidelberg.

Padberg, M. and Rinaldi, G. (1990a). An efficient algorithm for the minimum capacity
cut problem. Mathematical Programming, 47(1):19-36.

Padberg, M. and Rinaldi, G. (1990b). Facet identification for the symmetric traveling
salesman polytope. Mathematical Programming, 47(1):219-257.

Padberg, M. and Sung, T.-Y. (1991). An analytical comparison of different formulations
of the travelling salesman problem. Mathematical Programming, 52(1):315-357.

124

Pferschy, U. and Stanek, R. (2017). Generating subtour elimination constraints for the

tsp from pure integer solutions. Central European Journal of Operations Research,
25:231-260.

Poggi, M., Viana, H., and Uchoa, E. (2010). The Team Orienteering Problem: Formu-
lations and Branch-Cut and Price. In Erlebach, T. and Liibbecke, M., editors, 10th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’10), volume 14 of OpenAccess Series in Informatics (OASIcs), pages
142-155, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Ramesh, R. and Brown, K. M. (1991). An efficient four-phase heuristic for the generalized
orienteering problem. Computers & Operations Research, 18(2):151 — 165.

Ramesh, R., Yoon, Y.-S., and Karwan, M. H. (1992). An optimal algorithm for the
orienteering tour problem. ORSA Journal on Computing, 4(2):155-165.

Reinelt, G. (1991). TSPLIB - a traveling salesman problem library. ORSA Journal on
Computing, 3(4):376-384.

Riera-Ledesma, J. and Salazar-Gonzalez, J. J. (2017). Solving the team orienteering arc

routing problem with a column generation approach. Furopean Journal of Operational
Research, 262(1):14 — 27.

Santini, A. (2019). An adaptive large neighbourhood search algorithm for the orienteer-
ing problem. FExpert Systems with Applications, 123:154 — 167.

Schilde, M., Doerner, K. F., Hartl, R. F., and Kiechle, G. (2009). Metaheuristics for the
bi-objective orienteering problem. Swarm Intelligence, 3(3):179-201.

Silberholz, J. and Golden, B. (2010). The effective application of a new approach to the
generalized orienteering problem. Journal of Heuristics, 16(3):393-415.

Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G. V., and Oudheusden,
D. V. (2008). A personalized tourist trip design algorithm for mobile tourist guides.
Applied Artificial Intelligence archive, 22:964-985.

Tasgetiren, M. F. (2001). A genetic algorithm with an adaptive penalty function for the
orienteering problem. Journal of Economic and Social Research, 4(2):1-26.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Oper-
ational Research Society, 35:797-809.

Vansteenwegen, P. and Gunawan, A. (2019). Orienteering Problems: Models and Algo-
rithms for Vehicle Routing Problems with Profits. Springer International Publishing,
Cham.

Vansteenwegen, P., Souffriau, W., and Oudheusden, D. V. (2011). The orienteering
problem: A survey. European Journal of Operational Research, 209(1):1-10.

125

Vansteenwegen, P., Souffriau, W., V. Berghe, G., and Van Oudheusden, D. (2009).
Iterated local search for the team orienteering problem with time windows. Computers
& Operations Research, 36(12):3281-3290.

Vansteenwegen, P. and Van Oudheusden, D. (2007). The mobile tourist guide: An or
opportunity. OR Insight, 20(3):21-27.

Verbeeck, C., Sorensen, K., Aghezzaf, E.-H., and Vansteenwegen, P. (2014). A fast
solution method for the time-dependent orienteering problem. Furopean Journal of
Operational Research, 236(2):419 — 432.

Wang, Q., Sun, X., Golden, B. L., and Jia, J. (1995). Using artificial neural networks to
solve the orienteering problem. Annals of Operations Research, 61(1):111-120.

Wang, X., Golden, B. L., and Wasil, E. A. (2008). Using a Genetic Algorithm to Solve
the Generalized Orienteering Problem, pages 263-274. Springer US, Boston, MA.

Whitley, D. L., Starkweather, T., and Fuquay, D. (1989). Scheduling problems and
travelling salesman: The genetic edge recombination operator. In Schaffer, J. D.,
editor, Proc. of the Third Int. Conf. on Genetic Algorithms, pages 133-140, San
Mateo, CA. Morgan Kaufmann.

Yuen, M., King, I., and Leung, K. (2011). A survey of crowdsourcing systems. In 2011
IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011
IEEE Third International Conference on Social Computing, pages 766-773.

APPENDIX A_

Pseudocodes

A.1 Shrinking and SEC Separation Strategies

In this appendix, we detail the pseudocodes of the shrinking and separation strategies
used in the computational experiments for Chapter 3. These strategies are combina-
tions of the shrinking rules proposed in Section 3.3.1 and Section 3.3.2, and the exact
separation algorithms proposed in Section 3.4.

The pseudocodes should be considered as illustrations of the implementations of
strategies whose aim is to help the reader to understand how the strategies work.
The source code in C of the computational implementations is available at https:
//github.com/gkobeaga/cpsrksec. In Table A.1, we detail the meaning of the symbols
used in the pseudocodes.

A.1.1 Shrinking Strategies

The shrinking strategies are combinations of the shrinking rules of Section 3.3.1 and
Section 3.3.2. In total, 5 different shrinking strategies for SECs are obtained: C1, C1C2,
C1C2C3, S1 and S152. The SHRINK /UPDATE procedure refers to a process performed
every time a set is shrunk.

127

https://github.com/gkobeaga/cpsrksec
https://github.com/gkobeaga/cpsrksec

128 Appendix A. Pseudocodes

Symbol Meaning
G=(V,E) Input graph of the cycle problem
G* = (V*, E*) Support graph
(y,) € P§ A solution of the LPy
m € RK* A vector where my, = max{yy : u € w(v)}
H cVv* Heap: vertices remaining to check
S cv* A subset candidate for the shrinking
Q cV A subset of V'
Q CP(V) List of Q sets of V
L List of violated SECs
D cve Set of fixed vertices. In a cycle problem with depot: D = {d}
0] cVv* Set of vertices with value one
(kin X kout) € Ny xNi Maximum vertices (inside and outside) considered when
generating the violated SECs from the @ sets
T = (V,Ar) A directed rooted tree
parent V-V Successive parent of each v in the tree
child V-V Successive children of each v in the tree
w c RfT Weights of the arcs of the Gomory-Hu tree
G=(V,E) Generic graph used in the Gomory-Hu tree construction

Table A.1: A summary of the symbols used in the pseudocodes

A.1. Shrinking and SEC Separation Strategies 129

Algorithm SHRINK/UPDATE: Shrink graph and vectors. Save) sets. Update
heap.

© W N O kW N

N NN e e e e e e e e
N H O © 0 N & O bk W N = O

input : G*, (y,x), m, H, S and Q
output: G*, (y,x), m, H, s and Q

G* «+ G*[S];
(y, @) « (y[S], 2[S]);
m < ml[S];
H «+ HIS);
O+ {veV*:im,>1};
for n € N(s) do
ify, < Tn,s] then
for r € O do
if r # s then
if ({s,n},s,r) violates (3.35) then
Q < {r({s,n})};
if |Q| > |V|/2 then
| Q+V-Q;
end
Q « QU{Q};
goto line 20;
end
end
end
end
H «+ HU{n};
end

130 Appendix A. Pseudocodes

Algorithm C1: Shrinking: Rule C1
input : G, (y,x), m, H and Q
output: G*, (y,x), m, H and Q

1 while |H| # () do
2 Select a vertex u € H;
3 H + H —{u};
4 C < Yu;
5 for v € N(u) do
6 if y, = ¢ and x[,,) = c then
7 for t € N(v) — {u} do
8 if y» = ¢ and x|, 4 = c then
9 S« {u,v};
10 SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
11 goto line 15;
12 end
13 end
14 end
15 end
16 end

Algorithm C1C2: Shrinking: Rule C1 and Rule C2
input : G*, (y,z), m, H and Q
output: G*, (y,z), m, H and Q

1 while |H| # () do
2 Select a vertex u € H;
3 H «+ H —{u};
4 C < Yu;
5 for v € N(u) do
6 if y, = ¢ and x[,) = ¢ then
7 for t € N(v) — {u} do
8 if v = ¢ and x4 + T}) = ¢ then
9 S+ {u,v};
10 SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
11 goto line 15;
12 end
13 end
14 end
15 end

16 end

A.1. Shrinking and SEC Separation Strategies

131

Algorithm C1C2C3: Shrinking: Rule C1, C2 and C3

© W N0k W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

input : G*, (y,x), m, H and Q
output: G*, (y,z), m, H and Q

while |H| # 0 do
Select a vertex u € H;
H + H — {u};
C < Yu;
for v € N(u) do
if y, = ¢ and x[,,] = c then
for t € N(v) — {u} do
if y¢ = ¢ and x4 + z[y) = ¢ then
S« {u,v};
SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
goto line 26;
end
end
for w € N(v) — {u} do

if Tlut] + Tluw] T Tlow] = 2c then
for t € N(w) — {v,u} do
if yp = ¢ and x4 + T}) = ¢ then
S+ {u,v,w};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 26;
end

end
end

end

end
end

end

132

Appendix A. Pseudocodes

Algorithm S1: Shrinking: Rule S1

© 0w N O 0k W N -

10
11
12
13
14

input : G*, (y,x), m, H and Q
output: G*, (y,z), m, H and Q
while |H| # () do

Select a vertex u € H;
H «+ H — {u};
C < Yu;
for v € N(u) do
if y, = ¢ and x[,,) = c then
if 3w € V* — {u, v} such that y,, > c then
S« {u,v};
SHRINK/UPDATE (G*, (y,z),m, H, S, Q);
goto line 13;
end
end

end

end

Algorithm S1S2: Shrinking: Rule S1 and S2

© W N O 0k W N -

10
11
12
13
14
15
16
17
18

input : G* (y,x), m, H, D and Q
output: G*, (y,z), m, H, D and Q
while |H| # () do

Select a vertex u € H;

H «+ H — {u};

C < Yu;

for v € N(u) do

if y, = ¢ and x[,,) = c then

if 3w € V* — {u, v} such that y,, > ¢ then
S« {u,v};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 17;

end

]

Ise if z[,) > yu and x[,) > y» then
S+ {u,v};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
goto line 17;

end

end

end

A.1. Shrinking and SEC Separation Strategies 133

A.1.2 Exact SEC Separation Strategies

The exact separation strategies detailed in this appendix refer to the separation al-
gorithms used for the experiments in Section 3.5. We assume that the vertex set
V* = {v1,...,vjy+} is an ordered set. The CUTGEN algorithm is the procedure de-
tailed in Section 3.5 to generate the most violated SECs corresponding to set () given the
parameter (kin, kout) € Ny X Ni. The vector ki, koyt) represents the maximum amount
of vertices that are considered inside and outside). Note that, CUTGEN is defined
to select, for each inside vertex, a number of k,,; different random outside vertices to
maximize the randomness of the obtained violated SECs.

Algorithm EH: Extended Hong’s exact separation algorithm
input : G, (y,x), D and (kin, kout)
output: A list £ of violated SECs

1 V* « sort V* decreasingly by y; m + y;

2 H+ V7

3 Apply shrinking strategy (G*, (y,z), m, H, D, Q);
4 while |V*| > 1 do

5 Q@ + (v1,v2)-minimum cut in the graph G*;
6 if (Q,v1,v2) violates (3.35) then

7 if |Q| > |V'|/2 then

8 Q<+ V—-Q;

9 end
10 Q+ QuU{m(Q)};
11 end
12 end
13 L + CUTGEN (G*, (y,x), D, Q, (kin, kout));

134 Appendix A. Pseudocodes

Algorithm DH: Dynamic Hong’s exact separation algorithm
input : G*, (y,x), D and (kin, kout)
output: A list £ of violated SECs

1 V* « sort V* decreasingly by vy;
2 m < y;
3 H+ V¥
4 Apply shrinking strategy (G*, (y,z), m, H, Q);
5 while |V*| > 1 do
6 Q < (v1,v2)-minimum cut in the graph G*;
7 if (Q,v1,v2) violates (3.35) then
8 if |Q| > |V|/2 then
9 | Q+V-Q;
10 end
11 Q « QU {m(Q)};
12 end
13 if Tlyy,va] = Yoo then
14 ‘ reorder < 1;
15 else
16 ‘ reorder < 0;
17 end
18 S« {v1,v2};
19 G* «+ G*[S];
20 | (y,z) < (y[S], z[5]);
21 m < m[S];
22 if reorder then
23 ‘ V* < sort V* decreasingly by vy;
24 end
25 end
26 L+ CUTGEN (G*, (y,z), D, Q, (kin, kout));

A.l.

Shrinking and SEC Separation Strategies

135

Algorithm DHI: Dynamic Hong with extra shrinking separation algorithm

© 0 N O Ok W N

NONONN NN R B R R R R R R e
Uk W N HF O © 0N O Uk W N = O

input : G*, (y,z), D and (kin, kout)
output: A family Q of violated SECs

V* « sort V* decreasingly by y;

m < y;

H« V*;

Apply shrinking strategy (G*, (y,z), m, H, Q);
while [V*| > 1 do

Q@ < (v1,v2)-minimum cut in the graph G*;
if (Q,v1,v9) violates (3.35) then
if |Q| > |V'|/2 then
| Q+ V-0
end
Q« QuU{m(Q)};
end
if [y, 0y] > Yv, then
‘ reorder < 1;
else
‘ reorder < 0;
end
S« {v1,v2};
SHRINK/UPDATE (G*, (y,x),m, H, S, Q);
Apply shrinking strategy (G*, (y,x), m, H, Q);
if reorder then
‘ V* « sort V* decreasingly by vy;
end

end
L+ CUTGEN (G*, (y,z), D, Q, (kin, kout));

1

36 Appendix A. Pseudocodes

Algorithm EPG: Extended Padberg-Groétschel exact separation algorithm

© 0 N O A W N

I
[e e)

input : G*, (y,z), D and (kin, kout)
output: A family Q of violated SECs
V* « sort V* decreasingly by y;
m < y;
Apply shrinking strategy (G*, (y,x), m, H, Q);
(T,w,u) +GHTREE (G*, (y,x),v1);
for a € Ay do
Q < dg;
ifw,—2 -uy,—2 v, <2 then

if |Q| > |V'|/2 then

| Q+ V-0

end

Q« QU{m(Q)}:

end

end
E <+ CUTGEN (G*a (y7 CE), D7 Q7 (k’L’VM kout));

A.l.

Shrinking and SEC Separation Strategies

137

Algorithm CUTGEN: SEC generation

© W N O kW N =

NN N e R e e e e e e e
N B © © 00 N O G b W N = O

input : G*a (9737)) Da Q7 (k’in7kout)
output: A family £ of violated SECs
for Q € Q do

if DNQ =0 then
Mm%{’UEQZvayUVUEQ};
Sin < randomly select k;,, vertices from M;,;
else
‘ Sin < a vertex in D N Q;
end
if D— @ =0 then
| Mo+ {v eV =Q:yy > yu VueV* - Qh
else
‘ Sout < a vertex in D — Q;
end
for u € S;, do
if D—Q =0 then
‘ Sout + randomly select kg vertices from Moy ;
end
for v € S,; do
‘ Add the violated SEC (Q, u,v) to L;
end

end

end
‘C <+ CUTGEN (G*7 (ya .T), D; Q7 (knu kout));

138 Appendix A. Pseudocodes

A.1.3 Directed Rooted Gomory-Hu Tree

As was explained in Section 3.4, the key for an efficient extension of the Padberg-
Grotschel exact separation algorithm is the construction of the directed rooted Gomory-
Hu tree, which is detailed in the following pseudocodes. The novelty is the ADD-
ARC/REORDER-TREE procedure, where we show how the Gomory-Hu construction
must be adapted to evaluate the u, values (u, = argmax{y, : u© € A(v)}) and reorder
the tree in order to maintain a given vertex in the top of the tree.

Algorithm GHTREE: Rooted directed Gomory-Hu tree
input : G, (y,z), r
output: T, w,u: a rooted directed weighted tree
T+ (V,0);
for v € V do
| uy =m, = argmax{y, : w € 7(v) € G*};
end
G + G* and consider |7(v)| = 1 for every v € V;
(T, w,u) < GHTREE-RECURSIVE(G, (y,x),r, T, w,u);

[< B U N

Algorithm GHTREE-RECURSIVE: Recursive operator to build the Gomory-
Hu tree
input : G, (y,z),r, T, w,u
output: T, w,u
1 C+{veV:|n(v) =1}
2 if |C]| > 1 then
3 (a, b) + randomly select two different vertices from C;
(A : B) + (a,b)-minimum cut in G;
(T, w,,74,7) - ADD-ARC/REORDER-TREE(T, (y, z), m, u,, A, B);
(T.w,u) « GHTREE-RECURSIVE(G*[B], (y[Bl, 2[B]), ra, T, 0, u);
(T, w,u) « GHTREE-RECURSIVE(G*[A], (y[A], z[A]), b, T, w, u);
end

® I O G s

A.1. Shrinking and SEC Separation Strategies 139

Algorithm ADD-ARC/REORDER-TREE: Add arc and reorder the tree
input : T, (y,z), m,u, r, A, B

output: T, w,u, rq,Tp

1 if r € A then

2 Tq < T
3 Ty < b;
4 if parent(r) € A or parent(r) =) then
5 ‘ e = (r,b);
6 else
7 e=(b,);
8 = (p(r),r);
9 g = (p(r),b);
10 Wy — Wy;
11 Ar = Ar —{f} U {g}
12 my = max{m,,my};
13 end
14 Up = My
15 up = Mp;
16 for c € child(r) do
17 if c € A then
18 ‘ uy = max{ur, uc};
19 else
20 Ar = Ar —{(r,0)} U{(a,) };
21 up = max{up, uc};
22 end
23 end
24 else
25 Tq a;
26 T T
27 if parent(r) € B or parent(r) = 0 then
28 ‘ e=(r,a);
29 else
30 e = (a,r);
31 f=(r),r);
32 g = (p(r),a);
33 Wy — Wy;
34 Ar = Ar —{f}U{g}
35 end
36 Up = My
37 Ug = Ma;
38 for c € child(r) do
39 if c € B then
40 ‘ ur = max{ur, uc};
41 else
42 Ar = Apr — {(r,0)} U{(a,0)};
43 Uq = max{Ua, Uc};
44 end
45 end
46 end

47 AT = AT @] {6};
48 we < z(A: B);

APPENDIX B

Detailed Computational Results

B.1 Chapter 2: Evolutionary Algorithm
B.1.1 Initialization Parameter

We detail the results of Section 2.4.1, where the influence of the parameter p on the
population initialization and on EA4OP is checked. Three different choices of p are
tested: a?, a and y/a where a = do/v(TSP).

141

Appendix B. Detailed Computational Results

142

08 vEVY 09 V¥ Y 09°GLEY 00°'7.L9¢€ 08°G8¢¢ 07°€64C - - - 0T°€L6E 00°L€91 voLe 8€'C S0'C 89°€ 9¢€°'1¢C cLie vi6ev LegLerd
08°696C 06°CL8¢T 0T°988¢T 0%°094¢T 08°'78€T 06°0€0T 8L'T98¢ T9'€T8Y 0L°€€8¢ vL'TSLT G9'88YT €V’ ¥89 £€T'¢ €6’V gc'y 1991 88'1C L6'7¢ 7E6S11
06°€91¢C 06°CS1T 06°G91¢C 0T'¥281 03°G691 09°1.8T 93¢°LT8T TLI8YCT 98'TL6T €6°'786 LG°L8¢€ 0€°G81 €8'1 761 0s'C €0°0T 0L°LT 8192 19V ¥1u3
089691 022891 02°0€91 00°882T 06°¢1CT 061901 €L V999 9V 01vS cv'vL0E 08°€98 Tee8y ST'11C ge'e 69°¢ 189 €L°9T ¥T'6T 98°0¥% 96LED
00" TL¥T 0S°€SvT 078971 091921 07°L8TT OT'TI8TT €88l 0€'89¢ 70°28% cerece 16°IV1 99°0¢ G6°0 89°1 60T 9T'LT 00°'vT 8¢°0¢ 8g0gqod
81¢ 0c'vie 00 71T 0v'€1C 06°6LT 02691 06°TLT 6L°L 8L°L I8°L 8¢'T 26°0 ¥6°0 g€L'T 19°C 99°C 08'6T gL 46T 86°6C 00¥PI
68T 0V ¥81 08°€8T 0€°08T 06°0ST 0C°cv1 06°GC1 68°L 6€°L 17’8 90T 18°0 18°0 90°C TT'T L0'€ TL'8T 8T°€T gree 8TEUIL
8V1 0T'SVT 0T 9v1 08°L¥T 0€°eeT 0L°LTT 00°02T LG'€ 16°¢ 66°¢ G980 L9°0 99°0 ov'e €1'T a1 €9°CT 89°LT 69°6T 66¢1d
get 0€°1€T oLcet 0€cet 09121 08'9TT 07601 19'C g8'C 00'€ 1.0 9¢°0 LS°0 vve LST Te'T 9T'¥1 GT'8T 90°LT 08c®
geT 0z'eet 0Lvet 0g'veT 0L'9TT [Unant 06001 6€°¢ Te'e 08¢ 6970 ¥v'o €v'0 qc'e 0€'T ve'e 68°9T 82°CCT 9L°C¢ [4eldisd
oN =d o=d NBH& oN =d o=d NBHR oN =d o=d NBH& oN =d o=d NBHR oN =d o =d NBHQ N =d o=d NSH& sureu)sul

ond d0vvd uorjezireryiuy dOovvd uoryezirenrug d0ovvd uorjeziperyiug

Sopou PajIsiA JO IoquInN owr, den)
(ds.r)a/% =0 emoym (v v 0} 5 d uo Surpuedep ‘g UORIAUSS UL SUSOI JOFYH PUR UOIRZIRINIU] 7 ¢ O[qR],

06°€10G 05°998¥% 0L°CE8Y 09°'8€T¥ 0€°80G¢ 06°999¢ - - Ty 9LTST 16°96¢C¢€ YT LPET 1217 8G'¢ 19°9 90°L 1%°0C €g°ce €L°8Y LegLerd
09°'8T1€ 0¥%°LT0¢ 0L°L€0€ 0¥%°0TLT 02°28VT 06°LT1C VL9LV9 Ve 1evy ¢T'9T6E 9%'8¥9¢C TLOTPT 88°C9g €8T |84 80V oT'vI 29'1T 28°¢e YE6SIT
00°c1ET 09°L1€T 01°88¢C 026961 0L°LTI8T 0T'T1S6T £€°908¢ 66'760T VLVI6T T1°606 94°8¢¢ LG'10C 09°0 9€¢°0 €9°T e ST Gg8'1T 2191 TOVPIW
0T°L6LT 0€°GLLT 09°TLLT [iaguign 0G'T1ET 09°L1TT GG'8€SY TG'6€6¢C ©9°999¢C 97 1€8 8129V 8€'661 60°T 62°C 08T 1L°2T T8'LT 66°CE G6LED
08°9GST 01°9€ST OT'T9ST 09°09€T 08°L9TT 08°0gTT 6€°979 T6'GTG 29897 T1°'86C [Usaat 18°¢¢ 99'T 96°C 20T 8971 90T 88°CC 8e0€qod
6€¢T 0€°0€T 09°2€T 08°62¢C 0C' 161 0€°¥81 08°9LT L€°9 vi'8 €6°L (45} L8°0 101 ¥9'€ 89°C g8'¢e 0002 68°CT €0°92 00¥P1
S0gT 0T'G61 0T'L6T 07961 08791 08°'T19T 0v'8¢€T L0°L 2oL £€8°L 20T 8L°0 6L°0 €8’V 6L°¢ 0Ty 6¥'vC 96°9T (a4l 8TEUIL
(42 0%"LST 0T°LST 0€°991 06°6€T 0z'€eT OT'6TT 69°C L0°€ 06°C 080 290 99°0 ¥8'C 96°C [4eS 79°€1 8LLT 8¥%°9¢T 66g1d
LyT 08'9¢T [Gavias 08681 08°L2T 08°0CT 08°€TT £€49°C €9°C 69T g9'0 0¢'0 L8°0 769 67'¥ or'g 90°€T T8'LT 69°2C 08c®
8GT 06°CST 08'¥PST [sept 08°'821 06°¢C1 0€°€TT vre LT'€ 00°€ Ggo o Svo €C'¢ TT'T 16'C L9°81 [4ax4a4 63°8T [4e1aisd
N =d o=d Nd“& oN =d o =d md”& N =d o=d Nd“& oN =d o=d Nd”& oN =d o =d Nd“& N =d o=d Nd“& owreu)sul

ozd dovrvd uoryezierjuy dovva uorezerjuy dovvd uorjezijeniuy

SOPOU POYISTA JO IOqUINN ot T, den)

(d8.1)0/% = 0 axoym (v 0 0} 5 d uo Surpuadop ‘T UOIRIGUSS UI $YNSOI JOFYH PUR UOHRZIRIIIU] 1¢ O[qRL

143

0T'v1ee 0T v61C 08°0¥%2¢ 027081 0679091 06°90T1 8T 06VL VL TLLY 00°vELE VE€'€98¢C L9°648 c9'¢ov ¥Z'9 00'9 8’1 29°9¢ 0€°¢€ G¥'8¢ LegLerd

0S°'¥78€T 0€'981¢ 08'902¢T 0€°2e61 077991 06°¢1ET 09°'899¥% LL°TT8T L9'710T 9% 181¢ 68186 £6°¢CV 97T 60°6 €6'8 080T avee 99°8¥ 7E6S1T

00°09¢1 06'8.LC1 0T°GL21 0€°L96 00°€L8 06°6601 LE0EST €0°186 VI'6ETT L8 VEL 19°'v2C 8L°14C L9°¢C 0g'c ge'c €9°8C V8'LE 80'V¢ T9vvIuy

0L°6¥CT 08°S¥7CT 0€°€eqT 09126 [Uaa] 06°T18 09°9L2¥ T6'TSLE TL'€6TE 89°€LG 2¢0°'19¢ 9T°LST 29T GL'T vev 91°'8¢T 82°'9¢ 88°0¥% G6LED

0S'7€91 00°0€91 00°8291 01°0Cv1 06°G€ET 08'¥¥ET €0°078 V269 88'1€9 0g'vie 68°IV1 GL'19 oT't or'1 8¥'1T 8T'91 L0°€C ce'Le g8gogqod
8¢ 06°28¢ 0L°28¢ 06°28¢ 0L eLe ov'cle 09°6.L¢ vrer €0°CT 99°6 0.0 65970 97°0 S0'0 €0°0 80°0 96°0 Te'T 90'% 00¥P1
08¢ 01°9.¢ 0€°LLT 06°LLT 09°99¢ 0¥°LS¢T 09°67¢C 98°L 0L°0T 8L'6 6470 L9°0 LS°0 ¥<'0 ST'0 €2°0 88°¢ 60°L 1611 |TEUIL
08¢ 00°08¢ 0T I8¢ 0¥°08¢ 0T'8L¢ 04°9.L¢ 06'€LT L1°G L9V TL°G 8%°0 970 0¥'0 €0°0 70°0 €00 780 TeT 96°¢ 66g1d
¥0¢ 02’702 0€°€02T 09°20¢ 0€°L6T 0S°681 0€°I8T 61V 1¢9°€ 80'% 89°0 LY°0 6€°0 €0 L9°0 cs0 89'g 69°6 60°LT 08¢ce
9€ ov've 00°L¢ 00°L€ 05°0€ 0€°6€ oT'TE 8¥'1T 8¥'T <91 69°0 S¥°0 L9°0 6€°€ 96°0 e 69°9T Tget TL LT [4eldisd

oN =d o=d NBHQ oN =d o=d NBH& oN =d o =d NBHQ oN =d o=d NBHR oN =d o=d NBH& oN =d o=d N@H& swreu)sul
ozd dOovvd uorjeziferyuy dOovvd uorjeziferjuy dOovvd uorjeziyeyuy

SopouU PoajIsIA JO I9quUN N aw, den

(ds.)a/% =0 emoym (v D¢ 0} 5 d uo Surpuedep ‘f UORIOUSS UL SHUSOI JOFYH PUR UOIRZIRINIU] ¢ O[qR],

Algorithm

ionary

Evolut

0T'CvLy 0G'7LLY 02" 06.L7 07°ge8e 09°9€7¢ 08°€99¢ 69°709LT ¥ GGC9T TT'G6TLT 61°€eLE 8G L6TT 6G°87¢ 88°0 oT'T c0'1T gg'1¢c 00'ee 98°€S LegLerd

06°8L0€ 02°290¢ 06°086¢C 06°1.92 0¥'11SC 0€°901¢ €¢°0809 G1°€909 v1'9c1y L0°L0LT T8 VLV L6°8LG 6L°C 87 62°8 T0°LT 01've 66°6€ VE6SIL

0€°9%¢C 09°1¢2C 0T°LSTT 06°LT6T 0S°CVLT 08°L68T 60°€91¢€ €6°€06¢C 00'%750¢€ €9°€€6 79°69¢€ €9°06T 26°0 69T 86°T L6°8T 68°6C cg0€ T97¥Iuy

087991 09'8991 0879991 0L°G0€T 0T L1TT 0T 9711 6L TTILE 6C°LLOE TT'1€CT 01°198 €0°887 0L°62C 9¢°¢C 0z'€e L8°€ 9V°€T L8°0€ L9°€¢ G6LED

09°9.LGT 09'8LST 00°89ST 06°CvET 06°0%2¢1 067611 86°9CTT 79°€06 ¢ 8C8 [adus ¥9°6C1 [a74a8] 711 98'T S0'€ LO'6T 6¥°8C LE'LE 8e0gq>d
€2C 0T'81¢ 00°L12 06°81¢ 0T 78T 07941 06°GLT 9€°L eVl 9¢°8 6€°1 260 86°0 Gg'1 161 81°C ¢8'LT 8€°GT 19°6¢C 00¥pI
€61 06°C8T 0T'08T 06°8LT 00°€VT 0G'9€T 0T°LCT 979 oyl 0L°L g0t 8L°0 9L°0 v0'¢ €0°€¢ 8L°€ 12°2¢C 06°LC 9L Ve |T€UIL
671 08 %¥1 0s'cv1 oV EvT 0Z°0€T 08'%C1 0L°CTT Lv'y L9V L% 280 290 G9°0 96°€ [vy 0T°qT 61°CC 86°6¢C 66g1d
6€T 0g'ceT 0€'7eT 08°¢eT 09°1CT 08'8TT 0G°GTT ov'e ¥ve vve 99°0 cs'0 9¢°0 0€'ct ggct 16°CT 8L°0C 70°9¢ ge0e 08ce
S¥T 09°€V1 08'€V1 oV evT or'vet 06°GTT 0701 08¢ 99°¢€ 207 L90 €0 ¥vo L0'C G0'c 6L°C 1€°61 96°0C 10°1€ z9zI8

oN =d o =d Nd”& N =d o=d Nd“& oN =d o=d Nd“& oN =d o=d Nd”& oN =d o =d Nd“& N =d o=d Nd“& owreu)sul
owd dOvvVH uoryeziyeryuy dOVvVH uoryeziferjuy dOvvVH uoryeziyeryuy

SOpOU POYISIA JO IDqUINN owIL T, den

B.1. Chapter 2

(d8.1)0/% = 0 axoym (v 0 0} 5 d uo Surpuadop ‘¢ UOIRIOUSS UT $YNSOL JOFYH PUR UOHRZIRIIIU] ¢ ¢ O[qRL

144

Appendix B. Detailed Computational Results

B.1.2 Contribution of the genetic components

We detail the results of Section 2.4.1, where the contribution of the components in the

EA4OP algorithm are evaluated.

Table B.5: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 1.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time

gil262 134 15.19 5.82 136 13.92 1.09 139 12.03 3.03 156 1.27 2.83
a280 133 9.52 7.10 134 8.84 1.02 136 7.48 3.02 143 2.72 3.00
1lin318 171 16.59 12.40 184 10.24 3.38 185 9.76 7.07 202 1.46 7.15
pr299 144 11.11 8.01 145 10.49 1.39 147 9.26 3.02 160 1.23 3.12
rd400 200 16.32 18.69 215 10.04 2.17 216 9.62 7.04 234 2.09 6.59
pcb3038 1365 13.17 8903.48 1401 10.88 304.07 1437 8.59 681.24 1572 * 681.94
13795 1496 17.58 14438.13 1616 10.96 670.28 1669 8.04 2996.22 1815 * 2994.90
fnl4461 1993 15.19 — 2097 10.77 1024.42 2172 7.57 2463.64 2350 * 2462.65
rl5934 2784 11.48 — 2982 5.18 2445.80 3051 2.99 5383.43 3145 * 5382.25
pla7397 4188 18.54 — 4495 12.57 3195.25 4628 9.98 15982.47 5141 * 15981.78

Table B.6: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 2.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P
instance best gap time best gap time best gap time best gap time
2il262 7201 13.46 8.16 7611 8.53 1.23 7630 8.30 4.03 8175 1.75 3.47
a280 7411 12.07 8.68 7494 11.08 1.09 7515 10.83 3.03 8304 1.47 2.85
1lin318 9297 14.89 14.08 10362 5.14 2.74 10439 4.43 8.07 10866 0.52 8.29
pr299 8418 8.32 9.20 8652 5.77 1.46 8698 5.27 3.03 9112 0.76 3.23
rd400 11295 17.26 19.70 11670 14.52 2.23 11836 13.30 7.05 13442 1.54 6.80
pcb3038 77315 15.82 12439.37 80334 12.53 331.58 83847 8.71 820.23 91842 * 820.37
13795 87534 15.34 - 93116 9.94 748.88 97617 5.59 4789.09 103397 * 4788.96
fnl4461 113951 18.85 — 122232 12.96 1014.76 128427 8.54 2619.03 140424 * 2618.15
rl5934 146403 14.71 - 157466 8.26 2591.68 166807 2.82 5757.77 171649 * 5757.80
pla7397 226347 16.92 — 244388 10.30 3919.61 261568 3.99 — 272452 * —
Table B.8: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 4.
Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time
gil262 1955 3.74 3.43 2004 1.33 1.07 2004 1.33 2.02 2030 0.05 1.35
a280 11615 3.72 7.11 11681 3.17 1.41 11714 2.90 4.04 12048 0.13 3.39
1in318 14739 2.60 10.39 14911 1.46 2.59 14892 1.59 8.07 15119 0.09 7.91
pr299 14954 0.21 3.63 14947 0.26 1.70 14956 0.20 4.06 14980 0.04 3.46
rd400 19994 0.56 9.88 20071 0.18 2.23 20071 0.18 10.10 20101 0.03 9.61
pcb3038 87338 13.67 13477.94 89617 11.42 331.67 92835 8.24 800.34 101173 * 800.13
13795 69006 13.82 — 72665 9.25 671.90 75807 5.32 4496.88 80069 * 4496.09
fnl4461 64382 24.33 — 71304 16.20 796.02 74942 11.92 1490.72 85088 * 1490.80
r15934 118749 13.85 — 125856 8.69 2603.21 130007 5.68 4038.32 137838 * 4037.07
pla7397 116662 18.07 - 130276 8.51 3051.93 135336 4.96 6667.88 142399 * 6667.36

B.1. Chapter 2: Evolutionary Algorithm

145

Table B.7: Results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP in generation 3.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA40P

instance best gap time best gap time best gap time best gap time

gil262 8274 10.51 8.21 8429 8.84 1.27 8708 5.82 4.04 9094 1.64 3.94
a280 8001 18.14 8.98 8117 16.95 1.06 8229 15.81 4.02 8684 11.15 3.22
1lin318 8484 18.17 12.13 9625 7.17 3.16 9625 7.17 7.09 10273 0.92 6.33
pr299 9071 12.30 10.35 9146 11.57 1.47 9239 10.67 4.04 9959 3.71 3.95
rd400 11400 13.79 22.63 11625 12.09 2.78 11779 10.92 8.05 13088 1.02 7.74
pcb3038 88097 15.83 16178.25 88756 15.20 309.60 92394 11.73 917.28 104667 * 917.39
13795 82427 15.64 — 91545 6.31 824.38 92140 5.70 3160.52 97707 * 3158.89
fnl4461 135326 17.59 — 142804 13.03 956.08 149330 9.06 3248.98 164201 * 3248.64
r15934 172220 16.96 — 193989 6.46 2831.70 193768 6.57 5882.33 207385 * 5881.87
pla7397 257454 19.73 — 276725 13.72 3673.65 299270 6.70 — 320744 * —

Table B.9: Contribution of the k-d tree based add operator: Generation 1

Cheapest insertion 3-nearest insertion (using k-d trees)

instname Best Time Best Time
gil262 157 4.29 156 2.84
a280 140 3.27 143 3.00
pr299 160 4.32 160 3.12
lin318 202 7.42 202 7.15
rd400 236 12.35 234 6.59
pcb3038 1608 3014.56 1572 681.94
13795 1798 8105.06 1815 2994.90
ml4461 2326 8883.04 2350 2462.65

B.1.3 Add operator

In this section we detail the preliminary experiments carried out for the add operator. In

tables B.9, B.10 and B.11 we show the contribution of the 3-nearest insertion approach,

which uses the k-d trees, in relation to the cheapest insertion heuristic. The headings
are as follows: instance, name codification of the instance; best, best known solution

of the corresponding algorithm; time, average time (in seconds) of 10 runs. In the last

row, average summary for gap and time are shown.

B.1.4 Comparison with state-of-the-art Algorithms

In this Appendix the numerical results are detailed for the four algorithms (B&C, 2-P
IA, GRASP-PR and EA4OP) and the full classification, that is, eight tables. Table B.12

146 Appendix B. Detailed Computational Results

Table B.10: Contribution of the k-d tree based add operator: Generation 2

Cheapest insertion 3-nearest insertion (using k-d trees)

instname Best Time Best Time
gil262 8266 4.47 8175 3.47
a280 8301 3.93 8304 2.85
pr299 9115 5.27 9112 3.23
lin318 10901 9.74 10866 8.29
rd400 13576 12.94 13442 6.80
pch3038 92353 3208.56 91842 820.37
13795 104503 11156.20 103397 4788.96
nl4461 140361 10222.61 140424 2618.15

Table B.11: Contribution of the k-d tree based add operator: Generation 3

Cheapest insertion 3-nearest insertion (using k-d trees)

instname Best Time Best Time
gil262 9124 4.93 9094 3.94
a280 8695 4.86 8684 3.22
pr299 10120 5.81 9959 3.95
lin318 10339 7.70 10273 6.33
rd400 13122 12.31 13088 7.74
pchb3038 106347 3494.96 104667 917.39
13795 98394 10604.92 97707 3158.89

fnl4461 163465 10030.42 164201 3248.64

B.1. Chapter 2: Evolutionary Algorithm 147

shows the results for generation 1 and medium-sized instances, Table B.13 for generation
1 and large-sized instances, Table B.14 for generation 2 and medium-sized instances,
Table B.15 for generation 2 and large-sized instances, Table B.16 for generation 3 and
medium-sized instances, Table B.17 for generation 3 and large-sized instances, Table
B.18 for generation 4 and medium-sized instances and Table B.19 for generation 4 and
large-sized instances. The headings are as follows: instance, name codification of the
instance; best, best known solution of the corresponding algorithm; gap, quality gap with
respect to the global best known solution; time, average time (in seconds) of 10 runs.
In the last row, average summary for gap and time are shown. The symbols mean the
following: *, best known solution achieved (or optimum solution achieved for instances
in which B&C finishes before time limit); —, execution stopped because 5-hour time
limit was exceeded; N A, solution not available after time limit exceeded; “ . 7, the code
finished unexpectedly. The best results for each instance among heuristics are in bold,
in terms of quality solution and time. In the last row of the tables, average gap and
average time are computed, considering 18000 seconds for problems that did not finish
in that time. The averages are calculated excluding missing values.

Appendix B. Detailed Computational Results

148

¢r'e 290 99°L 99°0 VI'T CGT'C G0'87¢C * SXLCREING
689 60C vec €¢0¢ 98¢ GCC c9'6 6L'8 8T¢ ov'LE * 6€¢C 6€¢ 090 T1v9L 007P1
ST'L W'l c0Cc 60cyr ¥v'ec 00cC 9€'¢ LE'¢ 761 0v'ce * (014 G0¢ 09°0 STI0T¢ 8IEul
cL'g ¢€C'1 09T ¢e'9Cc LV'C 84l TL°€ 76’V a1 09111 * 91 29T 090 960¥c 66g1d
00°¢ cL'C e€VT 61’11 ¢Lc €VI 0TCT ¢C96 €e1 09°€T * Lyt L¥T 090 06CT 08ce
c9°¢ * CET LLVC CET 9T'T & CET 0C'1¢C * 1438 CET 090 89S¥c ¥9gid
¥8'C LT1 98T 996 vy 141 90°¢ 90°¢ 08T 060 * 8SGT 8GT 090 6811 z9g18
18°8 * 9LT ¥C'€9 TVI'T VLI 9L°Cc VI'T VLT 060 * 9LT 9LT 090 TO0EL9 65cis
199 * 9C1 GC'1C % 9CT 0T'T L6'¢ Tt 02991 * 9¢T 9¢T 090 ¢8T0F 9ggid
6C°C Ga'1 L2T 9L°L €€'c 9Tl T9°T 0€6 LTT ov'v6 * 6CT 6¢T 090 8S6T Ggedsy
8C'T ¥Z1T 809 * ver SV'1 * PCT 0€91C0T « 44! ¥¢l 090 ¢cee9 9Tcs?
689 * SYT WRIT « SYT LI'C G¥'¢ ligs 0Lct * SvI SPT 090 0800 ¢0gi8
99'T « 6TIT €LL 780 8II 89T 89'T LTT 0TvI * 61T 61T 09°0 6ILVT 00TdOoI
VLT o« LTT €99 * LTT 70°C LTV 48 0c't * L1T LIT 090 ¥89¥T 00TVOIq
899 * €CT ¢9'TT 180 ¢l V'L V¢ 0ct 0c'e * €Cl €¢T 090 0684 861P
8L'T 76'C 66 c9'C 76'C 66 T0°T 76°C 66 09°C * 0T ¢0T 090 911 a6TIex
11T 80T c6 0TS 80°'T <C6 98°'0 €811 ¢8 ov'e * €6 €6 090 O0v0TC 691N
79°¢ * LL 8L'8 * LL cL0 0¢T1 9L ov'T * LL LL 0S°0 T1¥89¢ ¢ogrid
00T ST'T 98 06°C ST'T 98 ¥6'0 CT'T 98 0C'1T * 18 L8 090 990€T 0STHOIy
LT°T * 98 79°C * 98 06°0 O9T'T a8 07'GLT * 98 98 090 C9CET 0STVOoIq
19°C * LL €6°9 * LL cv'0o 61°¢ €L 0e'T * LL LL 00 69z6c TrIid
e 0L°¢ 8L 0T’L * I8 19°0 « I8 09T * 18 18 0S50 Lg6FE LET1IS
96°0 * T4 1€°1T w1 0L T19°'0 T8¢ 69 ov'1T * T T 050 98¢8y 9grid
ST'T * €01 G8'¢ * €0T ¥V'0 « €0T 0€0 * €0T €0T 090 1IvI6S LTIIRq
11T * SL 0T'g * Sl €0 « Gl 0€0 * G. GL 00 §T%6c Vorid
0c'T €e'T VL 6C°C * Gl 8YV°'0 €¢'1 VL 010 * Gl GL 080 T.LVE 0¢113
€6°0 * Ve €L°0 * va I2°0 « va 0€0 * e s 00 ©STee LoTid
vl * 99 LL'T * 99 9C°0 99 0€0 * 99 99 090 061L GOTuI
6L°0 * 79 8¥°0 * 79 €0 991 €9 010 * 79 79 090 G1¢ TOTI
v.L0 * 19 el * 19 8€'0 19 0g0 * T9 19 090 996¢ 00TPX
050 * LS vl * LS 820 1I9°¢ Gaq 02691 * LG LG 090 PE€O0TT O0THOIY
G9°0 69°T 89 96T * 69 0€°'0 69 010 * 69 69 090 Lv90T 00TdOTY
870 * 9¢ ¢l'l * 9¢ 7o « 9¢ 070 * 9¢ 99 090 GLEOT 00TDOIH
€90 cL'1 LG LG9°T * 8¢ g€'0 8¢ 07'G6 * 8¢ 89 090 TLOTT 00THOIy
7€°0 6L°T Gaq €e'T * 9¢ L2°0 « 9¢ 07’0 * 9¢ 9¢ 090 T¥90T 00TVOIq
990 * (4% 8¥°0 * (4*} cC'0 ¢C6'1 TG 07’0 * 4] 144 090 909 663681
4/ * 79 16°T * 79 L8°0 « 79 010 * 79 79 0S°0 S09.¢ 9613
19°0 * 6V 76°0 * 6V 6T°0 6V 010 * 67 67 00 080%S 9Lid
ce0 €1'e v 02’0 * VA4 6T°0 €IC 97 010 * Ly Ly 090 69¢C 9L
¢ce0 * eV 6¢°0 * eV 6T°0 eV 010 * eV €V 090 8€¢ 0L3s
00T * 9¥ ce0 * 9¥ 0T'0 9¥ 000 * 9¥ 97 090 869CT 84Izelq
0€0 * L€ g0 * L€ 60°0 L€ 000 * L€ LE 090 TLLE ceurpeq
¥¢'0 * 6C 90°0 * 6C 010 * 6C 000 * 6C 6C 090 €T1C TGP
¥¢'0 * 0¢ 6T°0 * 0¢ 0T'0 « 0¢ 000 * 0¢ 0€ 090 TELS STAU
€10 * 1€ €10 * 1€ L0°0 « 1€ 000 * 1€ T€ 090 €TSc {138
Ggo * 1€ ST°0 * 1€ L0°0 « 1€ 000 * 1€ T€ 090 VIES |T11e
Elesidl ded is9q ewiIy de3 1seq ewIg de3 1seq ewIg de8 9seq 3do © op 20uR)SUT
dOVVH qd yys dSvadD VI ojomrered-g mpo-zyp-youeryg

007 > u ‘T uoreIouan) g1°g qel,

149

Evolutionary Algorithm

B.1. Chapter 2

¢8°066 LT'T 99°¢68L 99V 6C°6C€T EV'L IV'e€ev. 96°€ oFeIose
8L I86ST « wie - VN VN 90°€006 61'8C T69€ IPIS 090 ¥9€0€9TT LegLeld
GT'T8ES SYIE€ - VN VN 6£°G186 00°L GT6¢ av1e€ 09°0 €T08LT 7E6ST1
VG 1969 « 8G€E - VN VN VLTTICT 6971 898C 8G¢E€ 09°0 99.T8T ST6S1!
G9°CTIVT « 0s€c - VN VN C8'98C9 Ly avece 09¢¢ 090 €8CI6 T9VPIuy
06°'V66C « SIST - VN VN 8L°0C1S S1'C 9LLT GI8T 09°0 98€VI G6LEB
76°189 * CLST - VN VN 60°CELT 60°¢ coVT : : CLST 090 L¥889 8e0gq2d
62°Cov * C6CT - VN VN c8'TIV1 6¢°0T 69T1T - 9L'1T OVIT 26T 090 9T068T c6egd
9T°€TV * L9TT I1°699¢ LTO ¢91T 0T'0€L 68T avit : : L9TT 090 8CILIT 61ECN
€T°09eT « 8¥0T - LLT 6T0T TE€TICLT 8G°C 1201 8V0T 090 LTITE cqIgn
LT'1S6 * 690T - av'9 000T €9°¢66 LLTY 8T10T : 690T 09°0 9TcO¥V €01CP
18°69¢ * L9TT - LE°L T80T €€'16CT 76°6 T60T - v.€c 068 L9TT 090 89T8ST 688TI!
8G°GL6 * 6.8 - TL'T 798 68°TLL 69T G98 : : 6.8 060 T098C LI8IN
0G°'8LT * 9VCT - LT°C 61CT 60°L¥9 60V g61T - 76'6C €L8 9¥CT 09°0 8LTSIT SV LTWA
0L°LSL * 978 TT°688L ¥¥'¢ 008 LV 999 L0°¢ 0c8 : : 978 0S¢0 P901€ qg91P
LV'98¢C * 088 - 68V LE8 oV ey T9°L €18 088 060 9TITI LLGTH
9V 1ITT * 8€L 0§'cect 019 €69 99°6¥¢ 9¢°¢ 169 : 8€L 060 S98¥9L ceyin
GC'8S1g * €V0T - 6’8 056 TS LLY ge’ 0T 9€6 - 98¢l 606 €V0T 09°0 ¥900T 00V 1B
L6°90T * TLL 08ve6y 11°¢€ LVL LE°16€ [N oVl : : TLL 090 61€8C 6LETMIU
89°68 849°¢ C8L €9°6¥e9 96'CT 90L ceLTE 68°9T 7.9 - * T18 T18 090 00TSET €CETIL
Sy ToT * 99L 8G°06LY 0V'6 769 GL'8CCT ST'8T LT9 : : 99 090 PLV9CT 7OETIL
L8VEY 9¢°g 979 - g0'C 029 VYV E€LT * 789 789 0S¢0 TO¥SC T6CTP
g9°09 * €€9 8€V¥ce 91'¢ €19 9T VLT 6.9 069 ’ €€9 090 9¥¥8C eL1192d
6299 06°0 0Ll 09°60€9 STV vl 86°0LT 969 9L 0v'L26V « LLL LLL 090 6V96TT 70TwA
70°06 * 129 10°920¢ 61°¢ 109 L6°G8 L6°L LLS ’ : : 129 090 L¥0TTT 0901
¢6°Sv 0€'g CLS 67981 T9'L 849G LY'8TT LSVT 919 - * Y09 709 090 €T96CT coo11d
0C'18 * [45) IV'ectv €'y 709 L9°9€T 80'TT €99 ’ : ! ce9 09'0 ¥¥86CE6 000T(sp
6G°7E q9'¢ t4474 78'€LC 80°L L0V 16°€Y €L°0T T16€ 0€'769 * 8¢ 8¢EV 080 €0v¥ £8L36l
LL° LT 8C'C (¥474 €EVLE Lv'S a1y 70°G€ GV'8T 8GE OTLL0T « 6€Y 6EV 080 9960¢C yeoLn
749601 61T L6V 0%°948 89°C 067 6¥7°6C LL°S [274 0C'7€9 * €09 €09 060 6LILVI 999138
VC'€C €€°C LLE qcove 6V L9¢€ I¥°02 83'0T ¥¥€ 0L°GTL * 98¢ 98¢ 080 9S¥¥cC LG9P
68°SC €€'C 9€¢ €C'TI9T 620 €ve 89°9C * Ve - 76’V LTE ¥ve 060 CTELT y59d
9L°€T % 60¢€ 89°€0T 129 c0¢ 6861 T10°6 £€6¢C 0569 * (449 (449 090 L8€€ [SVASELE]
€6°LT e8¢ Ve L0°50¢ 129 (439 €9°LT €L°0T 91€ 0¥'19 * vee g€ 080 €S9¥8T yLGn
81°¢C jStayd 8T¢€ 08'7€T 0€'L 0€€ VLLT 67’V ove 09°€0TC « 9G¢ 9G¢€ 060 ¢8EIT 19ged
€0°€L * vev 80°€6L <91 LTV 09°€C 68T 91V ’ : ! vy 060 OLTTIOT Ggegre
V1I'€T v LvE 00°L6S 1€°€ TG€ €T°9T 7€'9 ove 00°€69 * €9¢ €9€ 090 €¥8¢l ceane
0T'6T 99T S1€ LV'6€9 098¢ (429 88°'S8T 61°L L6C 0€°LvE * 0ce 0ce 080 TOSLT £67P
€6°9 6L°C 1444 07y L€°9 Gee LE'8 L€°9 5154 0671 * 16T 16¢C 060 68€9C crvaad
Z6°6 96°0 ot1e 99°929 98¢ G0€ S¥'¥1 96°0 (0] 855 0€°€E8 * €1¢ €1¢ 060 609¢€9 6epad
78'CE 620 67¢ GC6LY YI'T e CE'CT 00'C €VE 06°6€T * 09¢ 0G€ 060 L0.G8 16918
7811 SL'T ¥ce 16°80¢ 880 9¢¢ L9°¢S 770 Lcc - * 8C¢C 8CC 080 T€6S L1VH
ouIry de38 189q ouIry de3 1s9q owry de3 1s9q oumIry de3 189q 1do 0 opP Q0uR)SUI
dO¥VH Hd YHs dSvdD VI ejewrered-g mpo-zg-youeryg

007 < u ‘T uoryesouon) :¢1'q O[4BT,

Appendix B. Detailed Computational Results

150

8€'C €9°0 87T 6T°T C6°'T 9L°0 68°C6 * o8erone
089 741 SY¥ET 60°'TT 89'L LT9¢T 99°GT 16'C 9S9CE€T 09°'€6C « C¢99€T ¢99¢T 090 T1¥9L 00¥P1
6C°'8 ¢q0 9980T LL°6 LSV ¥eV0T 6€°6 ¢8'T vclOT 0V'C98 « €¢60T €¢60T 0G0 GI0TE 8I€Ul
€T’ 9.0 CI16 G€'6 99°¢ 9788 av'e €€'T 0906 0G'9¢V % 816 816 08'0 960%¢ 66¢1d
g8°C VT 70€8 09'v €8V 1¢08 19°G 68T 69¢8 08°€0T « 8CT8 8CV8 060 06¢T 08ce
76°G €C'L €L19 7’8 * 74999 10'%v 91’9 ¥¥¢9 00°€C * 7999 7999 08°0 89¢¥¢ ¥9gid
LV'E GL'T GLI8 ST'€ 86V LO6L 0¢'s 99'¢ 0018 0968 * 1CE8 1CE8 060 68TT 29218
6T°€T €00 V.16 69°TT €V'T 9%06 €€°¢ ¢L'0 1116 09°C8T « LLT6 LLT6 0S°0 T0€L9 65ciS
62 L 90°0 8499 96V ¢9'0 1299 19°C ¥¢'0 9799 0T'vL * 999 2999 08'0 9810% 9zgid
A €L°0 9€69 76°C cv'e 8189 09'c €L°0 9869 09 VLT % 1,869 1,869 060 8961 Gzodsy
VI [4a] 6189 GL'C €€'T €V.L9 89T ve'T 6V.L9 099 * €89 €89 06'0 CcEE9 GCes?
LL'8 * 68LL 66V L9'T 6992 €1°C OT'T €0LL 0,68 * 68LL 68LL 0S°0 0800 ¢0gGI8
L6°T 0¢'c 8.29 91'C €1'C C8CY 69°C ¢v'l 8TE9 0L7E * 6179 6179 060 6TILVT 00cdoIq
LT 0z°0 v€99 9L°C 607 6.C9 L9°C €T 1999 0,89 * L¥99 L¥S99 060 P89YT 00CVOoIy
€€ L S1°0 0999 6€¥ 290 9299 (0] %4 ¢L'0 ¢T99 0C'vL * 0299 0299 060 0681 86TP
Se'T (4|t €0.LS 791 60'¢ CI99 66T 91'¢ 9999 08'8CT « 16,9 16,9 060 2911 G61YeI
14748 8€°0 vev €8T EV'T 688% 06T ¥7'0 8E6V 0C'c6T « 0967 096¥ 06'0 0v0Tc 6SIn
LV'E 6.0 avey LV'E ¢l LTey 8S€'T €¢0 69¢CF 0C¢ * 6,0V 6.LCV 080 T1¥89¢ ggorid
61T * 6987 80°'T €€'0 €98¥ ce'l €€'0 €987 08'7¢ * 6987 6987 060 990€T 0§1doIy
9C'1T €€°0 c06¥ SO0'T Gg'1T CV8Y 08T 0T’'0 €I6¥ OV'IVe « 8T16¥ 816V 060 C9CET 0STVOoIy
c0'e G6°0 G96€ 1KY * €00y v.L°0 00'T €96€ 0706 * €00¥ €00¥ 080 6926 Fy1Id
60°€ 9€Y 660¥ 61T L0 0LTV 180 ¢I'0 I8C¥ 06961 « 98¢V 98¢V 08°0 Lg6¥e LETIS
ST'T * 60€V €0'T 88'T 8CCV c0'T 16T ¥vev 01'C * 60€¥V 60€V 05'0 98esy 9gtrd
TL'T 70°0 T8€S ¢l'e L6'0 TEES S0°T ¢0'T 8CES 08'8¢ * €8€S9 £€8€9 060 Tvies LcIidlq
7E'1 97°0 668€ 96'T 7’0 106€ ve0 * L16¢€ 090 * L16€ L16€ 080 G196 Forid
LET €0 96€V 780 * TLEV VL0 0€'0 8%EV 08°'G¢ * TLEV TLEV 060 T.LPE 0¢118
G0'T * L99¢ gg0 * L99¢ ov°0 * 1992 090 * L99¢ L99¢ 080 ¢Sl LoTid
0T'T 070 0€s€ ¢t * 14239 9¢°0 €¢'0 9€S€ 0€°L9 * ¥vae ¥vae 060 06TL goTuly
80 * g99¢ c9°0 €€°0 €¥9€ 0S°0 ¢9'0 9€9¢ 00°€ST Ga9¢€ Ge9¢€ 06’0 ¢gT1¢ TOT[®
0¢°0 * 69€€ 0.0 ¥¢'0 T1GEE ¢cq'0 ¥¢'0 T19EE 020 * 6G€€ 6G€€ 060 996¢€ 00TPX
0S°0 920 ¢80¢€ 79°0 9¢'0 280¢ L8°0 * 060€ 0T°0€C « 060€ 060€ 060 PEOTT 00THOIH
G9°0 * L0€¢ ¢cL0 * L0€¢ 9¢°0 9€'0 ¢96¢E 00°¢¥ * LOEE LOEE 060 L¥90T 00TdoIq
090 790 T€6C 649°0 6C'T 606¢C €9°0 * LV6C 0968 * LV6C LV6¢C 060 GLEOT 00TDOIY
¢g0 60°0 8€CE c9°0 * wee 09°0 900 6€ce 0.9 * Ve Ve 060 TLOTT 00TdOoIq
L9°0 * (445 69°0 * ¢ICE 690 * (4545 06°0 * ¢c1ce c1ece 060 T¥90T 00TVOoIy
67°0 * v6C 70 * Yv6C a0 17’0 TE6C 06°0 * ¥v6¢C ¥v6¢C 060 909 66381
7l 90°0 76€€ ¢cL’0 * 96€¢€ 19°0 900 ¥6E€ 0L'T * 96€€ 96€€ 0S°0 S09.C 9618
870 * 80LC ¢g0 * 80LC [4:1] * 80.LC 070 * 80.LC 80.LC 080 080%S 9Lid
€70 * 09SC ge0 * 09S¢ I€°0 6€'0 079¢C 01°0 * 084cC 084¢C 060 69¢ 9.1
T€°0 70°0 G8¢CC ge0 * 98¢¢ ge0 ¥0'0 98¢CC 07’61 * 98¢¢C 98¢¢C 060 8€€ 0L3s
(4|t 60°0 81¢¢C 1€°0 * 0gcgc LT°0 * (11444 01°0 * (V444 (V{444 060 8692¢T 89IzeIq
ge0 * L68T 61°0 * L68T 01’0 * L68T 07'€6 * L68T L68T 060 TLLE ¢qulpIeq
81°0 9€°0 8991 v1°0 * V.L9T 0g0 * V.L9T 070 * V.91 V.91 060 €I¢C TGe
91°0 * VI9T 710 * VI91 I1°0 * VI9T 01°0 * V191 V191 060 TELS 87U
020 89°0 6VLT ST°0 * TOLT €T°0 ¢9°0 0S9L1 020 * T9LT T9LT 060 €2Sc 8713
ce0 * LTLT 91°0 * LTLT 80°0 * LTLT 000 * LTILT LTILT 08’0 7vIES 8711
ouIry de3 1s9q ouIry des 189q Elesidl de3 1s9q ouIry de8 9seq 1do 0 op Qoue)suL
dOVVH Hd y3m dSvaD VI 1ojeumrered-g mp-zy-youerg

007 > u ‘g uoreIouan) 1 g AR,

151

Evolutionary Algorithm

B.1. Chapter 2

LE€°€60T €9°0 C8'68EY 879 09'86TC L9°G OT¥P91T LT'€ oferone
- * cSveLe - VN VN - GL'GT €V96CC TevTLT 090 ¥9€0€9TT LegLeld
08°LSLS &« 6V9TLT - VN VN - €L°¢ 918191 6V9TLT 090 €TO8LC V€641
0V'CTSS « 8199LT - VN VN - 869 SYEVIT 8L99LT 090 G9.C8¢C GT6SIT
ST'S8TI9C « vevovt - VN VN 16°6998 49V 0€07ET yevovt 09°0 €8CI6 TV}
96°88LY &« L6€E0T - VN VN 02’8716 ¥6'0T 980T6 ’ ’ L6€E0T 09°0 98€VT G6.LED
L€°0C8 * GV8T16 - 969 €1848 16'841V 9C'L 9L1G8 - 648 TG6E8 CV8I6 0G0 L¥889 8€0eqod
LS°0VY * S8TOTL €4°6199 [4S] TITG9 GT'8C8T 99'% TTLLY - L0'6 LLGV9 ST0TL 060 910681 g6egid
90° LTV * c0I8.L 86°V29¢ €TV 667, 0T'SI6T GV'Q 878¢L - 089 06LcL 20T8L 060 8TILIT 61€Cn
SETITT &« TT209 v E90v ¥¢'8 09¢8s LLP8IT L09 96994 - 9¢'0T 9.6€9 11209 090 Lcice cGlen
8C'C89 * c0cTLS 1€°0L€9 4 8¢IES 0T'8E0T ¥E'TIT GTLOS) ’ ¢0CLS 060 Gccor €0TCP
L0°98¢ * 78009 91°€LCY 9v’'0T 86Ll€SG G0CI9T 1TV CGqLS - 8¢'€T Ly¥0TcS ¥8009 060 89¢84T 688111
6€VEL * 99€0% ¢9°620C 62°9 96TLY LE°68S 8V'Q 9097 ’) 99€0¢ 090 T098¢ L18TN
G8°G6T * S8999 TT°€02ST 08°¢ 81829 €€'9€ST LE'T 90149 8999 060 8LC89T 8yLTWIA
LT°€89 * TICLY L6°8VST €99 08077 80°I9S 16V S687T T1CLY 080 ¥901€ Gao91P
8C'7EE * S0SSY CLV6VST 8’1 GL9VV €C°0T1¢S 9¢'8T T90.L€ G09Sy 090 GcCITT LLGTH
16°00T * [0)R°1744 cE9TL L9 9961V 76'8VC VL9 T6L1V ’ 018¥¥ 090 49879L cepIn
ST'v6L * 86C9¢ ¥6°9207 I8TT VI96V €€°L99 1T'¢ 620€€S - ov'e C¢oces 89c99 0G0 7900t 00V1H
TS LIT * c09SV ¢0'¥69 6€°9 069¢7 1¢°€LT 8¢9 €692V ’ ’ c09sv 090 61€8¢C 6LETMIU
8.1°68 9€'V 6STIV 6.°66. 9T°'LT 806%€ SG¥'9CE Ga'cT S06.L€ - * LVEEY LVEEY 06°0 001S€T €CETIT
89°L6 * 19507 6¢°cEL GO'€T 89CSE LL'TTV 0LV ¥G98¢ ’ ’ 19407 090 VLV9CT VOETIX
GC°68C * €91G¢E €G°GELT 06°¢ 18LE€ 8V'¥0E 1€°6 0881¢€ €4TGE 090 TOVST T16C1P
76°69 * 9C8S¢E ¥40LE c9'L 960€€ 88'70CT (48 66€€ ’ 928G¢ 090 9¥¥8¢C €L1192d
L9°6g €6°0 80€0¥7 97'8G. yE'L 669.€ G8°.9C €0°¢ V98¢ - * L890% L8907V 090 6¥961T y80TmA
8L°LL * OTTISE 80°L9€ €€'8 ¥81CE 09'8ET 66°C T90¥€ ’ ’ 0TTSE 060 Ly0cIT 0901
61T°97 * IVLIE 12°61¢C ye'L 91¥6C LV'96 Ty 0rvoe - VLYL 990LC 9VLIE 090 €296Cl gootad
VE€°€8 99°¢ €ITVE 81°60¥ 8L'8 0€92€ V6°CV1 9.9 yaeee - * cLLGE TLLSE 090 V¥86CE6 0001fsp
9€°CE * T987C 07'88 00°¢ LT9€C V¥'C9 L0°€ 8607¢C) ’ ’ T987¢C 060 €0¥¥ £€8L%el
TL'8C 8L'T €6.LET 0069 99°¢ CcG8cCc 96'€S LL°E TT€ET 05°0€89 * €CCVC €TCve 060 9960¢C yecLn
8V'9€T * 9€€9¢C 8T'16€ 84'C LG96C €6°CS €0'T ¥909¢) ’) 9€€9¢C 0S6°0 6LILVI 99913
06°Cc 6G°T (4] 9K4 LT°6V 97'0T €G¢6T TO'EV €T°L 69661 0¥°'289¢ * €091¢ €0S1C 060 99¥¥cC LG9P
[4x4y * TCSLT oV LSV 09°c 8GELT 6€°LE 649°¢ C8TLT - L€ 09TLT TC8LI 06'0 CCELT ygod
L6TI 66°C SOLLT 0¢'ce gc'g €6CLT V76°0€ 8T°¢ 0L9L1 0T'TE6 * TGC8T TGC8IT 06'0 L8€E gLgrel
€€'91 66°T 9968T ¥6°9€ 60'8 G8LLT 98°9€ 08¢ 60881 0s°¢19 * TGE6T TGE6T 06'0 €SP8I yLGn
SV°€C 8¢ 76881 6€°CE 98 V06LT 9€°6C €99 6LC8T OT"L8V1 * 9LG6T 9LG61 060 C8ET 19ged
G096 0¢°0 0I61IC GT°GLT €v'e ¢0Clc 6L°LE Gg'c V6€T1C 04'660C * ¥G61¢ ¥961¢C 060 OLTTOT geare
€V°€C 0L'T S9C61 9¢°60T gg'e €068T 96'9¢€ o€y GG.L8T - * 86961 86961 060 €V8ET ceaIre
ST'LT * 6CLI9T 8T°€0T x4 GGeIT 0961 29T 09¥91 ’ ’ ’ 6¢L91 060 TOSGLT €6VP
€8°9 W1 €LV €0°GT ¥1'9 G6GET LLLT L0V G68€T 01°64C9 * Ve8¥vL V81 060 68€9C avyqad
LLTT €90 G809T ¥9°0€¢ ¢6'C 869ST C9'V¢C <Ly G0SST 0€'86¢T * TLT9T TLT9T 06°0 609€S 6epid
8¢'1¢ LT'0 L8T8T 98 TLT ye'e 806LT L0°0C [t CII8T 05'696 % 8TE8T 8TEVT 060 20.98 16718
€L91 06'0 L8LITT G q01 06°0 L8LTT 0OV'6 810 €L8IT - * 768TT ¥68TT 060 T€69 L1VB
ouIry de8 189q owIry deS 189q oury de3 1s9q ouIry de3 1s9q 1do 0 op Q0uR)SUI
dO7VHd Hd UMs dSvED VI Iojouwreted-g mp-zg-youerg

007 < u ‘g uoryeIouon) :G1'q O[qRY,

Appendix B. Detailed Computational Results

152

1€°C 06°0 8TV 96°0 08T 69°'T 99671 * oferaAe
Vil c0'T 880€T 99T CI'VF 8LI9CT 67V FI 66°C 8CRCT 02°€6¢ * €CCeTl €TceT 090 TIv9L 007P1
€€°9 60 €LC0T 8T'CI 889 8GL6 LG°L vy 6066 08'ves * 89¢0T 89¢0T 0§°0 ST0TC 8IEUI
S6°¢ TL°€ 6966 19°'6T 00°¢ €€00T 109 LE°0 G0€0T 09°€9¢ * €7e0T €FE0T 0S°0 960¥¢ 66¢1d
cT'e ST'TT 7898 cv'6 9¢'¢ 9Cv6 €9V 6L0T 61I.8 0€°€1e * V.LL6 V.LL6 090 06¢T 08¢ce
c9°'¢ G80 8908 88°LT 61'C 696L 86'¢ 06'¢ 0Z8L 0L°0¢ * LETSY LETSY 080 89S¥¢ ¥9gid
v6°€ 791 7606 209 0S8'¢ CT68 89°'¢ 89°¢ G168 0v'€eet * 9vC6 9vC6 090 68IT z9gI8
G9'TT 670 629 €0°6 ¥6'T S0C9 (47474 8T°C 0619 0¢'0T * 8C¢9 8C¢9 0S50 T0EL9 635iS
10°8 [4ant 8069 08'ST 1I¥V°0 7969 L6°T 88V ¢S99 09'ce * £669 £669 0S°0 G8TO0F 9ggid
8G°C 9C'¢ 88V L 70°S 9¢'c G954 8€°C 00°¢ €9€L 0€°04T * ov.LL ov.LL 090 8961 Ggedsy
vI'T * GLGL G1'9 980 O0TSL LV ¢9'g 6VIL 0C'TLT * GLGL GLGL 09'0 Ccee9 GTesh
Sv'0T €10 G098 [N} 6C°C 6178 S0°C 98¢ TT18 08'¥¢c * 9198 9198 050 0800 0TS
LT G8°0 €129 9Iv'q 1¢°T 0619 6L°C ve'0 TG29 (N0)7% * 9929 9929 090 6TILVT 00TdoIy
CL'T ST1°0 VI19 9V 79°'0 7809 €LC cC'1 8%09 0€'ccl * €C19 €C19 090 ¥89¥T 00CVOIq
V'L L0 0629 98¢ 0¢'c ¢919 98°'T 0€°'¢ G869 0T°98¢ * 02€9 02€9 090 0681 861P
00°'C 060 6€T9 90°¢ 9L°'T 9809 [4ard 7€°0 VLT9 0667 * G619 G619 090 Q911 g61Yer
v6°0 * TLTS i * TLTS €e'T * CLTS 0c'cs * cLTS LTS 090 O0v0IC 691N
c9°¢ 80°0 c06¢ L0V * S06¢€ 080 16'S LGGE 0v'ecIT « G06¢ G06¢ 080 T1¥89¢ ¢grid
70°'T * 1455 1€°C 6.0 ¢LcS 1¢°T 880 L9¢S 09°L0T * 71€g 71€g 090 G990€T 0STdOoIy
L0°T 0¥'0 6109 90°¢ ¢v'0 8109 9C'1T 70°0 LE0¢ 0L0¢€¢ * 6€09 6€09 090 C9CET 0STVOoIq
17'c 0c'T 00L¢ 9¢€°¢ * Sv.Le LL°0 66°C €€9¢ 09°C1T * avLE avLE 00 696 TyIid
88T * 756¢€ 68T TL°0 9C6¢ e€T'T 99°0 8C6¢ 09'8 * 7496¢€ 7496¢€ 00 Lg6FE LET1IS
€Tt * 06V 96°C €¢°0 08¢V €6°0 * 06E7V 0498 * 06€7 06€7 080 98¢8y 9grid
c9°¢C LT°0 T9€C L0°C OV'T CEET 80°'T 8¢°0 94€¢C 06°6L * G9€¢T G9€¢T 090 TIVI6S LTTIRIq
880 L8°C aqve 17'c ¢c’0 6vse 29°0 (4 L1G€ 09°'1C0T « LGGE LGGE 00 §TS6c Vorid
9¢€'T 80 |8V .E ST'T 060 SV.LE 96°0 VT'T 9€.LE 09T * 6LLE 6LLE 090 T.LVE 0¢113
80 00'v 08T ST'T * LLST 62°0 * LLST 06099 * LLST LLST 080 ©STee Lorid
60°C 70 €162 68T * 9867¢ ¥S'0 * 986¢C 06°'TS * 9862 9862 090 061L GoTuI
9¢°0 * SvEe 9L°0 690 CTEe 970 9¢€°0 €€ee 08°'6¢C * avee avee 090 gG1¢ TOTI
8¥°0 010 £C63C 060 L0°0 ¥T6T c9°0 L0°0 j24i14 0C'€TT * 9262 9262 090 996¢ 00TPX
A7°0 * 670¢€ 8V'T * 670¢€ 990 cL’0 L20¢ 09T * 670¢ 670€ 090 PEOTT O0THOIY
8¢°0 80 i ST'T * L9T1¢€ G9°0 68T €C1¢e 0L'0T * L9T€ L9T€ 090 L¥90T 00TOXY
70 * GGTIE 980 610 67VIE 8€°0 * GGT¢ 09T * Gq1¢ Gq1¢ 090 GLEOT 00TDOIN
160 89°0 G8LT 7E'T * ¥08C 970 * 708C 090 * 708¢ 708¢ 090 TLOTT 00THOIH
8¢€°0 L6°0 08T¢ 9T'T * T1C¢ 0¢°'0 * T1C¢ 0€'€9 * T1CE T1CE 090 T¥P90T O0TVOIq
8L°0 9.0 988¢C 080 €60 T88C Lv'0 70 968¢C 06V * 8062 8062 090 909 66%e1
71 €10 99T1¢ L0°T 79’0 €91¢€ 6€°0 * 0LT€ 09'T9 * 0LTE 0LTE 00 S09.¢ 9618
L8670 * 0€v<T 960 * 03544 92’0 * 0€VT 0c0 * 0€VT 0€vC 00 080%S 9L1d
9¢°0 * L9VT 70 0c’0 ¢9re 0¢°'0 ¥¢'0 197¢C 070 * LI9VC LI9VC 090 69¢C 9L
1€°0 * 80TIC L€°0 * 801CT ¥Z'0 * 8012T (] * 80T¢ 80T¢ 090 8€¢ 0L3s
1.0 * COLT €€°0 * COLT €1°0 * COLT 000 * ¢0LT ¢0LT 09'0 869CT 84Iizelq
79°0 61°0 7€0T 0€°0 * 9¢0T 61°0 * 9€0T 0LveT * 9¢0T 9¢0T 090 TLLE ¢ceurIeq
g0 L0°0 86¢T LT°0 * 66€T c1°0 * 66€T 0c0 * 66€T 66€T 090 €T¢C TGl
g0 * VILT 710 * VILT 60°0 * VOLT 000 * TILT TILT 090 TELS STAY
€10 * (05540 02’0 * 03540 L0°0 * OSVT 0c0 * 0871 0871 090 €TSC 8¥13
920 * 6701 8T°0 * 6701 €1T°0 * 670T 098¢ * 6701 6701 090 VIES 8T11e
Elesidl de3 189q Elesidl de3 1s09q ouIry de3 189q ouIry de38 3seq 1do 0 op 20uR)SUT
dOVVH qd yys dSvadD VI ojemrered-g mo-zp-youerg

007 > u ‘g uoreIouan) 91°¢ AR,

153

Evolutionary Algorithm

B.1. Chapter 2

€6°60TT €90 9EVI8Y TO0'9 9¢°280¢T 08'¥ SL'6VLET 98'G oFerose
- * yvL0ce - VN VN - orv'e qcreoe ¥PL0TE 09°0 ¥9€0€9T1T LegLerd
L8'I88S « G8€L0T - VN VN CT'V8E9T CEV 8CV861T G8€L0C 09°0 €T08LT 7E6STT
€T°6698 « 9€€66T - VN VN 6L°6ETST VI'G 96068T 9€E€66T 09°0 G9.T8T S16S1!
V9'8¥VCE « T0CV9T - VN VN 99°LV0TT 8E€'¢ 799841 TOCV9T 090 €8TI6 T9VP1uy
68°8STE « L0LL6 - VN VN T19°L989 80°C GL996 : : L0LL6 090 98€VI G6.LEB
6€°LT6 * L99%0T - 9.9 9696 0€ 1677 €8°¢ 09900T - ¥6°L 96€96 L99¥0T 090 L¥889 8e0gqod
€L°CCV * 76078 c0'yC98 189 79€8L €C96V1 [4a 70L6L - 8¢'8C 9¢c09 V6078 09'0 9T068T c6egd
9L°699 9¢'1T €T18L 0€'9679 16°¢ 0929L cv01q1 0€'1T 6T€E8L - * TGE6L T19€6L 09'0 8TILIT 61ECN
T9°619T * 0oveL 1€°6L96 ST'L CS189 €9°9CET €9C 69VTL - €0°6¢ 160CS 00VEL 060 LTITE coIen
06°89TT 96°0 €EELL - Lv'9 7€0€L ¢0'984T * 7808L - c9'C G€09L. ¥808L 0S¢'0 9Tcov €01CP
L6°VVC * cTv89 ¥0°6€9S 09'8 8649 €€°09¢1T 0g°¢ 09979 - 19'9¢ VLEEY TCVR9 09'0 89C8ST 688TI!
gecoet * 6€9€9 ITTLTV 909 £€8L69 LL'8EL vaev TG6L09 - 00'8T 98T1¢S 6€9€9 0S°0 T098C LI8IN
62°9CC * 849601 961929 6L°C 9,689 00°08¢T vy 98419 - 6L°C 6L689 8960L 09°0 8LCSI9T SV LTWA
qc'vL9 * 8CL8S 89°L8V¢ T8'L 121vS 16°009 70°S TLLGS - L8'CT 89TTS 8TL8S 0S¢0 ¥901¢€ qeI1P
T9°96C * 269GV ce'IGL6 L9°€ co0vy T1'8C¥ 6C°¢ 88TV ¥ : : 6957 060 9TITI LLGTH
TO'8ET * LS99V 9T'16CT LE'€ 780S¥ gzg'e0¢ 8’1 908<T : : L9997 0S¢0 S9879L ceyin
18°669 * 9CcTLS 89°GL0L TV'E 69CS9S 66" TLV LT°0 TETLS - qT'y c6LVS 9TCLS 0S¢0 79001 00V 1B
QL VCT * CL6EY L1018 G9'8 0,107 0981V qg'e (48447 ’ : CcL6EY 090 61€8C 6LETMIU
€9°€6 * Vo9V 16706 €8°L 06627 11°€C¢ VL'L 6C0€T - 89'F 8SYIYy 1¥99¥% 0S'0 00TSET €CETIL
IT°18 * vicTv ¥.°000T V1’8 698.L¢ gg'c9¢e 98'8 c98.LE - 6L°T 8LY0V VICIV 090 VLP9CT TOCTIL
L8'66¢C * CEI8E 09'88CT €¥'¢ £909¢ €2°C1C 67’V 6179¢ - g0'IC 9010¢ CTEI8E 0S¢0 TOPSC T16CTP
91°99 * 69007 6C°LLY 07’9 908.L¢ 76'10€ vy 78C8¢ : ! 69007 00 9¥¥8C eL1190d
cvs 6€°0 80S.LE ST°¢I8 L0V 1219¢ 99°L91 76°¢ 0L19¢ - * €99L¢ €99.¢ 090 6V96T1 70TWwA
88°GL * 0LS9€ 89689 79V €L8VE SV'6LT [4°d 6799¢ : : 0L99¢ 00 L¥0TTT 0901
0g"LV vLT CIL8E 97487 €26 808S9¢ 8€GTT 6G°¢ vvele - * 6776¢ 6V76E 0S9'0 €T96CT coo11d
8T°6L * €760¢€ Gz'18L 989 CC8YT GLE8T 16'C £700¢ ’ : : €V60€ 0S9'0 ¥¥86CE6 000T(sp
79°0¢€ 6L°C L6L9¢C 90°€S9T 912 T6GSC G808 [4°K4 0L89¢ 0€'cecl * 99G6L¢ 996.LC 050 €0v¥ £8L3el
92°6C LT CE6LT 67°0GT 76'S G999¢ 61°89 058V ¢L0LT 09°0L89 * 8VEVC 8VEVT 090 9%60¢T yoLn
L8'EVI 69°0 C069T 19°LCC L9'8 it LL 9V LG8 T9GCT - * 0CO0LT 0TOLT 090 6LILVI 999138
68°1C [4aS CLLET ¢9'69 L8'0T €68I1C 76'CE 08'8 T0vce 0€°€90¥ * c99¥c T9sve 050 9S¥vC LS9pP
VG'8T 8V'T 0€TVC L8V8C TT°T Teeve 76°0€ 76'8 €0€CCT - * c6vve T6vve 060 CTELT y59d
€0°'ST YT 6L86T 'Ly 87'¢ L006T L8'EE 61°C 69961 08'9¢v1 * 60T0C 6010C 090 L8€E GLGel
LL6T 98T T696T 09'7¥v 969 LV.8T G0'vE LV'E 89€6T 0€°6071 * 7900¢ ¥900T 050 €S¥8T yLGn
GE€'1T 60°€ VEOVL 66°9¢€ 9€'8 TLCET vy'ee 99°¢ ¢99¢T 08°€VS0T « CRYVT T8YVI 090 C8ET 19ged
6076 * 8CE€6 88'CI9T €02 CcL98 v0°9¢C 9LV 7888 ’ : : 8CE6 060 OLTTIOT gegre
GL'CC 10°T CVEST 9¢°6. L6°G €LGVT €C'EC 90°¢ 8LIGT 0C'€€6 * 86VST 86VST 090 €¥8¢T cegne
8T'6T v.L0 I86V2C €V'L6T LT°L ¢9€ET ST'ST vLVL 8SVIC - * L91G¢ L91GC 090 TOSLT £67P
8¢9 00°¢ CCSVI 9¢'T€ 1474 90¢v1 LG°TT [4°K4 g4 - * 6I8YT 6I8¥I 090 68€9¢C crvaed
96°0T 440} L60ST 61°€ST L0°€ V69V 1 Ge'qT TZvT 900€T - * 09TST 091€T 090 609¢€9 6epd
0§'%9 980 LT80T 88°€0T LL°E 00501 ST'LT 19T GeL0T1 06°9701 * T160T TI60T 090 L0.G8 16718
Sv'ClL ¥Z0 98IVI 66°€L 69°¢ 60.LET 6V'Ccl 70'0T T6LCT 09°L229 * 0cevT 0cevl 090 T€6S L1V
ouIry de3 189q owry de3 1s9q ouIry de3 1s9q ouIry de3 1s9q 1do 0 opP Q0UR)SUI
dOvvVHd Hd yHm dSVaD V1 Ieojourered-g mpo-zg-youeryg

00¥ < u ‘g uoryeIoULY) :AT°¢d OqRL

Appendix B. Detailed Computational Results

154

60°C 8€°0 96°C 70 €8T 990 69'8TCT oferoAe
19°6 €00 TOT0C ¢C961 L90 €L661T <C¥'cl 190 ¥000C 0T°€609 « L0T0C L0TO0C S6°0 LISPVI 007P1
16°L 60°0 6TTIST L9'ST 6L°0 <CIOST Q9L Gq'0 67V0ST - * CEIST CEIST G680 GTLSe |TeuI[
97'€ 700 0867T L9CI 690 868¥YT TIL9 190 V68YT 06'TLLL 98671 986¥T SG6°0 CBLSY 66c1d
6€'€ €10 8¥V0CT ¢CI'L 9L°¢c TELTT €8¢ IT°¢C OTI8TT 08'1S¢€ * 79021 ¥90C¢T GL'0 GE6T 08ce
<v9 G80 99T0T L6'€T G8'E€ R486 o) e 4 129 % 8086 0G°LLT * €49¢0T €920T 0L°0 96€7¢ 79¢1d
SE€'T G00 0€0¢ 88'C * T€0C 88T 010 6202 0G°0LLT 1€0C 1€0C Gr’o L9g€ 2918
97’9 * C8VIT CTO'V Sv'0 O0EVIT 6LV L2°0 TGVIT 0T°€99 * Z8VIT T8PIT 060 GPITCT 65cis
€87 90°0 0687 18°¢ 6C°0 6.8V 91°¢C 160 8987 OT'€8TT €687 €687 07’0 8vIce 9zeid
CS'C cL60T OVV¥ Gg¢'0 21601 0LV 8T°0 ¢S60T 0L°90L * ¢L60T CL60T 060 9TS€ Gggdsy
L8'T CcO00TT 06°¢ 90°'T G880T 7¥.'C 69T LZ80T 09'7CSE « ¢00TT COOTT 060 6L6ETT GCCsh
L1 oT’L G66 LV°0 * TLO0T €9°0 * TLO0T 0T'9L¢ * TL0T TL0T Gr’'0 9209 2013
c9'T L00 cV86 €eV 790 96L6 08¢ 740 9616 0C°€9¢C * 6786 6786 060 ¥6¥9C 00cdoy
€L°C * <686 687 0€'0 C986 (44 79°0 6286 0€°07v¢ * 686 686 06'0 CEVIT 00CVOoIy
G617 ST1°0 12510174 ov'e 7’0 ¢vov 16°T 741 68597 0L°C6¥ * T99% T99% 0¥'0 ¢1€9 861P
69°'T €00 0616 9€°C 9¢'T 0€96 €L’ 0€0 ¥TL6 0¥°50¢T * €916 €916 G6'0 L0cC a6TIex
C6'0 VA4 RS I8°1T * LV1E T * LV1E 0C'SVIT % PAARS PAARS Gg'0 6TLVI 641N
1¢°G G00 028S% 79°C L0°0 6189 0¢'T 89°0T T10CS 09°€87 * €C8¢ €C8% 040 8LSTSG gg1ad
9T'T 700 020 0c'c L1°0 TTI0L 09T 160 L869 00°€0€ * €¢0L €¢0L 080 ¥060T 0gTdony
69°T 700 GG89 L1°C 77’0 8C89 8C'T 7€'0 GER9 0691V * 8489 8489 GL'0 €6861 0SGTVOIy
€9V 700 6€9% T.°C 0€'0 ¥29s S6°0 €9°0 1199 06°LG€ * 1799 1799 040 9.607 pr1id
404 T1°0 9199 LT1°C ge'0 0099 v0'T aT'0 €199 0T"€0¢ * €299 €C99 080 €889¢ LE118
vL0 OV'1 0¢8¢ 060 76'0 €€8C L8°0 T0°T T€8C 09°€0€9 098¢ 098¢ Gg'0 TLBEE gerad
8C'C ¢00 1909 8C'C €V'0 9708 6T°'T av'o av0g 07'8.L¢C * 8909 890G av'0 LTces LgTI81q
ST'T 98% LE6T 8L°0 * 9¢0¢T L€°0 * 9€0¢T 08°€91 * 9€0¢ 9€0¢ 0€'0 OTLLT verid
GC'1 * 0€8S VT'T L2°0 VISS 18°0 ¢c0 LT8G 0L°9€¢C * 0€8¢ 0€8% G880 T06S 0¢113
G6°'T * cL0T ¢6°0 * cL0T gg'0 * cL0T 00°6GT * ¢L0T ¢L0T 0€'0 T6CET L012d
18°0 80°0 €97¢C 00T * feie] 44 8¢€°0 * Geve 09°020T % Geve G8ve Gg’0 €e09 GoTuIy
€80 G600 90€7 6S°0 61°0 00€¥V 040 c€0 161474 08°06 * 80€T 80€T 9’0 607 TOTI
GL0 ST'0 808¢ 9.0 * QI8¢ LS80 * GI8¢ 09791 * QI8¢ GI8¢ 090 LvlV 00TPX
69°0 70 919¥ ¢80 * SE9V ¥S'0 60°0 T€9V 0¥°€0¢T * Ge9¥v GE9Y 080 G99.L1 00THOI
170 * (454} €20 * (454} 0€'0 * CIcCI 08'TT * ¢lcl c¢lcl 0C’0 69C¥ 00TO™
970 9¢€°0 GG6T 70 T9°0 0961 090 * CI96T 09°19¢ * 961 C961 Gg'0 €9CL 00TOOIH
19°0 * GE€6T 290 * G€6T €8°0 * GE6T ov've * GE6¢C GE62C 7’0 7966 00Tdony
9€'0 6667 09°0 * 6667 7490 * 6667 0T°LST * 6667 6667 G660 81¢0T 00TVOIy
09°0 * c0s¢e 0s'0 07’0 88¥¢ cL0 0¥'0 887¢ 0091 * c0S¢ c0S¢ 090 LTL 66381
L€°0 * TS8Y €€°0 * TS8% 9¢°0 * TG87 0€°CICT * 1687y TG8¥ 6’0 67vCs 9618
c9°0 * T9€¢ ¢S'0 600 8GEE T€°0 60°0 8G€¢ 0L LV0T « T19¢€¢ T9¢€¢ 0L0 CTILSGL 9,1d
cs0 * 979¢ €€°0 8¢€'0 CE9¢ L€°0 ¢c0 8€9¢ () ei * 979¢ 979¢ G8'0 8G¥ 9L
cvo 90°0 v1ge €€°0 900 VPIEE €€°0 900 vige 0L°L2T * 91€¢ 91€¢ a0 VLS 0L3s
80T 870 090¢ 620 * 0402 8T°0 * 0402 00°cet * 0L02 0L02 7’0 8TVIT 8¢11ze1q
8¥°0 61°0 G802 €20 * 680¢C €1°0 6T°0 G802 00°STT * 6802 6802 09'0 9TS¥ ceurIeq
¥¢'0 * 06v<C 710 9T°'0 98¥C €10 9¢°0 1I87¢C 0128 * 067¢ 067¢ 060 ¥8¢ TGP
ST°0 * LLIT €T°0 * LLTT 710 * LLTT 020 * LLTC LLTC 080 6916 STY
0¥'0 * ¥92C GT'0 * ¥92T 10 * ¥92T 0¥'¢c * 79¢¢ ¥9¢¢ 080 LEO¥ |13
cs0 * 0L8T 910 * 048T c1°0 * 0L8T 007901 * 0L8T 0L8T G9'0 6069 |T11e
Elesidl de3 1s09q Elesidl de3 1s9q ouIry de3 189q Elesidl de8 9seq 1do 0 opP 20uR)SUT
dOVVH qd yns dSvadD VI Iejourered-g mp-zp-youeryg

007 > u ‘f uoryeIouan) Q¢ AR,

155

Evolutionary Algorithm

B.1. Chapter 2

VG LI9L 09°0 76°L08¢ L0°9 G’°L86T T0'¢ V' L80LT 99°€ oferose
9€°L999 « 66€CVT - VN VN - ¢v'yT 0981CT - L¥'8g TE€T90T 66€CPI G20 T8ISI8S LegLerd
LO°LEOY « 8EVLET - VN VN - €6°9 L8TRTT ’ ’ 8E8LET 0FV'0 8IVTcCc 7E6STT
09°8EP8 LLg6LT - VN VN - L€°¢ 69¢v9¢ - 90°0 9T16LC LLT6LC G980 TOLOSY ST6S1L
08°067VT « 880G8 - VN VN €8°91C¢ €0'L 0TT6L - 9T'T 86078 88058 0€°0 0LLVS TOVPIuy
609677 « 69008 - VN VN 9C¢'vL0L 9T'ST 098L9 - ¢6'0T BTETL 69008 07’0 609TT 96.LEB
€1°008 * €LTTOT - 679 L0976 6L7.6C 108 0L0€6 - €26 €816 €LTTOT G990 CELSL 8eogqad
92°98¢C * 2060¢ €9°CLTE 09°0T 909sV €9°69€T 119 T6LLY - 080T LOVSV ¢0609 ge'0 CIecer c6egd
9C'8EV €00 0960TT TL'L89V 16'C 79LL0T 6€'8ICT 8T'C €9¥80T - * g660TT 9660TT 080 SOVLST 61ECN
78°906 * VvLivG 8C'LTTE ¥C'6 88967 LT'LS8ST I8°L L9709 - IV IT TLVRY VvLVS S7'0 VI68C ceIgn
9€°99¥ * C6IVE 86°16CT 78’8 9LTTE V¢ 608 I8°CT TI86C - 026 SvoTe ({31849 0€'0 9€1vC €01CP
GE€'€9¢ * T80€8 G6°66.L7 €7'8 8L09L 0€'9€ST TV'€ 07208 - 16°€T LTSTL 180¢8 ¢L'0 TOvLET 688TIL
08°81¥V * 91v9¢€ 0T 168 VL 1T Tvice 8¢€°G¥8 128 8CVEE - 89°CT 008TI¢ 9179¢ ge’0 1200¢ LI8IN
§9'99¢C * 9C1cC8 LLT6VS eT'e 0746.L CC9LL €8T £2908 - o 8LLTS8 9C1C8 ¢L'0 LIVeST SV LTWA
1€ TLE * 088T¢€ LG 181 LLS 0v00€ €€°00¢ TR'¢ 7200€ - e1'9 0T66¢C 088T¢ ge'0 9yLiIC ge91pP
T4°002 * VGLEE L8°TEVOT L6°G ov.LIE 0L°Lce LV'6c LS1SC - 9C'1ve 161¢C VQLEE Ge'0 88LL LLGTH
6L°LCT 8’1 09S€s 98016 g0'8 0S10S ¢0°99¢9 08’8 8EL6T - * overs ovsve 09'0 €8L16 ceyn
QL L8C * 88704 LT°ELSY 90°0 6770L LS°LLT 900 7oL - c0'0 9.L¥0L 8870L 06'0 GTIST 007 1H
00°CST * V1269 €97.L6 69T 97089 16°98¢€ 01T 0TS89 - ¥1°0 61169 V1269 g6'0 L08ES 6LETMIU
18°66 * 79959 ¢1°0L0T ¥1'9 ce919 (i 70°¢ 999€9 - 620 9.¥99 79999 06'0 08TIEVT €CETIL
S8T'CIT 70 SveLS g8°¢911 6C'TT 89CIS ¥4 0LY €69 GLLES - * T8LLS C8LLS GL'0 TIL6ST YOCTIL
L0°SY ¢c1ro ycov €9 TL * 620V cT'S¢ * 6207V 09°6€€T * 6207 620V 0T'0 1809 16CTP
€L°LL * 0T09¢ 1¢°69¥ 919 696CS ¥¥°90¢ ST'Y L89¢€¢9 - 0T°0 79699 0T09S g8'0 69€8V gL11q0d
ve 09 9IT'T 8CT8VE L9199 ¢T'8 geese Gg'10¢ gL’e qey9¢ - * 8L98¢ 8L98¢ S7'0 ¥89.0T y0TWwA
8G°0ST * QLLTSG 16°0€¥ g8'c ¢0€09 1€°061 991 12609 - 100 89LTS GLLTS G8'0 08V06T 0901
L9°G€ Wy [4°1 %44 veLet YO'vT ¥¢c0T L0°08T ¢9°0T 6C0TT - * LTSET LTSET ge'0 99906 coo11d
€18V €€ L (425314 €C'ELS 0C'8 €T14C 9T°LCT 0Z'6 078¥¢ - * LGELT LGELT Ge'0 1680€89 000T(sp
GE'ET 69°€ 8VSL €C'CE 00'8 €0CL 9C'€C €LY 6G¥. - * 6¢8L 6C8L GT'0 TCET £8.L%el
€6°07 61°0 Tc6ve 98'80T 70'€ €C6EE 1€°L9 €T 691¥€ - * 8867¢ 8867¢€ G880 ¥eI9se yoLn
€9°CEeT €9°0 10602 €9 T1S 98'C ¢1v0C €1°6¢ 90'¢ 69€0C - * €101C €T101C Ge€'0 92¢0€0T 999138
00°€¢ 700 V€9CE 96°€CT 16T LT61E 10°¢S 08'T 650C€ OT'G8¥ET % 8V4Te 8¥4cE 06'0 TcOv¥ LG9P
[4: 851! 0€0 LTLTE 8EVIG Ge'T €8ETE IT°0% 670 LG9T¢€ - * VI8IE VI8TE 080 GT.LlT vgod
89°¥%C 11°0 VE€EVT Gg'6¢ LV'C 799.L¢C €C'EV 0€'T G66.LC - * 79€8¢T 79€8CT 06'0 9609 gLgyel
€0'9¢ 00°0 CC88T 65°0L 1€°1T 9V¥8C I8°VC 96°0 GvS8¢T - * £C88C £C88CT g6'0 090S5€ yLGn
vI'vC * 6TLLC €V oy ve'e ¢C89C a8'1¢ LLT 8CCLT - €0°0 CILLT 6TLLT 06’0 L8¥C 19ged
LO'EL 860 44298 G8'90¥% 60°¢ c0T€T €V°6C 76°0 €6€€T 09°6€LST % 0TSeT 0CSeT 0c’0 89¥0¥ gegle
0C°LT * 8CL9C 70'€L 9.0 9¢%9¢ cI'61 690 0L89¢ - * 8¢CLIT 8CLIT g6'0 T0€9C cegne
00°1C 0€0 V.91C 96'7.L L0V 9480¢ CL'8C 9L'T LGETT - * 0vL1c ovL1C 040 ¢0Ssve £67P
or'e ve'e 0999 0S°6 607 0099 LV'6 7a'T 6V.LS - * 6€89 6£8G 0c'0 99101 cryaed
T9°€T €90 0TS6T I8 LLT Ve 6€T6T 69°€C 16°0 GEV6T 0T'9€6€ * €T961 €T1961 040 Ts05L 6ep1d
6¢°09 G00 696€T 0¥'991 7€ 667ET €T1°8T [4%4 [451%19 8 - * 9.L6€1 9L6€T 0€'0 Govig 16718
19°6€ 10°0 v6v0C 17'c8 €9°0 99€0C C8'TT 8¢0 8¢EV0C - * 9670¢C 9670C 68’0 ¢800T LTV
omIy de3 189q owry de3 189q awry de3 1s9q oury de3 189q 1do 0 op Q0UR)SUI
dOvvd Hd yHm dSVUD VI ojewrered-g mp-zp-youerg

007 < u ‘§ ToTyRILdULY) 61" IR

156 Appendix B. Detailed Computational Results

B.2 Chapter 3: Shrinking and exact SEC for Cycle Problems

In this section, we show the computational results obtained in each considered SEC
instance. For each instance, we present three tables: two are related with the
shrinking processes and one is related with separation and SEC generation processes.
In addition, the results are separated into three groups (Genl, Gen2 and Gen3).
These groups represent the generation strategy proposed in [Fischetti et al., 1998]
to build the OP vertex scores which are then used to obtain the support graphs.

From Table B.20, Table B.22, ... and Table B.34, we report the details of the
shrinking preprocess. One can see, below the support graph and shrunk graph
columns, the size of the given support graph and the size of the shrunk support
graph for each shrinking strategy. In the preprocess columns, we show the number of
@ sets obtained and the time (in milliseconds) needed by each shrinking preprocess.
As can be seen, the shrinking is very fast, needing very few dozens of millisecond to
be accomplished in the larger instances. An interesting point of these tables is that
within the shrinking preprocess we are already able to obtain @) sets that correspond
with violated SECs. In particular, the largest amount of () sets are obtained with
the shrinking strategy S1S2.

In tables Table B.21, Table B.23, ... and Table B.35, we report the number of
times a rule is applied by each shrinking strategy. Regarding the Conjecture 1 in the
discussion of the computational experiments of Chapter 3, it can be seen that Rule
C3 is rarely applied in the shrinking preprocess. Moreover, the strategy C1C2C3
does not provide further contractions of the support graph and, in all the compared
instances, the obtained final shrunk graphs have the same amount of vertices and
edges as with strategy C1C2.

The extra column in these tables represents how many extra vertices are con-
tracted in the internal shrinking process of Algorithm DHI, i.e, Extra is increased
by one if rule C1, C2 or S1 is applied and by two if rule C3 is applied. The results
show that this extra shrinking is rarely achieved.

In tables Table B.36, Table B.37, ... and Table B.41 ,we report the details about
the separation process and SEC generation. We can see that EPG approach al-
ways obtains more violated SECs than Algorithm EH as suggested theoretically in
Chapter 3. Moreover, without using the shrinking preprocess, the EPG algorithm
is always faster than Algorithm EH except for the smallest instance pr76.

Regarding the SEC generation process, we compare two strategies 1 x 1 and
10 x 10, which refer to the amount of vertices considered inside and outside @
sets when generating the violated SECs. What we see is that, in medium-sized
instances, the generation of violated SECs is the most time-consuming part (see the
results regarding Algorithm EPG), but in large-sized, this difference is shortened.
Nevertheless, it is likely that most of the generated violated cuts by 10 x 10 (around
half a million of different violated SECs were obtained in large-sized instances by
EPG) are useless and counterproductive to consider them, in practice, for a B&C.

157

B.2. Chapter 3: Shrinking and exact SEC for Cycle Problems

0 €9 0 a4 0 0 0 0 a9 0 v 0 0 0 0 CL T €9 0 0 0 ¢STS
0 €9 0 v 0 0 0 0 a9 0 v 0 0 0 0 €L 0 16 0 0 0 IS
0 g9 0 0 0 0 0€ 0 €S 0 0 0 0 0€ 0 GL 0 0 0 0 6¢ €0CDTD
0 9 0 0 0 0 0€ 0 €S 0 0 0 0 0€ 0 GL 0 0 0 0 6¢ ¢OTD
0 g9 0 0 0 0 0€ 0 €S 0 0 0 0 0€ 0 GL 0 0 0 0 6¢ 0
0 ON
BIIX H ¢S 1S €0 (49) 10 'IXH H 4 1S €0 (48] 0 BIIXH H ¢S 1S €0 [48; [£0) Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
cueH guo) Tue)
‘(uoryeredos Sunmp) A8egerys uoreredos THJ Jo
Teqnorjred ST UWN[od vIYxd oY, '92I1d Ul UOIJRISULS 90UR)SUI J() PUR AFojer)s SunuLys Aq ssedordaxd o) Ut oI yoes jo suorjesrdde Jo equuny 1z g 9[qe],
60°0 0 81 €1 €9 25 80°0 0 €1 6 69 0S 010 4 4 1T 1L 99 9L CSTS
60°0 0 81 €1 €9 25 80°0 0 €1 6 69 0S 010 4 ¢1 4 1L 99 9L IS
010 0 €€ 144 €9 25 60°0 0 6C 0¢ 69 0S 010 0 [48 9¢ 1L g9 9L €0CDTD
60°0 0 €€ 1«4 €9 25 80°0 0 6C 0¢ 69 0S 60°0 0 [48 9¢ 1L g9 9L ¢OTD
60°0 0 €€ 144 €9 25 80°0 0 6¢ 0¢ 69 0S 010 0 [48 9¢ 1L g9 9L 0
G0°0 0 €9 129 €9 25 90°0 0 69 0g 69 0g g0'0 0 1L g9 1L g9 9L ON
ouny, o# Al [Al L.l LAl ownn O# Al Al L.l LAl eow o# LAl LAl | | l«al 1Al Suppunyg
ssoooxdeig ydeid yuniyg ydeid jy1oddng ssoooxdeig ydeid yuniyg ydeid y1oddng ssoooxdaig ydeid yuniyg ydeid y1oddng

EUWeH

[S9)

Tued

‘921d ur uorjerauasd 9ouRISUl J(O) pPUR AS9jer)s SuryuLIys Aq sseooxderd o) Jo S} SUTUUNI PUR S19S () pauIrlqo Jo Ioquuinu ‘sozis ydeir) :0z ¢ 9[qR],

Appendix B. Detailed Computational Results

158

0 0Ly g 8L¢ 0 0 0 00 697 8 96¢ 0 0 0 G0 809 ¥ 18¢ 0 0 0 ¢STS
00 L9V 0 LLT 0 0 0 00 0LV 0 ¥6¢ 0 0 0 00 €1g 0 18¢ 0 0 0 IS
00 0Ly 0 0 0 €1 8LI1 00 697 0 0 0 8 S0¢ 00 8¢S 0 0 ¢ 0T [quS €0CDTD
00 0.7 0 0 0 €1 8LI1 00 697 0 0 0 8 G0¢ 00 ¥es 0 0 0 1 [quS ¢OTD
00 997 0 0 0 0 CLI 00 [£8i 0 0 0 0 10¢ 00 1€s 0 0 0 0 ¢66 0
00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 ON
BIIXH H asS 1S €D 48} 0 'IXH H ¢S 1S €D (48] 0 BIIXH H ¢S 1S €0 (40) 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
[Y) [S)) Tue)

‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
ST UWMN[0D RIJXD O], 'ZEGIIe Ul UOIjeIoUST oouwisul J(O) pur ASojer)s Jumyuniys Aq sseooidoxd oy ur oni oo jo suorjeordde jo requuny :¢g ¢ 9[qel,

€9°0 14 641 6C1 (488 (484 G9°0 1€ 8V1 60T €04 ey 69°0 61 G0t €L 8¢S 8¢¥ (43¢ CSTS
6970 114 G81 Gel (488 (484 €9°0 6¢ V91 611 €04 €1y L0 S T11 LL 8¢S 8¢¥ (43¢ IS
8¢°0 9 s0e 1¢¢ (488 (484 69°0 4 6LC 002 €04 eIy 0470 4 961 [4" 8¢S 8¢¥ (43¢ €0CDTD
¥4'0 9 s0e 1¢¢ (488 (487 €90 ¥ 6LC 002 €04 ey L9°0 € 961 [47" 8¢S 8¢V (43¢ ¢OTD
0<°0 0 ove 0v¢ (488 (484 16°0 0 [qUS ¢le €09 ey 90 0 9¢€¢ 991 8¢S 8¢¥ (43¢ 0
ce0 0 (48 (487 (488 (487 62°0 0 €09 €1V €09 (487 €e0 0 8¢S 8¢¥ 8¢S 8G¥ (48] ON
ouny, O# Al Al L.l LAl ouny # Lal Al Ll LAl owy o# Lal o LAl | LAl |Al Suppuugg
ssoooxdeig ydeis yuniyg ydeid j1oddng ssoooxdord ydeid yuniyg ydeis y1oddng ssoooxdeig ydeid yuniyg ydeid j1oddng

1Y)

cueD

Tuon

"Z€GIIR Ul UOIRIAUSS 90uR)SUl JO) Pue A8ojer)s SursjuLIys Aq sseoordord o) Jo oIy SUTUUNI PUR $19S) pourelqo Jo equnu ‘sozis ydeir) :gz g o[qe],

159

B.2. Chapter 3: Shrinking and exact SEC for Cycle Problems

0 048 4! L29 0 0 0 0 796 6 749 0 0 0 0 0%6 1T 9TL 0 0 0 ¢STS
0 9.8 0 Gc9 0 0 0 0 GL6 0 099 0 0 0 0 96 0 ViL 0 0 0 IS
0 c88 0 0 1 91 00§ 0 896 0 0 1 81 c0s 0 086 0 0 0 61 ¢8¢ €0CDTD
0 188 0 0 0 81 00§ 0 1.6 0 0 0 0¢ c0s 0 086 0 0 0 61 ¢8¢ ¢OTD
0 188 0 0 0 0 887 0 0L6 0 0 0 0 987 0 G¥6 0 0 0 0 94 0
0 ON
BIIX H asS 1S €0 (48] 0 'IXH H ¢S 1S €0 48 0 BIIXH H ¢S 1S €0 (40) 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
cueH cuo) Tue)
‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
ST UWMN[0D BIIX0 OUJ, FROTWA Ul UOIJRIdUSF doue)sul J() Pue A39jerls Sumuliys Aq ssedoidord o) ur omr yore jo suoryedridde jo Ioquuny :Gg q 9[qel,
9¢'1 474 0Te IVl L16 G8L LE°T €9 CLe 002 ¢lot €98 6€°1 8% 08T Vel 086 198 801 CSTS
48! ve €€¢e 091 L16 G8L 0€'1T i 68¢ €1¢e clot €98 0€'T (Ui% ¢0¢ Ll 086 198 801 IS
[4nt L 8LE L9¢ L16 G8L Le1 9 S9v e ¢lot €98 0€'1 8 255 09¢ 086 198 801 €0CDTD
1T L 8LE L9¢ L16 G8L LTT L S9v 7€ ¢lot €98 0c'1 8 259 09¢ 086 198 801 ¢O1D
80T 0 6¢1 L6¢ L16 G8L 8T'1 0 9¢s LLE ¢lot €98 9Tl 0 9V L6¢ 086 198 801 0
€9°0 0 L16 G8L L16 G8L 890 0 c10t €98 c1ot €98 99°0 0 086 198 086 198 ¥801 ON
ouny, d# Lal Al Ll LAl ewny d# Lal o Al Ll LAl ewny d# Lal o Al lal Ll Al Sunpungg
ssoooxdorq ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng

€D

cuRd

Tue)

FROTWA Ul UOIJRISUSS 20URISUI J() PU® AFojer)s Sururiys Aq sseoordard oy) Jo owIl) SUTUUNI PUR S19S () PauIR)qO JO Ioquunu ‘sozis yderr) :yz ¢ o[qr],

Appendix B. Detailed Computational Results

160

00 6901 114 8€L 0 0 0 g0 0<ot L 9CL 0 0 0 00 vit 0T 9L 0 0 0 ¢STS
00 ¢601 0 1€L 0 0 0 00 geot 0 Vel 0 0 0 00 8V11 0 €9L 0 0 0 IS
00 9801 0 0 T €1 659G 00 01 0 0 1 81 8LG 00 71t 0 0 0 ¢l 864 €0CDTD
00 1601 0 0 0 o ! 659G 00 8701 0 0 0 61 6LG 00 it 0 0 0 ¢l 864 ¢OTD
00 €601 0 0 0 0 04¢ 00 S¥0T 0 0 0 0 8¢¢ 00 6711 0 0 0 0 064 0
00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 ON
BIIX H ¢S 1S €0 48} 0 'IXH H aS 1S €0 (49) 0 BIIXH H ¢S 1S €0 (48] 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
cuan) guan) Tuon)
‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
SI UWIN[0D RIIXD Y], '€ZEI[I Ul uorjelauad aourlsul J(O) pue ASojer)s Sunyurrys Aq sseoorderd oty ur omi yoes jo suorjyeosridde jo roquuny :27 q o[qe],
691 €8 L6¢ V61 Vell 946 0g'1T 99 [4°14 002 €L01 €€6 8G'T 0¢ L1€ LEC G911 T10T €cel CSTS
€41 9¢ €0¢€ Gce vell 946 Il 69 9.¢ 60¢ €L01 €€6 8G'T 9¥ 1€€ 8V¢ G911 1101 €cel IS
0S'1 6 6CS c8¢ yell 946 91 ¢l Sy gee €L01 €€6 871 01 8€g 10% G911 1101 €cel €0CDTD
Ge'1 6 6CS c8¢ ¥ell 946 9¢'1 ¢l Sy Gee €L01 €€6 2! 01 8€g 10% 991t 1101 €cel ¢O1D
(45! 0 YLS 907 ¥ell 946 (43! 0 188 GLE €L01 £€€6 6¢°1 0 GLS 1y G911 1101 €cel 0
LL°0 0 el 946 yerl 966 9.0 0 €01 €€6 €L01 €€6 €80 0 GITT TT0T G911 11071 €cel ON
ouny, d# Lal Al Lal Al euwmp d# LAl . Lal s euny, o# Lal o l.Al LAl lal Al Supjurg
ssoooxdorq ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng

€D

cuRd

Tue)

*eZETII Ul UOIRISUSS 9ouR)sUl JO) pur A8oer)s Sunuriys Aq sseoordord o) Jo o) SUIUUNI PUR $99S) paurelo jo equunu ‘sozis ydeir) :9z g o[qe],

161

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

80 TOST 1€ 180T 0 0 0 0 0cLT 6C €001 0 0 0 00 891 0€ €CIT 0 0 0 ¢STS
00 Geat 0 LL0T 0 0 0 00 6CLT 0 0001 0 0 0 00 691 0 9111 0 0 0 IS
00 6CST 0 0 1 0T 698 00 0891 0 0 € 1974 T1L 00 9.91 0 0 0 8¢ 998 €0CDTD
00 €641 0 0 0 ¢4 698 00 0691 0 0 0 67 T1L 00 9L91 0 0 0 8¢ 998 ¢O1D
00 8IGT 0 0 0 0 978 00 6991 0 0 0 0 6.9 00 €991 0 0 0 0 8V8 0
00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 ON
BIIX H ¢S 1S 150) 48} 0 'IXH H aS 1S €0 (49) 0 BIIXH H ¢S 1S €0 (48] 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
guon) quan) Tuor)
‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
ST UWMN[0D BIIX0 O], '{FLTWA Ul UOIJRIdUSF doue)sul J() Pue A30jer)s Sumuliys Aq sseooidord oy ur omr yore jo suoryeoridde jo Ioquny :6¢ € °19QL
€9°¢ CL 8¢¢E 6v¢ 984T 19¢€T1 18°¢ 1cT 0€9 o114 LE8T L8V 98¢ L8 (4814 LEE 9G.LT 0671 8V.LT CSTS
16°C 87 11y ¥8¢ 9841 19¢€1 88C 90T GL9 L8V LE8T L8V L8°C 9L €14 VLE 9GLT 0671 8V.LT IS
(474 9 089 087 9861 19¢€1 ¥9'¢ [48 G00T LaL LE8T L8V oL'e 81 €e8 96¢ 9G.LT 0671 8V.L1 €0CDTD
8¢'C 9 089 087 9861 19¢1 Lv'e [48 G00T Lal LE8T L8V 67°¢C 81 €C8 96¢ 9GLT 0671 8¥L1 ¢OTD
81°¢ 0 ovL 5188 9861 19¢1 €6C 0 8CTT 808 LE8T L8V 6€°C 0 806 cr9 9G.LT 0671 8¥L1 0
121 0 984T T9€T 984T 19€T 9¢€'1 0 LE8T L8VT LE8T L8VT (43! 0 9G.LT 06vT 9G.LT 0671 8¥L1 ON
ouny, d# Al LAl Lal o Lal ewn d# Lal LAl Lal LAl oumr o# Lal Al L4l lal Al Supjurg
ssoooxdorq ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng

€D

cuRd

Tue)

‘QFLTWA Ul UOIJRISUDS 20URISUI J() PU® ASojer)s Sururiys Aq sseoordard oy) Jo ouIl) SUTUUNI PUR S19S () PauIR)qO JO Ioquunu ‘sozis yderr) :Qz ¢ o[qr],

Appendix B. Detailed Computational Results

162

0 veey g¢ ggee 0 0 0 0 [4744 129 Lvee 0 0 0 0 LGLY 44 T1%€ 0 0 0 ¢STS
0 T9€V 0 9vee 0 0 0 0 €947 0 [£443 0 0 0 0 067 0 €06¢€ 0 0 0 IS
0 €9€7 0 0 € 25 968¢ 0 G8GY 0 0 4 8¢ 029¢ 0 (45114 0 0 T a8 Y062 €0CDTD
0 vLEY 0 0 0 69 L68¢ 0 €097 0 0 0 ¥9 ¢C9¢ 0 a8y 0 0 0 L8 ¥06¢ ¢OTD
0 68€V 0 0 0 0 E€V8¢ 0 8657 0 0 0 0 894¢ 0 987 0 0 0 0 9¢8¢ 10
0 ON
BIIX H ¢S 1S €D (49) 10 'IXH H aS 1S €0 (48] 0 BIIXH H ¢S 1S €0 [48; [£0) Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg
guoH cuo) TueH
‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
SI UWN[09 RBIIXd 9], 'FEEG[I Ul uorjelauad aourlsul J(O) pue ASojer)s Sunyurrys Aq sseoorderd oty ur omi yoees jo suorjyeosridde jo roquuny :1¢°q 9[qe],
g1t LEC 9GL 09¢ vevy 0L6€ €8'TI 96¢ 9201 008 T69% 10Ty L9CT 00€ 066 0SL TL8V €0€V ¥E6S CSTS
66°0T 681 878 vc9 vevy 0L6€ ¥9'T1 99¢ €¢It LL8 1697 101y ¢€'cl Gge 2901 008 1.8V €0€V ¥E6S IS
L8701 v I8¢T 7101 vevy 0L6€ TL°0T 537 €L8T SIvt 1997 10Tv 1911 129 VaLl clet 1.8V €0€¥ ¥E6S €0CDTD
09°01 (44 18¢T 101 vevy 0L6€ <701 144 €L8T SIvt 1997 10Ty 0S'TI 129 VaLl clet 1.8V €0€v ¥€6S ¢O1D
701 0 1841 Lell vevy 0L6€ 90°01 0 €80¢ €64t 1997 10T¥ OT'TI 0 G¥0¢ LLVT 1.8V €0ev ¥E6S 0
[0 yevy 0L6¢ vevy 0L6€ T1€°¢ 0 1997 10TV 16997 10Ty L9°¢ 0 1.8V €0€V 1.8V €0ey ¥E6S ON
ouny, d# L&l LAl L4l Al ommr o# Lal Al L4l LAl eumr o# Lal Al L4l LAl Al Supqurg
ssoooxdarq ydeid yuniyg ydeid j1oddng ssoooxdord ydeid yuniyg ydeid j1oddng ssoooxdard ydeid yuniyg ydeid j1oddng

guon) cu9p) TuodH

FEGSIT UL UOTIRISUSS 90uR)sUl JO) pur A8oer)s Sunuriys Aq sseoordord o) Jo o) SUIUUNI PUR $99s) paurelqo jo mequunu ‘sozis ydeir) :0g g o[qe],

163

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

0 0L9L L1T 1759 0 0 0 0 €048 611 6LTL 0 0 0 0 0196 9¢T €¢e8 0 0 0 ¢STS

0 TLLL 0 L2599 0 0 0 0 8C98 0 691L 0 0 0 0 €4L6 0 ¢0c8 0 0 0 IS

0 9264 0 0 € €8 999¢ 0 81L8 0 0 ! 99 ¥€€9 0 0966 0 0 € ¥9 €CIL €0CDTD

0 9€6. 0 0 0 68 999¢ 0 CTL8 0 0 0 8¢ ¥€€9 0 6966 0 0 0 0L €CIL ¢OTD

0 1L6L 0 0 0 0 1094 0 1G.L8 0 0 0 0 2629 0 G000t 0 0 0 0 2904 0

0 ON
BIIXH H ¢S 1S €D 48} 0 'IXH H aS 1S €0 48} 0 BIIXH H ¢S 1S €0 (40) 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg

cuon) guon) Tuen)

‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
ST UWNJ[0D BIJXO YT, ‘GOGETESN Ul UOIJRIdUSS ooue)sul J() pue ASojerls Sumurrys Aq sseoordord o) ul oI Yoo jo suoryeorjdde jo requny :¢¢ ¢ 9[qel,

y'ce Gae G88 189 C66L GyclL 9T°6€ 6V€ 2201 LTL GEL8 G108 §€°09 I8¢ 9701 G0L 0666 7806 60GET CSTS
8¢'¢E IVl L0TT 8TL C66L GycL €€°6€ 961 67¢1 978 GEL8 G108 6¢°6¥ €1¢e LVET c88 0666 7806 60G€T IS
€0°0€ 0 8V1¢ 0671 G66L GyelL TV'SE 1 ¥8¢¢ €291 GEL8 g108 ol'sv T GcLe 1681 0666 7806 60G€T €0CDTD
8¢'6¢ 0 8¥1¢ 06¥1 c66L Gycl 0L°GE 1 ¥8¢¢ €291 GEL8 G108 98'%¥ ! GcLe 1681 0666 7806 60G€1 ¢OTD
G8'8¢ 0 16€¢ 7ot ¢66L ¢ycl L0'SE O EVve €CLT GEL8 g108 86¥¥ 0O €26¢ L10¢ 0666 7806 60G€1 0
€LCL 0 C66L el C66.L GvcL 8SVI 0 GeLs G108 GeL8 G108 89'8T 0 0666 7806 0666 7806 60S€T ON
ouny, d# LAl Al My Al euy d# Lal |l ey LAl ewny o# Lal LAl Lal o LAl Al Suruyg
ssoooxdeig ydeid juniyg ydeid j1oddng ssoooxdarg ydeid yuniyg ydeid j10ddng ssoooxderg ydeid yuniyg ydeid j1oddng

[Y)

[S9)

Tuon

"‘60GETesSn Ul UOIRISUSS 90URISUL J() Pur A393eI)s SuryuLys Aq sseoordaid o1} Jo owir) SUIUUNI pUR §)9S) PaUIR)O JO Ioqunu ‘sozis ydelr) :ze ¢ s[qe],

Appendix B. Detailed Computational Results

164

0 Gc00T 6¢T 89¥8 0 0 0 0 G918 66 €689 0 0 0 0 9846 911 10€8 0 0 0 ¢STS

0 8TI0T O [45ia] 0 0 0 0 0Le8 0 €89 0 0 0 0 €696 0 0628 0 0 0 IS

0 ¢0€01 0 0 T 86 6634 0 LGE8 0 0 0 (4¢] 0219 0 8486 0 0 ¢ 0L GveL €0CDTD

0 G0€0T 0 0 0 00T 66CL 0 LGE8 0 0 0 (4] 0219 0 7986 0 0 0 YL GvelL ¢OTD

0 0s€01 0 0 0 0 €3l 0 ¢8€8 0 0 0 0 2809 0 €666 0 0 0 0 C8aL 0

0 ON
BIIXH H ¢S 1S €D 48} 0 'IXH H 4 1S €D (48] 0 BIIXH H ¢S 1S €0 (40) 0 Supquiyg
1HA ssoooxdaiq 1HA ssoooxdeig THA ssoooxdarg

1Y) cuo) TueH

‘(uoryeredos Surmp) A8ege1ss uotyeredos T Jo Tenorired
ST UWMN[0D BIJXd OUJ, 'GIIGIP Ul UOIeIoUS3 2oueisul J() pue Agorer)s Sururygs Aq sseooidord o) ur oI yoes Jo suorjeosrdde jo Ioquuny :Ge ¢ 9[qel,

yres G8¢ €1et 96L 8LE0T €666 90'9¢ L6C 796 069 [445] ¢89L TI'8Y G0€ LL6 8¢9 9986 GL06 CTIST CSTS
10°€S €91 0971 16 8LE0T €666 06'7€ L61 11 608 [4453] ¢89L TY'8Y 9LT €0c1 G8L 9986 GL06 CTIST IS
£€6'87 g 9.8¢ V661 8LE0T €666 0LcE 1 L60¢ 01¢T [@453] ¢89L 8¢S O €LET 9491 9986 GL06 CTIST €0CDTD
0L°LY g 9.8¢ 7661 8LE0T €666 8C'CE 1 L60¢ 0TSt Cees ¢89L Tvvv 0 €LET 9491 9986 GL06 CTIST ¢OTD
1697 0 gare 0L1¢ 8LE0T €666 S¥'ce 0O 0¥¢c 0091 Cees ¢89L 0LEVy O ¥84¢ €61 9986 GL06 CTIST 0
€9°61 0 8LE0T €6€6 8LE0T €666 GCTVI 0 [445 289L [443 Cc89L €L8T 0 9986 GL06 9986 GL06 CIIGI ON
ouny, d# LAl Al My Al euy d# Lal |l ey LAl ewny o# Lal LAl Lal o LAl Al Suruyg
ssoooxdeig ydeid juniyg ydeid j1oddng ssoooxdarg ydeid yuniyg ydeid j10ddng ssoooxderg ydeid yuniyg ydeid j1oddng

[Y)

[S9)

Tuon

‘ZTITCIP Ul UOIRIdUSS 90URISUI J() PUR AS9jer)s SuruLIys Aq sseooxdord o1y Jo oW} SUTUUNI PUR S19S () paurrlqo JO Joquunu ‘sozis ydeir) :y¢ ¢ o[qr],

165

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

€0 0L€ z'0 9 z0 9 z0 08 z'0 € z0 € €0 ovy €0 L [400] L TSTS
€0 0Lg €0 9 z0 9 [400) 08 z'0 € z0 € 70 ors €0 ot z0 ot 18

G0 029 70 41 €0 41 g0 06€ 70 ot €0 ot 9°0 089 70 V1 70 2 £02D1D

9'0 029 70 4 €0 4 g0 06€ €0 [0} €0 [0} 9'0 089 70 ¥1 €0 71 [4e}¥e)

9°0 029 70 41 €0 41 g0 06€ €0 ot €0 ot L0 089 ¥°0 it 70 it 0

1 0162 90 6¢ g0 6¢ [4hs 096 80 02 80 0z 0'e 060€ L0 54 9'0 87 ON DA
[400] 0TT z'0 14 10 14 1°0 08 10 € 10 € €0 0LE 10 L 1°0 L TSTS

4] 01T 1°0 2 1°0 12 1°0 08 1°0 € 1°0 € €0 06€ z'0 L 1°0 L 18

€0 06T [400] 9 z0 9 €0 0€T z'0 L z0 L €0 [’144 20 g z0 9 €02D1D

€0 061 z'0 9 z0 9 €0 0€T z'0 L z0 L €0 02e 20 g z'0 9 [4e} o)

€0 06T [400] 9 z0 9 €0 0€T z'0 L z0 L €0 1144 z'0 g z0 9 0

70 0TS z'0 11 z0 11 70 0LT €0 8 €0 8 €0 02e 20 6 z'0 6 ON HA
z0 0TT 10 14 10 ¥ z0 08 10 € 10 € €0 0Le 10 2 1°0 L TSTS

[400] 01T 1°0 12 1°0 12 1°0 08 1°0 € 1°0 € €0 06€ z'0 L 1°0 L 18

€0 06T [400] 9 z0 9 z0 0€T z0 L z0 L €0 o144 20 g z0 9 €02D1D

[400] 061 4] 9 1°0 9 €0 0€T z'0 L z0 L €0 02e 20 g z'0 9 [4e} o)

€0 06T [400] 9 z0 9 z0 0€T [400] L z0 L €0 1144 z0 S z0 9 0

70 01g 4] 11 z0 11 70 0LT €0 8 €0 8 €0 02e 20 6 z'0 6 ON HA
z0 062 10 9 10 9 z0 09 10 4 10 4 €0 ore z0 9 10 9 TSTS

€0 062 1°0 9 1°0 9 1°0 09 1°0 4 1°0 4 €0 0z¥ z'0 8 1°0 8 18

S0 029 €0 ot z0 ot 70 06¢€ €0 ot z0 ot S0 019 z0 11 z0 11 €02D1D

g0 029 z'0 ot z0) g0 06€ z'0 ot z0) g0 019 20 1T z'0 1T [4e} o)

¥°0 029 z0 ot z0 ot S0 06¢ z'0 ot z0 ot S0 019 z0 11 z0 11 0

28" 08T 70 L€ €0 L€ 11 098 L0 91 90 91 g1 0£0€ g0 9¥ 70 9¥ ON HA
swiLy, DASH SN DHSH swiLy, O# swry, DASH Sl DHSH swiLy, O# swr, DASH owiLy, DHSH swiLy, O# Supyuryg ‘dag
(suna o1) 0TX0T (suni 1) TXT (suna 0z) (sunx o1) 0TX0T (suna 1) TXT (suna 0z) (sunx o1) 01X0T (suni Q1) TXT (suni og)

uorjeIsuar) NHS uoryeredeg uorjeIsusar) NHS uoryeredeg uorjeIdusar) NHS uorjeredeg

'9,1d ur uonjeIaues sour)sUl JO) pur A89jeI)s SULULIYS ‘Agojer)s uorjeredss
Aq sewur) Suruunl IOY) pur)] X O] PUR T X T 03 39S ST #"0y x Uy uoym s)HFS Pojeloussd Jo Ioqunu ‘uorjeredss Ul $19s () pourelqo jo oqumny :9¢ q 9[qR],

Appendix B. Detailed Computational Results

166

L7 0559 0°g €6 [42 €6 g9 0L8S 0¥ 88 g'e 88 L [oiZ0id L€ 124 7'e 24 TSTS
TL 0L69 vy 66 L€ 66 89 0L€9 0'g €6 6'¢ €6 k] 0z0¥ 6'€ €3 €€ €g 18

20T 0z90T 89 LET ¥'g LE1 z'6 0098 €g 8TT 9'¥ 8TT 9L 0¥99 17 g8 6'€ g8 £02D1D

A 02901 g9 LET ¥'g L81 96 0098 19 81T 8y 811 PL 0159 0'g 78 ¥ 78 [4e}¥e)

S TI 00¥TT VL SPT 6'G SPT €01 0£68 8°G [448 0°¢g (448 gL 0GGL €g L6 147 L6 0

9'1¢ 0¥0¥e 9'6 88C T8 88T 96T 0T1€T €11 €8¢ L8 €8¢ L°6T 08L0€ 911 6ve 76 67€ ON DA
9'F 0682 e €9 9'C L8 ¥ 009¢€ <4 29 6T €9 6°C 0622 8T €€ 9'1 €€ TSTS

a7 0L6T 6'C €3 ¥'C €3 LY 062¢€ 8'C 8¢ £c 69 g'C 0L6T L1 62 1 [i14 18

€L 0z€T z9 ¥ 8'G ¥ 19 []8¢4 0°g 54 i 4 47 34 0912 jeig4 ge ¥'e g€ €02D1D

8°g 02€T 8'g e14 0'g ¥ 9F 0112 [54 9'¢ 47 9 090% LT 29 € ve [4e} o)

VL ov1e 09 474 6'G 47 9°¢g 0¥61 €g 0¥ 9'¥ 184 L€ 0G6T g'g ve 6'C 43 0

LTl 0e¥e g II ¥g €11 29 g6 0052 9'8 gg z'8 9g 8L 082¢ 19 1¢ 9'g 49 ON HA
¥ 0682 8T €9 € €g i 4 009¢€ 9T 4¢] 0T €9 ST 0LTT 9T 1€ €T 1€ TSTS

[0L6T 9'c €9 ¥'e €9 L€ 062¢€ (<44 8G 6T 69 8% 0L6T 81 62 91 62 18

19 0z€T 8°F ¥ i 4 9¥ g'g 0T1e 0¥ 4 L€ a4 g'e 0912 0T g€ 6T ge €0TDTD

€9 02€T TS ¥ 8'¥ e14 g'v 0112 v 54 ¥'g 47 1€ 0902 v'e ve 6'1 Ve [4e} o)

89 o¥v1e 19 a4 9'g a4 k] 0761 0¥ 04 6'¢ 184 8¢ 0861 ¥'T $e (444 129 jfe}

LTl 0z¥e g 11 29 €11 29 g6 0082 9'8 gg z'8 9g 8L 082¢ 19 1¢ 9'g 49 ON HA
g8 0612 99 6€ L9 6€ TL ovee 6°G 8% €g 8% 4 022e L€ 1€ ze 1€ TSTS

8'8 0912 18 8¢ 9°L 8¢ 7'8 0672 0'8 ov T'L ov 374 0Z8T (447 L7 9'¢ LT 18

G'LT 080T GLT LT L9T LT T'g1 0LST A 12 971 12 €L 0gee ¥°g 184 67 7 €02D1D

€81 0802 TLT L7 0°LT L2 (A8 0LST %1 12 v 12 09 082€ €g ov 14 oy [4e} o)

11T 0G8T 9'02 12 ¥°0% 12 9°LT 0LV PLT LT 0°LT LT 8L 095€ 19 £F ¥°g o4 0

¥'L9 08T 6°G9 o€ 9'g9 o€ 0°99 0£92 6'€S 144 429 149 ¥°L9 0588 8°L9 v6 €99 v6 ON HA
swiLy, DASH SN DHSH swiLy, O# swry, DASH Sl DHSH swiLy, O# swr, DASH owiLy, DHSH swiLy, O# Supyuryg ‘dag
(suna o1) 0TX0T (suni 1) TXT (suna 0z) (sunx o1) 0TX0T (suna 1) TXT (suna 0z) (sunx o1) 01X0T (suni Q1) TXT (suni og)

uorjeIsuar) NHS uoryeredeg uorjeIsusar) NHS uoryeredeg uorjeIdusar) NHS uorjeredeg
mEDO NEDO HEDO
: 3 A3 3 ‘A3 d
¢€G19e Ul uoljelouags 9duRIsul JO) pue 99eI)S SUNULIYS 9jelI)s uorjyeredas

Aq semury SUTUUNI IOY) PUR O] X O PUR T X T 03 398 ST 0y x Yy uaym s)HS PoreIousl Jo Iequunu ‘uorjeredss Ul $)as () paurelqo jo Iaquiny :2eq o[qel,

167

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

Tel [1j24] 6 0Tt T°L 01T 9'81 06L0T 911 €91 z'6 €31 8FI 0L26 g6 8TT 9°L 81T TSIS
9Tt 01S8) €TT 19 €It €02 0680T T'Tl 9GT L6 98T €FT 0L06 66 LT1 9°L LTT TS
06T 06721 g'el <3 z'01 GST1 96T 098¥1 g1 z0T 8°€T T0T L°0% 0LVET g 11 291 76 291 £0TD1D
0°8T 0L€TT 8 TT PelT 16 PST G'8C 006¥1 29T €0g L€ €02 S 0T 0LVET 9°TT 291 76 291 [4e)ve}
10T 099€T T°€1 0LT €01 0LT €1e 0891 9'91 (444 91 [444 6'1C 0LLVT €Tl 981 66 981 0
T'68 000¥%¥ L°8T £6¥ g'€T £6¥ L°18 0LL9S G'8¢ TS99 ¥°0€ TS99 €€L 0L129 g'ze 069 0'¥%2 069 ON DdA
0L 09€S 8°F 18 0'e z8 6'8 0L09 19 80T 184 80T L7 082S €g 6L L€ 18 TSIS
€L 069¥ 9°¥ €L €€ ¥L €8 0608 ¥°g 96 0¥ 96 9L 0sey 6°F 29 8¢ 69 1S
€6 092¢ 8'8 69 €L 4] 61T 0v6€ z'6 L8 7'8 18 80T 0zee z'6 09 €8 09 £0TD1D
T°0T 09z¢€ VL 69 69 29 9°TT 086€ L6 88 €8 88 T 0T 0zee 6'8 09 8L 09 [4e]1e]
z'01 0£0¢€ L8 8%) 19 (A4 080% (44 68 86 68 (A4 0€0€ 01T L9 00T L9 0
z'1e 0L6¢€ 86T TL L°81 €L €62 08€g S9z STT aletd STT 8°c¢ 092V 6°T¢ 08 £0€ 08 ON HA
PL 09€S 9'F 18 o€ z8 VL 0L09 LG 80T ¥ 80T T°L 082S 6°F 6L z'e 18 TSIS
€9 069% 8¢ €L LT T 0'8 060¢ 19 96 (184 96 T2 0sTH Ly L9 e 69 1S
18 09z¢€ g9 69 ¥'g 29 16 ov6€ €L L8 09 L8 6'8 0zee 8L 09 L9 09 [Felde)fe]
7'8 09z€ 9 69 ¥'g 29 €01 086€ 8L 88 79 88 6'8 0zee gL 09 g9 09 4o} fe)
z'8 0£0¢€ 0L 8% 8°g 19 [0} 080% 8'8 68 T°L 68 P01 0€0€ z'6 L9 z'8 L9 0
z'1e 0L6€ 86T TL L°8T €L £'6C 08€g 59z STT [etd STT 8'ce 092V 6°1¢ 08 €08 08 ON HA
gyl 081¥ STl 19 €T 19 192 062V ¥°0g TL ¥°0g 1L 9¥T 0y 6°TT €9 01T €9 TSIS
€gT 0s¥e L€T €3 LTl €3 1'%¢ 0z9¢ (414 €9 01z €9 LPT 0€9¢ 61T 9g PIT 9g 1S
g'ee 00LZ 128 8¢ z'1e 8¢ Ve 0vse (487 9€ 0°T¥ 9€ 8°¥¢ 011€ z'1e 47 £ 1€ 47 £0TD1D
8°ce 00,2 8'1¢ 8¢ 1708 8¢ [08S% [0 2 L8 ¥ 0¥ L€ 1'v¢ 011¢ 80¢ a4 9°0¢ 144 [4e)¥e}
0°6¢ [1)87%4 6°9¢ €€ g'9¢ €€ 8°6¥ 0vse 8°L¥ 149 9°L¥ 44 0°6¥ 0L0€ 47 ov 6'CV ov 0
0°€0¢ 08201 9°€6T 911 6°16T 91T 67T 0LV¥I €3le 98T T 11e 98T foei 2] 0g€8 8°6€9 0T §°8€G zotT ON HA
owg, DHSH L DHSH wy, O# awg, DHSH auwg, DHSH owy, O# aug, DHSH owy, DHSH# owry, O# Supjuryg ‘dag
(suni1 Q1) 01X0T (sun1 1) TXT (sun1 0g) (suni1 01) 01X0T (sunz1 1) TXT (sun1 og) (sun1 1) 0TX0T (suni1 Q1) TXT (sun1 og)
uoIjeIdud) NHHS uorjeredeg uoIjeIdUDdY) HHS uorjeredog uorjeIdud) NHHS uorjeredog

guan)

cue)

Tued

Appendix B. Detailed Computational Results

168

79T 0T€TT PIT P81 g'8 $8T 761 0LZET 0'el SLT g6 GLT [¥4 092¥1 161 681 €01 681 TSIS
T°LT 068TT <448 261 06 L6T 6°LT 0LTET 42T GLT 16 GLT 8°0T 06L¥T Sy P61 01T 61T 1S
L°6T 0LELT PLT TLT €€l TLT g9z 089LT 0°LT €€T g€l £€T 6°8C 09602 z'81 TLT 91 TLT £0TD1D
¥°6T 0LELT S 9T TLT 9Tt TLT 1°92 069LT 89T €€T zer €€T 1°62 09602 78T TLT VI TLT [4e)ve}
g'LT 0%08T LLT 082 g'er 087 T'8C 08261 6'81 [0]<14 97T 08T g'08 00L1T 66T 082 1°g1 082 0
0°0L 02765 ¥'8¢ S9L L°LT G9L 6°6L 0T€89 T TV €08 6°62 €08 L°98 0€TOL 44 8T8 a4 828 ON Ddd
66 098L VL 6€T gV 6€T (4 0118 TL 14+ g'g zeT 11 0G9L 6'8 8TT z'9 0€T TSIS
00T 0L8¢ 6L P11 €g PIT [4ns 0GGL 8L 8TT €g 02T (k48 0LGL 76 221 89 62T 1S
gVl 062TS (A4 PIT 70T PIT [099% 0°el 0Tt g6 €11 6°LT 0879 79T 0€T 8°€l €eT £0TD1D
PET 062$ 60T PIT €6 PIT 92T 0L9g T 0T 0Tt 78 €11 1°81 08%9 09T 0€T L€T €eT [4e]1e]
1°¢1 0L6¥ 4 111 01T 111 8°GT 0€Sg Tel 111 1T VI 1°61 0829 €91 21 gVl 1€1 0
£°6¢ 0SS €9¢ 8€T 8°¥¢ 8€T 8°8¢ 08GL 0'¥e 0LT T'ze €LT (47 0€€L 7 0¥ G8T 1°8¢ 06T ON HA
76 098L 89 6€T 6°€ 6€T T 0118 0L 14+ LY PXas 11 0G9L z'8 8TT g'g 0€T TSIS
€6 0L8S €L P11 LY PIT 66 0GGL 0L STT 'y 0TT [N 0,82 88 L21 09 63T 1S
LTT 062TS €01 PIT 0'8 PIT 121 099% <6 0Tt gL €11 9¥T 08%9 9Tl 0€T 1°01 €eT [Felde)fe]
¥ol 06TS S'0T P11 €8 PIT 4 0L9g g6 0Tt gL €11 g'gT 0879 LeT 0T 01T €8T 4o} fe)
g'er 0L6¥ 20T 111 1°6 111 Vel 0SS 66 111 7'8 PIT z91 0829 €€l pXas €11 1€1 0
€68 0SS €98 8€T 8°¥E 8€T 8'8¢ 08GL 0've 0LT 1°2¢ €LT [4iad 0€€L a4 (<108 1°8¢ 06T ON HA
86T 0€L9 0°€T 111 TIT 111 [44 0L6V 9°€T L2 8°1¢ L 0°92 016¥ ¥'¥T 0L 0°€T 0L TSIS
9°6T 0€TS %1 68 7Tl 68 T'9C 0S¥¥ 0'ce TL (1N 44 TL 9.2 0S9¥% 96T L9 ¥ve L9 1S
9°6¥ 092¥ 8°9¥ 69 6°G¥ 69 0°6¥ 0€61 g'ev 9€ 0°€e¥ 9€ ¥ 6L 0882 G'8L 9€ T LL 9€ £0TD1D
¥ 67 092¥ T'6¥% 69 677 69 LGV 0€61 ey 9¢ Tey 9¢ 6L 0882 TLL 9¢ S92 9¢ [4e)¥e}
kel 0£0¥ €18 29 z'0g 29 6°69 OTLT 1'8¢ 9z 0°8% 9z 1°L8 0€92 9°€8 8T L°€8 8T 0
¥°L0€ 0¥%0% T 16T 0Se 0°88% 0% IV 0991 6°CHY LT T 1%¥ L2 6°68¢ 0£68 ¥°28S 00T ¥°28G 00T ON HA
owg, DHSH L DHSH wy, O# awg, DHSH auwg, DHSH owy, O# aug, DHSH owy, DHSH# owry, O# Supjuryg ‘dag
(suni1 Q1) 01X0T (sun1 1) TXT (sun1 0g) (suni1 01) 01X0T (sunz1 1) TXT (sun1 og) (sun1 1) 0TX0T (suni1 Q1) TXT (sun1 og)
uoIjeIdud) NHHS uorjeredeg uoIjeIdUDdY) HHS uorjeredog uorjeIdud) NHHS uorjeredog

guan)

cue)

Tued

169

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

8°LT 08THT 0°LT 00% 8Tl 002 L1 098¥%2 8'9C [efefo T'8T jelets 0°0¥ 0.60% 9'2e 18T €91 18T TSTS

L0¢ 0S¥ 9°L1 202 g€l .02 6'€y 07592 §'ge TLE 0'8T TLE T'8¥ 0T€€T 1°6¢ (484 g'1e c1e 18

T'S¥ (1) 2:144 (444 ¥0€ T'8T $0€ 719 00€L€ z'9¢ 8LY 8°¥C 8L¥ 9°09 01gee g 1€ gy §'ze 9Ty £02D10

42 [} 2:t44 8'GT ¥0€ 06T $0€ £€9 06€LE $°9¢ 6LY 6°GC 6LV 8°6¢ orgee z'ze tlad ¥'2e 9Ty de)re]

g'G¥ 028€T L°6T 81¢ L°8T 81¢€ 269 066T¥ 0'8¢ €18 8°92 €1g €79 0vr9€ g'ee 67¥ 8°€T 67¥ jfe)

6°9LT 0¥€T6 118 8€0T 119 8€0T S 19T 0SL10T g'88 ovIT z'¥9 bians 9°L2% 021601 §'0T1T 2121 €66 L121 ON Ddd

89T 0F¥L 8¢l 281 S0t PHT e 0LSTT €°LT 8€T 44 19T 122 0¥€0T 9'91 161 9Tl €61 TSTS

0'¥I 0.8 z'el (488 6 383 8°LT 0LTTT £7e (0144 9'81 1144 6'1C 0v68 0°LT eLT ver GLT 18

6°6T 0S€S (4444 8TT 0°0% STT [44¢] 0£96 €99 96T 4] L6T g'Le 00¥L Lze 291 v'6C 791 £02D10

[l 05€S [l 8TT 781 8TT 9'69 0856 8'Gg S6T 8°0% 961 z'9¢ 00¥L 6'0€ 291 L1702 791 010

292 00€S el 44 8TT 9'1g STT T 9L 0vL8 8°0L P81 T°L9 G8T 1°0% 0LL9 9'ge PG g'ze 98T jfe)

6°69 0L99 €99 528 ¥'€9 eI G'G6 0766 1°16 L12 €98 81C g'98 0EVL g'z8 G681 T'8L 981 ON HA

T°¢T 0F¥L 91T €1 78 8€T 0°92 0LSTT 0'12 8€T PG 8€T 1°02 0F€0T 9'GT 161 01T €61 TSTS

A 0.8 611 (483 16 383 1°8¢ 0LTTT 1°1¢ (0144 891 1144 6°0C 0768 8°91 €L 9'cl QLT 1S

0°6T 0S€S 0°LT 8TT 6°€T STT 8° LY 0£96 6°0% 96T T'LE L6T L°8T 00¥L 7T 418 9°02 791 €02D10

1°61 0S€S €LT 8TT %1 81T 0°L¥ 0896 0°0¥ 96T ¥'9¢ 961 9'8C 00¥L TVe 428 9'0¢ 791 010

0°€T 00€S 76T 8TT T'LT STT T 69 0vL8 8°7S P81 S 08 G8T 9°0¢ 0LL9 6°LT PelT 0'¥e 961 0

6°69 0L99 €99 528 ¥'€9 528 G'G6 0766 116 L12 €98 81% g'98 0EVL g'z8 G681 z'8L 981 ON HA

9°ce 009 €°LT z0T i<l 4 (408 T'LL 00T 9'€L g T 0L 7T T°L9 086S 6°69 (488 €29 481 TSTS

1°8¢ 0S¥ 1ve 43 [44 z8 0°L8 0£09 1°68 8TT 708 8TT 20T 0€29 6'86 [488 6°G6 48 1S

0°92T 028S L9TT 98 0°9TT 98 8°6LT 000€ P OLT 09 T°GLT 09 6°T9T 099¢ G'9GT €9 G'GST €9 €02D10

€21 0289 0911 98 SPIT 98 T 18T 000§ L°GLT 09 €°GLT 09 9°LST 099¢ 1°gG1 €9 9°T8T €9 010

TLVT 0vLS 9°0¥%T T8 €°8€T 28 € T€T 0€6T 1°822 8T G°LTT 8T 6°T8T 0sze 6°9LT Ly 6°GLT LY jfe}

S 9LTT 0¥SST 0 FPIT 88T [l ans 88T 0°TL0T 0L62 2°0L0T ov 1°890T oF [N 4444 00311 072612 0€t1 8'861C o€t ON HA
ouwiLy, DHSH oL, DHSH swr, O# swr, DHSH# oL, DHSH swrT, O# swrT, DHSH# uwiLy, DHSH swr, O# Supuryg ‘dag
(sunx o1) 01X0T (suna Q1) TXT (suna 0z) (sunx o1) 0TX0T (suna 1) TXT (suni og) (sun1 o1) 0TX0T (suna Q1) TXT (suni1 og)

uorjeIouar) HHS uorjeredeg uorjeIsuer) NHHS uorjeredeg uorjeIauer) NHHS uorjeredeg
MH:@U NE@O HE@U

‘P TWA Ul UOIJRIBULS 20URISUL J() PUR AF9jeI)s SuruLIys ‘A393er)s uoryeredss
Aq sewur) Suruunl IOY) pur)] X O] PUR T X T 03 39S ST #"0y x Uiy uoym s)HFS Pojeloussd Jo Ioqunu ‘uorjeredss Ul 195 () pourelqo jo oquumy Q¢ q 9[qR],

Appendix B. Detailed Computational Results

170

L°LT1T 0L¥9€ z'88 TES (R4l TES 0761 0LL9S L7631 9L 1°89 9L 6°9LT 0LVLS 0°€TT €VL 9°LG €VL TSTS
S 08T 0619¢€ €06 9€g (42 9€g £°50C 0L¥09 6'0€T 982 L°0L 982 1°G8T 06S8S 6911 29 229 =29 18
€ 78T 0806% L¥TT 229 G 9L 229 £6¥C 06TLL ¥ 69T 96 €°L8 796 T'8ST 0TT8L 0°6ST 126 G'06 126 €02D10
€681 0888% S'eTT €L9 €'8L €L9 v'€ge 0vGLL z'091 196 668 296 §'LGT 02ZeL 6°6ST 126 8'16 126 [4e} o)
8°20% 005€S 1°2€1 vTL 8°¥8 ¥TL 6°GLT 090€8 6°TLT (4408 1°96 0T 0T8T 099€8 T°LLT 1101 9°€0T 1101 0
L°00ST 0¥8¥6¢ STOTT £62¢ €088 £€6T€ 90LET 080€0€ 6'¥¥0T 2543 6°LLL vevE 6°evel 01€6T€ ¥'166 199¢ SVEL 199¢ ON Ddda
8'28 0¥81C 0°0L GLE 8°€¥ 8LE 6°92T 0LEVE 6°G0T 6€S G99 42 €631 0€65€ 8 70T 8€S 6°L9 675 TSTS
9'78 08081 LT €ee L°6¥ 9gg ¥'0eT 082€e L°60T jar L TL 619 €Tl 0€82¢ 7 ¥0T €08 2129 jan 18
T6TT 0T6ST T°L0T 00¢€ G'98 ¥0€ ¥'€3T 09952 €602 fefei 0°€LT 6S¥ G°€0T 0¥9€T 1981 €Th 9'€g1T gev €02D1D
P GIT 09091 7501 z0¢ 9'e8 90€ 1°81¢ 07952 T 10T 4 ¥ L9T 09¥ €961 0¥9€2 8°6LT €Th 1°6V1 [[4e}¥e)
9°TET OTTST 0°2eT 18T S z0T 162 G'6€T 099%2 [s1144 o4 8°88T 444 T°LTT 0182T €602 €0¥ 8°6LT STV 0
1129 0LL6T 9°609 [iZ G089 L0¥ 1799 0620€ 0°€29 099 £'GLS S99 0°82. 0L68T 67902 209 z'799 119 ON HA
018 0¥81C 8°99 GLE ¥ 0¥ 8LE L4911 0LEVE 0°96 6€S [Alel] fad 6°0TT 0€65€ G666 8€S 1°89 67¢ TSTS
T 6L 0808T 7'89 €ee g'g¥ 9g¢€ [A14s 082EE 6°L6 jan 809 619 9° LTI 0€82¢€ €°L6 €03 809 jan 18
8°€6 0T6ST 118 00¢€ 9°T9 ¥0€ L 67T 0$95C 0°€eT fefei 0°66 6S¥ 8 VST 0¥9€T G LET €T¥ €901 gev €02D1D
€76 09091 8°08 z0¢g g 19 90€ 6'6¥1 07952 T IeT 2554 9°L6 09¥ [ARl 0¥9€2 9°LET €Th L7901 [[4e} o)
L°€0T OTTST S'T6 18T STl 162 €°8GT 099%2 TIv1 o4 8°80T a4 0°€LT 0182T 9°€ST £0¥ €921 STV 0
L1289 0LL6T 9°609 402 G089 L0¥ 1799 0650€ 0°€29 099 €°GL8 599 0°822 0L68T 6°902 209 z'799 119 ON HA
T70¢€ 0,291 6°€6T 0LT €°6LT 0LT 0°G8% 06861 G'GLY STE € TGF STE 8°TLE 0€902 fepgeless STE Svee STE TSTS
¥ree 0L1TT TLVE (444 0°1€e (444 €798 0€LLT L°8%¢ 98T 6°88S 98T 9°€6¢ 09991 L°6LE 0LZ g 19¢ 0LZ 18
€°GEL 0928 ¥°6TL 76 L°2TL 76 1°1€9 0LEY 67929 0L 9°6T9 0L L7928 01S€E 1°9e8 €L 8918 €L €0TDTD
8°LEL 00€g ¥°GTL 96 ¥ 1T 96 0°9€9 00%¥ 7659 1L [N 44°] 1L ¥'628 01g€ €928 €L 8°818 €L [4e} o)
1°888 059¢ 1°6.8 L9 0°LL8 L9 6°L0L 01¥2 €°60L X4 6°00L X4 17966 0€91 L7266 6T 9°166 6T 0
L0862 00182 T 98¥L L0€ 9°99¥%L L0€ L°€€TTT 0909 L'€Yl 09 €°.838T 09 1°ZV6L 09L1 £VI6L 12 L°€T6L 1z ON HA

swr, DHSH s, DHSH s, O# uwiLy, DHSH Sl DHSH s, O# swiLy, DHSH owiLy, DHSH SLA O# SupyurIyg ‘dag

(suna 01) OTX0T (suna o1) TXT (suna oz) (suni o1) 0TX0T (suna o1) TXT (suna 0z) (sunx o1) 0TX0T (suna o1) TXT (suna 0z)

uorjeIouar) HHS uorjeredeg uorjeIsuer) NHHS uorjeredeg uorjeIsuar) NHDHS uorjeredeg
guon TuoD TueD

"FEEGIL UL UOTIRISUSS 80URISUT J() pur AS97eI)s SUIULIYs ‘Agojer)s uorjeredas

Aq semury SUTUUNI IOY) PUR O] X O PUR T X T 03 398 ST 0y x Yy uaym s)HS PoreIousl Jo Iequunu ‘uorjeredss Ul $)as () paurelqo jo Iaquiny :6€¢q o[qRl,

171

Shrinking and exact SEC for Cycle Problems

B.2. Chapter 3

L°€0€ 0vL6€ SVIT 8L¥ €901 8LY ¥'8LE 0822S 8092 829 jaiant 829 £'T8Y 09299 9°60¢€ ¥29 9°6ST ¥L9 TSTS
8°66C 0$98¢€ 9'861 [454 1°011 (4547 L°89¢ 0SSV [4 %4 PAZ 6°LTT LY 1°6V% 0878Y £°L0€ 88¢ 991 88¢ 18
8°08¥ 0€68% ¥ 9TE 8L9 G L9T 8L9 GVLS 01969 ¥°8G¢€ P18 L°0LT P18 G TTL 02028 V6LV 976 0°9%¢ 976 €02D10
£6LY 0£689 6°81¢ 819 6°L91 8L9 1°6LS 05969 8'79¢ 118 T0LT 118 ¥'802 0568 VLY 676 S'TVe 676 [4e} o)
0°0€S 01929 1°62€ LT2 0°T8T LT2 G'88% 068TL ThLE 0¥8 0°8LT 08 0°ThL 0S8 £ V8Y 8L6 €192 8L6 0
8°.92¢€ 0£€90€ 9°€¥ST £82¢ 8181 €8TE €L8LY 02S60¥ T 18LE 0evy £'819¢ 0E¥¥y 670769 00T%0S 6°8€€S L9€8 7' 190% L9€G ON Ddd
1°902 09082 0°08T gee 8°L0T gee 6°69C 0S0%¢€ 6°81C 9F¥ €Tl 9F¥ 6°61¢€ 0109¢ T 18T 9LV 99T 9LV TSTS
1861 08671 G081 61C G'geT 61C 8°8CC 0TL6T S 10T €8C L°8€T €8C 8'88C 0€961 1°09¢ 16¢ €T6T 162 18
81TV 0GGST ¥°00¥ (5144 1°€5€ (5144 ¥ E8Y 0G08T £°99% 1LT L°86¢ 1LT $°2S9 08502 7919 L0€ 8°8%¢ L0€ €02D1D
g'z8¢ 08GST 6°99¢ [i144 T gle 63T 9°LVY 0S08T 447 1LT 1°29¢ 1LT L°019 09502 G'L8¢ L0€ L7208 L0€ [4e}¥e)
£°6E¥ 0GLST 0°Te¥ 1€2 L 1LE 1€2 L°8LY 006LT G LGV 1LT 0°96¢ 1LT L7799 080T L°0%9 60¢€ 9°L9S 60¢€ 0
6°998C 09961 0°¥¥63 90¢€ 7'8T8T 90¢€ T°L8TE 0€2VT 8°LYTE L0¥ 6°L0TE L0¥ £'29L¥ 06752 L°€89% (484 9°809% (484 ON HA
8002 09082 TVLT gee 9°T0T gee [Aiele4 050%¢€ 9°6T1e 9F¥ 8°0TT 9F¥ ¥91€ 0T09¢ 0°L92 9LV 6°LST 9LV TSTS
9°881 08671 1°8LT 612 G931 612 T 91e 0TL6T 7961 €8C T LTl €8C 0'9LT 0€961 8°L¥T 16¢ 8°6LT 162 18
0°60¢€ 0GGST 1°282 62T TVET 62T 0°€€e 0S08T 9°80¢€ 1LT €°L¥T 1LT 0°65¥ 08502 L°9€¥ L0€ 6°LG€ L0€ €02D1D
¥'20¢g 08GST 0'%8% [i144 1°9€3 (5144 1°62¢ 0S08T 8°20¢ 1LT 6°6€T 19X4 ¥ esh 08502 L°LTY L0€ g 1ge L0€ [4e} o)
6°1€E 0GLST 1°21€ 1€2 €792 1€2 G'8€¢€ 006.LT L61¢€ 1LT 9962 1LT 1°€87 080T [l 2014 60¢€ L°L8¢€ 60¢ 0
6°998C 09961 0'¥¥63 90¢€ 7'8T8T 90¢€ T'L81E 0€2Ve 8°L¥TE L0¥ 6°L01¢€ L0¥ €TILY 06752 L°€89% (484 9°809% [484 ON HA
9°€0§ 0T8€T € IS¥ y1€ 8°¥8¢ ¥IE €108 0T¥ze €°6T¥ 6T¥ L°LT€ 6T¥ 9756 0€92¢ 6°TL8 1€V 9°T8L 1€V TSTS
8°€6S 00981 1969 5444 €709 444 8'81¢ 09502 6°65¥ 982 0'76¢ 98¢ TLITT 0GL6T 0°GL0T 982 S°500T 982 18
T°L60T 06S¥1T 0°L%02 GLT 67002 GLT 9°0TTT 0LL8T ¥°8€0T 444 7°G86 444 0°0¥€E¥ 09LL T 96T¥ 76 8°LLTY 76 €02D1D
0°901% 06SV1 T ¥70T GLT 9°800% SLT 9°¥TIT 0LL8T 1°L€0T 44 <786 444 €03V 09LL €TIeY ¥6 8°LLTY 76 [4e} o)
T LI¥T 0608T S 0T¥FT 08T 6°69€T 08T €121 08€6T 6°8€TT 62T 0°080T 62T 0°LG8¥ 0€6L L°LT8% S6 6°86L¥ S6 0
L°800%€ 01609 €'60TVE 9.9 8°0LLEE 9.9 06062 OTT60T ¥°'8cScz €811 0°€9Tgz €8IT ¢'GI69F 0SS80T T1°0SS9% TITT 110297 911 ON HA
swr, DHSH s, DHSH s, O# uwiLy, DHSH Sl DHSH s, O# swiLy, DHSH owiLy, DHSH SLA O# SupyurIyg ‘dag
(suna 01) OTX0T (suna o1) TXT (suna oz) (suni o1) 0TX0T (suna o1) TXT (suna 0z) (sunx o1) 0TX0T (suna o1) TXT (suna 0z)
uorjeIouar) HHS uorjeredeg uorjeIsuer) NHHS uorjeredeg uorjeIsuar) NHDHS uorjeredeg

£ueD

cuen

TueD

‘60g¢ TSN

Ul UOI}RIAULS 90UR)SUl J() PUR A89)eI)s SULULIYS ‘AFojer)s uorjeredas
Aq sewur) Suruunl IOY) pur)] X O] PUR T X T 03 39S ST #"0y x Uy uoym s)HFS Pojeloussd Jo Iequunu ‘uorjeredss Ul 195 () pourelqo jo qumy :O0F q o[qR],

Appendix B. Detailed Computational Results

172

0°¥e¥ 0STLY T IIE 199 6°6ST 199 6°0S¥ Viadiid 8°€0¢€ 129 L°9%1T 129 6°€LY 098LY LveE fefele] € 18T [efele] TSTS
7'80¥ 0082V 7608 (444 €591 (44 4 0929V 9°60¢ 52 8'GGT 549 0°8S¥ 0TLI¥ 8'v2e G8% 8°G8T 534 18
LTTL OTVIL z°00S vE€8 ¥°89% 7E8 €099 0889 0°9€¥ G8L L21% G8L 1789 0€169 8°GLY 08L 8°8VT 082 €02D10
6°669 OTVIL PR ve8 ¥'¥9¢ ve8 £°9G9 0889 8'8C¥ G812 6'€1¢ <9 6°299 09969 G LY z8L 6°96T z8L [4e} o)
7oL 080GL G 6ES 698 0°L6T 698 8°9TL 068TL 6°TLY 628 £0€T 628 L 1TL Ov1TL 9°€8¥ 608 6°LST 608 0
0°T0LS 00TSLE 6°F09F S00% T'98%¢ S00%F 1°€89¢ 08VL¥¥ §'T80F €087 £VILT €08%F 9°168L 0S¢6L¥ TVITY 0L0¢ SYE9F 0L0¢ ON Ddd
9°7s¢e 01762 g'gre L8€ 1°661 68¢ 0°TLT 0LTTE L°0%T 107 8°8TT 0% €°L8T 0900€ [4li]e4 08¢ 9°0ST 08¢ TSTS
(¥ 444 0€281 9°20¢ 19T 87T 69T 6°€¥C 0TS0% [sN1144 8LT 9FHT 8LT §'€9T oveLT L°L¥T L€T S 6LT L€T 18
0°69L 09981 0°09L ¥92 T°GL9 292 6°TLY 06.L8T 0°€S¥ 992 9°€LE 992 9°08S 06TLT G988 1844 €097 1824 €02D1D
12l 09981 ¥°969 %92 1°229 292 0°S¥¥ 06L8T 9° LTV 99z 1°87¢€ 992 9'128 06TLT 9°66¥ 1844 6'€€Y 1844 [4e}¥e)
0°918 07981 6°€8L ¥92 9°0TL 692 0°T6¥ 08T6T T 09¥ 0LZ £T6¢ 0LZ 9°019 0veLT L7188 The G6TS (424 0
0°56TS 08SVT 91695 98¢ G'gTeS 19¢ ¥'g1ee 01972 T Ivee 10¥ 1°102¢€ 10¥ ¥'859¥ 0LT€T L1697 $5€ ¥'09¢¥ vee ON HA
T'8¢€¢ 0T¥62 0°T0¢€ L8¢€ L7281 68¢ ¥°€92 0LTTE €922 0% T 9TT 0% 2082 0900€ 8°€5T 08¢ TVvI 08¢ TSTS
6°€0€ 0£281 T'98C 19T G 20T 69T 6'7€T 0TS0% 2°20T 8LT 0°TEeT 8LT ¥ 67T oveLT 1°LET LET G991 L€T 18
G 0€S 09981 TYIS 92 0°LEV 292 fepgefels 06.L8T 1°62¢ 992 €992 992 8°G8¢ 06TLT 9°€LE 1844 S 00€ 1844 €02D1D
1°0€¢ 09981 €918 %92 0°ge¥ 292 1°28€ 06L8T v iee 992 6'79T 992 £'98¢ 06TLT 6°L9¢ 1844 1°86¢ 1844 [4e} o)
GP8S 07981 €699 92 G L8Y 692 £°€8¢ 08T6T L°99¢€ 0LT 7°982 0LT 8°€S¥ 0veLT 6°8T¥ The T°T9¢ Tve 0
0°963S 08SVT 9°169S 98¢ G'gTeS 19¢ v'g1ee 019%2 T IvES 107 1°102¢ 10% ¥'859¥ 0LT€T L1697 vee ¥'09¢¥ vee ON HA
L9101 00592 0°6L6 (424 £F7L8 The €°L5TT 0TL¥T ¥61CT 0ze €211 014 0°16S 08L8¢€ 9°6€eg 434 9¥I¥ 434 TSTS
6°0FTT 08€LT €601 544 1°G€0T %4 0°€SPT ov¥ST P GIPT 0144 8°6VET (0144 LPT9 0€28% 1°79¢ 8¥¢ T 99¥ 8¢ 18
9°609¢ OLTTT P IPSE 1€1 1°92G€ 1€1 € LE0T 0T0LE ¥°€96 fefei 4 L°6€8 gev 6°8L8T 0L0EY 6°8GLT S6¥ T TI9T S6¥ €02D1D
¥°089¢€ 0LTTIT 8°ThSE 1€1 9°T1GE 1€1 6°920T 0T0LE 8696 [L°L€8 o4 G'6L8T 0LOEV P EILT 567 T'gT9T S6¥ TOTO
9°660¥ 000TT ¥°920¥ 221 T°0T0% 221 9°8ETT 0918¢€ 0°8%0T LYY G926 LYY 1°2912 06.L¥Y 1°0102 €1S 87981 €TS 0
G°G6898 02606 G LOLL8 ¥L6 T LL898 VL6 G'G8T9S 080TT 896758 8T 692955 8TI ¥'99Z€V OF8LOE €'VL8EF ¥8TE 1'vLT2v ¥8TE ON HA
swr, DHSH s, DHSH s, O# uwiLy, DHSH Sl DHSH s, O# swiLy, DHSH owiLy, DHSH SLA O# SupyurIyg ‘dag
(suna 01) OTX0T (suna o1) TXT (suna oz) (suni o1) 0TX0T (suna o1) TXT (suna 0z) (sunx o1) 0TX0T (suna o1) TXT (suna 0z)
uorjeIouar) HHS uorjeredeg uorjeIsuer) NHHS uorjeredeg uorjeIsuar) NHDHS uorjeredeg

£ueD

cuen

TueD

‘ZITIGIP Ul UOIRISUSS 90UR)SUl J() PUR AF9eI)s SUBULIYS ‘Agojer)s uorjeredas
Aq sewur) Suruunl IOY) pur)] X O] PUR T X T 03 39S ST #"0y x Uy uoym s)HFS Pojeloussd Jo Iequunu ‘uorjeredss Ul 195 () pourelqo jo oqumy T 9[qR],

B.3. Chapter 4: Revisited Branch-and-Cut 173

B.3 Chapter 4: Revisited Branch-and-Cut

B.3.1 Configuration of Components: Detailed Results

In this section, we show the detailed results of the alternative RB&C configurations
by instances and generations. Each configuration has been executed five times with
a b-hour execution time limit. We show the obtained results of the configuration in
terms of lower-bound values, LB, upper-bound values, UB, and time (in seconds)
performance, Time. For the LB and UB, the obtained best value for each configu-
ration (the maximum for LB and the minimum for the UB) is presented in the Best
column. Regarding the Time, the Mean column shows the meantime of the five
executions. The Gap column represents the relative distance to best-known value
(highest Best value in the case of LB, and lowest Best in the case of UB and Mean
in the case of Time, respectively).

Appendix B. Detailed Computational Results

174

GE€'6T 96°0 (0] 0€¥C 0 0€¥C [4auny 99°0 0 80.¢ 0 80.¢ GE€'6T1 ¥0°0 0 67V 0 6% dOVVH - AA=YNHH HONVYd
L¥°06 7' 0 0€¥C 0 0€¥C 000 6570 0 804LC 0 804LC LT7GLT S0°0 0 67 0 67 dd=4YNdH HONVYd
66'7€ 00°T 0 0€¥C 0 0€¥C 29'09 G96°0 0 80.¢ 0 80L¢ L9992 L0°0 0 6V 0 6% SdO0O0TdNS OML ‘ddS
v6'1€ 86°0 0 0€¥C 0 (5344 c0°'L8 Tt 0 80.L¢ 0 80.¢ 0€' 70T 700 0 6% 0 6% HIAOD XAIMHA +
oL 6L°0 0 0€¥C 0 0€¥C 0¥ get 6€°1T 0 80.¢ 0 80.¢ €T9TT 700 0 6% 0 6% HLVd -
0L 0€ L6°0 0 0€¥C 0 0€VCT 8€°€0T 0zt 0 80.L¢ 0 80.¢ 6T VLI S0°0 0 6% 0 67 HHAAOD HTOAD -
16°9€1 9L'T 0 0€¥C 0 0€¥C 9¢'6et €€ 0 80.¢ 0 80.¢ L8°€8 €0°0 0 6% 0 6% HHAOD "@DHAH -
LYPL g8°0 0 0€¥C 0 0€¥C 6C°€C1 (45 0 80.L¢ 0 80.L¢ 76'86¢ 60°0 0 6V 0 6% INOSSOTd Lsd +
99°0¢ L6°0 0 0€¥T 0 0€¥C 62°90T [4amt 0 804LT 0 804LC 000 200 0 67 0 67 INOSSOTd HDH -
000 VL0 0 0€¥C (0] 0€¥C 8G'EVL 14" 0 80.L¢ 0 80.L¢ c9'v9 €0°0 0 67 0 6% INOSSOTd HdH -
vL6¢ 70T 0 0€¥C 0 0€¥C L9706 eT'T 0 804LC 0 804LC €L VTl 70°0 0 67 0 67 SLVYLS DO -
78'1¢ 06°0 0 0€¥C (0] 0€¥C 86°€ET 8¢'1 0 80.¢ 0 80.¢ €R'ITL ¥0°0 0 67V 0 6% €STOTID=MYUS
09°¢v 90°T 0 0€¥C 0 0€¥C 0L'70T 121 0 804LC 0 804LC Ge'6TT 70°0 0 67 0 67 YS -
Gg'6¢ €0°T 0 0€¥C 0 0€¥C 76°06 €11 0 80.¢ 0 80.¢T 99°¢C1 ¥0°0 0 6% 0 6% HONHYHAHTY
den ueaN den 9sog den 9sog den ueaN den jseg den jseg den ueaN den jseg den jseg A8ore11g
awLL, an a1 awLT, an a7 awLT, an a7
guan Zuan Tuen)
QUO

'921d g { o1qel,

175

Revisited Branch-and-Cut

B.3. Chapter 4

68°6.L9 ¥.°000T 000 8679 T 000 86¥7ST 00°0 00°0008T 10°0 10861 €1°0 61961 0T'csL GL°0LT 00°0 €9¢€ 00°0 €9¢€ dOVVH - JA=YNHH HONVYHI
89°T¢ €9 V61 00°0 867ST 00°0 867ST 00°0 00700081 T0°0 00861 L1°0 11961 L6700 €6°06T 00°0 €9¢€ 00°0 €9¢€ dd=4YNdH HONVYd
8T'VI 16971 000 86741 000 867ST 000 00°0008T T0°0 T086T L0°0 1€961 I8 v¥8 L1°00€ 00°0 £€9¢€ 00°0 €9¢€ SdO0O0TdNS OML ddS
81°8€T 29°¢0¢€ 000 86VST 000 86¥%ST 00°0 00°0008T 00°0 66161 70°0 LEIGT VILST 69°18 00°0 €9¢€ 00°0 €9¢€ HIAOD XAILYHA +
G299 ¥0°¢1c 000 86741 000 86741 000 00°0008T T0°0 TO86T 80°0 62961 LL €69 81°CSC 00°0 £€9¢ 000 €9¢ HLVd -
16°CL 88°'12¢C 000 86VST 000 86¥%ST 000 00°0008T 10°0 10861 10°0 V961 69°9VC TT1°0TT 00°0 €9€ 00°0 €9¢€ HHIAOD HTDAD -
65°0% 07081 000 86741 000 86741 000 00°0008T T0°0 00861 70°0 9€961 LY 95V 6L°9LT 00°0 £9¢€ 00°0 €9¢€ HIAOD "@DHAH -
9€°7v9 16°012 000 867G T 000 86¥%ST 000 00°0008T 10°0 TO861T 00°0 TY961 19°1€CT s0°eTy 00°0 €9€ 00°0 €9¢€ INOSSOT1d Lsd +
0896 £€9°09C 000 86741 000 867ST 000 00°0008T T0°0 TO86T g0'0 V€961 19°'veet £€8°0C¥ 00°0 £€9¢ 000 €9¢ INOSSOTd HDA -
€9°9%1 Lv91€ 000 86VST 000 86¥%ST 00°0 00°0008T 100 TO861 10°0 €V961 00°0 LLTE 00°0 €9¢€ 00°0 €9¢€ INOSSOTd HJdHA -
0¥° 1002 67°969C 00°0 867ST 00°0 867ST 00°0 00°0008T c0°0 c086T 90°0 €E€961T 0L°TLT 60°8TT 00°0 €9¢ 00°0 €9¢€ SLVYLS OO -
ve'iet 10°¥8¢ 000 8679 T 000 86¥7ST 000 00°0008T 10°0 00861 G0'0 V€961 €9°08¢ 68°0CT 00°0 €9¢€ 00°0 €9¢€ €STOTID=MHUS
VETL 98°61¢C 00°0 867ST 00°0 867ST 00°0 00°0008T T0°0 00861 S0°0 G€961 0G°GT6T 0S°€79 00°0 €9¢€ 00°0 €9¢€ HS -
66°6T 08°991 000 86VST 000 867ST 000 00°0008T T0°0 T086T 90°0 €€961 8G°1€0T 16°65¢ 00°0 £€9¢€ 00°0 €9¢€ HONHYHAHTY

den uedA den 9sog den 3sog den ueoN den jseg den jseg den ueoN den jseg den jseg A3ore11g

swLT, an a1 smLT, dan a1 swLL, an a1
guen) Zuen) Tuen
uar)

'¢EGIIT €Y' d Ol9¥L

Appendix B. Detailed Computational Results

176

€6°€€T G 1evy 00°0 699.¢ 000 699.€ 00°0 0°0008T 20°0 9460V €0°0 €9L0¥ 8V 1L 87°L9LE 00°0 LLL 00°0 LLL dOVVd - JA=YNHH HONVYHI
LGTTLT 0°€ETS 00°0 699.L€ 00°0 699.L€ 00°0 0°0008T 200 4g60¥ 200 L9LOV 9181 €°96S¢C 00°0 LLL 000 LLL dd=YNdH HONVYd
G0°€LL 610991 00°0 699.¢ 000 699.¢ 00°0 0°0008T 10°0 05607 T10°0 €LLOYV LTVET T°svig 00°0 LLL 00°0 LLL SdOOTdNS OML ‘ddS
66°€9€ 6°0898 00°0 699.L€ 000 699.€ 00°0 0°0008T 200 £€9607 00°0 LLLOY LOVY g'g91€ 00°0 LLL 00°0 LLL HIAOD XAIMIA +
LLTLT 8'G¥0L 00°0 699.¢ 000 699.¢ 000 0°0008T 10°0 TS60¥ 00°0 GLLOY L1798 L€0T¥Y 00°0 LLL 000 LLL HLVd -
T€°LET L iad 00°0 699.€ 000 699.€ 000 0°0008T 10°0 05607 00°0 SLLOV £€€°68 0°¢LOV 00°0 LLL 00°0 LLL HHIAOD HTDAD -
00°0 T°0681 00°0 699.¢ 000 699.¢ 000 0°0008T c0°0 79607 T0°0 €LLOYV ve0g £°€0¢€€ 00°0 LLL 00°0 LLL HIAOD "@DHAA -
98°€9C 2°8899 00°0 699.€ 000 699.€ 00°0 0°0008T 00°0 IV60¥ 00°0 GLLOV 00°0 ¢'L61C 00°0 LLL 00°0 LLL INOSSOT1d Lsd +
8L18€ T'1918 00°0 699.¢ 000 699.¢ 000 0°0008T 000 87607 10°0 €LLOY 76°12¢C 9'€L0L 00°0 LLL 000 LLL INOSSOTd HDH -
€€°098 0°0008T 20 8GLLE 10°0 §99.L€ 000 0°0008T Sr'o 9001V 00°0 LLLOY y1'2ccs 9°699€1 00°0 LLL 00°0 LLL INOSSOTd HdHA -
9€°80¢ €'8C8¢ 00°0 699.L€ 00°0 699.L€ 00°0 0°0008T 200 £9607 T0°0 TLLOY €L vCT 8°LE6T 00°0 LLL 000 LLL SLVYLS DO -
G98°99C 6°GCL9 00°0 699.¢ 000 699.€ 000 0°0008T c0°0 £9607 €0°0 G9L0¥ ve've 6°'1€LC 00°0 LLL 00°0 LLL €STOTD=MHUS
VL69S L6971 00°0 699.L€ 00°0 699.L€ 00°0 0°0008T 10°0 cS60¥ 00°0 LLLOY gL ege 66966 00°0 LLL 00°0 LLL Mys -
L6041 6°GELY 00°0 699.¢ 000 699.¢ 000 0°0008T c0°0 vS607 c0°0 0LLO¥V 6L VV1 G'8LEG 00°0 LLL 00°0 LLL HONHYHAHY

den U den 9seog den jsog den ueaN den jseg den jseg den ueaN den 9seg den jseg A3o9e11g

smLL, an a7 WL, an a1 swLT, an a7
guen) guen Tuen
uon)

TROTWA 77 d 9198L

177

Revisited Branch-and-Cut

B.3. Chapter 4

00°0 0°0008T 10°0 9LELY 700 G6TLY c9'veT 0°0008T 91°0 6VvEY 00°0 8LEET GT'691 GL0L8 00°0 VI8 00°0 vi8 dOVVd - JA=YNHH HONVYHI
00°0 0°0008T €0°0 L8ELY 00°0 GTTLY 7811 7e9191 00°0 8LEET 00°0 8LEET 0€°10T 6°EVL6 00°0 VI8 00°0 7i8 dd=YNdH HONVYd
00°0 0°0008T 10°0 8LELY 700 961LY c9'veT 0°0008T LT°0 16vEV T10°0 ELEET v0'1€€ G'6E6€T 00°0 VI8 00°0 VI8 SdOOTdNS OML ‘ddS
00°0 0°0008T 200 6LELY 60°0 TLILY (44 0°0008T LT°0 0sveEY 00°0 LLEEY 00°0 6°€€CE 00°0 vis 00°0 vis HIAOD XAIMIA +
00°0 0°0008T 200 6LELY €00 T0TLY c9've 0°0008T 910 IVreEY 00°0 8LEEY 19°¢C T'996¢€ 00°0 18 000 V18 HLVd -
00°0 0°0008T €0°0 G8ELY S0'0 €61LY (4N ¢4 0°0008T 91°0 6VVEY 00°0 8LEEY 98°LTT g'gv0L 00°0 vis 00°0 vis HHIAOD HTDAD -
00°0 0°0008T 200 I8ELY [4alV] 60TLY c9've 0°0008T 810 9EVETY veo €LTEY G6°L6 9'10%9 00°0 VI8 00°0 VI8 HIAOD "@DHAA -
00°0 0°0008T 00°0 TLELY €00 002Ly g8'8 €°CTLST 00°0 8LEET 00°0 8LEEY 60796 v 1ve9 00°0 VI8 00°0 vi8 INOSSOT1d Lsd +
00°0 0°0008T <00 v6ELY g0'0 061LY c9've 0°0008T 8T°0 qevey 00°0 LLEEY co'Le e IEVY 00°0 18 000 V18 INOSSOTd HDH -
00°0 0°0008T 69°0 869LY 0€0 GLOLY (4N ¢4 0°0008T 8€°0 EVEEY 20°0 TLEEV 09°9¢v 0°0008T 19°0 618 00°0 vi8 INOSSOTd HdHA -
00°0 0°0008T €0°0 98€LY 00°0 €ICLY TL'8T 9'GVILT 00°0 8LEET 00°0 8LEET 8€°8¢ 6°1CTS 00°0 vis 00°0 vi8 SLVYLS DO -
00°0 0°0008T 200 T8ELY 10°0 cITLy c9've 0°0008T 81°0 LGVEY 00°0 8LEET °6'vC 8°6£0V 00°0 VI8 00°0 VI8 €STOTD=MHUS
00°0 0°0008T 80°0 80VL¥ 70°0 S6TLY (44 0°0008T LT0 [4%14594 00°0 8LEET gc'€9¢g € LVLTT 00°0 VI8 00°0 7i8 YS -
00°0 0°0008T 00°0 €LELY 11°0 TITLY c9'veT 0°0008T 810 vavev 00°0 LLEEY 9201 L7994¢ 00°0 VI8 00°0 VI8 HONHYHAHY

den U den 9seog den jsog den ueaN den jseg den jseg den ueaN den 9seg den jseg A3o9e11g

smLL, an a7 WL, an a1 swLT, an a7
guen) guen Tuen
uon)

"€CETIT :97°d SI9®L

Appendix B. Detailed Computational Results

178

0 0008T 200 910TL €0°0 068TL 0 00081 10°0 L0€89 12°0 186L9 0 0008T 00°0 ¢8C1 80°0 8LC1 dOVVvVd - JA=YNHH HONVYI
0 0008T 200 LTO0TL 8T°0 6LLTL 0 0008T 00°0 00€89 €¥°0 0€8L9 0 0008T 00°0 ¢8C1 6€°0 VLTI dd="NdH HONVYd
0 0008T 200 LTOTL 110 0€8TL 0 0008T 2c0°0 V1€E89 €20 L9619 0 0008T 00°0 821 €2°0 9.21 SdOO0TdNS OML ‘ddS
0 0008T 200 910TL 700 €88TL 0 00081 00°0 00€89 €10 c€089 0 00081 00°0 ¢8C1 €2°0 9LC1 HIAOD XAIMIA +
0 0008T 10°0 €104 v1'0 808TL 0 0008T 10°0 60€89 €70 1E€8L9 0 0008T 00°0 [43tan 6€°0 vict HLVd -
0 00081 200 Y10TL 60°0 SY8IL 0 00081 00°0 c0€89 01°0 4gg089 0 00081 00°0 ¢8C1 €0 QLTI HHAOD HTOAD -
0 0008T 200 LTOTL §0°0 CLBTL 0 0008T T0°0 90€89 9€°0 LL8LY9 0 0008T 00°0 c8C1 g0 oLzt HIAOD "DHAA -
0 0008T 000 €00TL 61°0 ELLTL 0 00081 00°0 00€89 0g'0 986.9 0 0008T 00°0 Z8C1 00°0 6LC1 INOSSOTd Lsd +
0 0008T 200 910TL 80°0 VE8TL 0 0008T 200 T1E89 ¥1°0 62089 0 0008T 00°0 28TT 80°0 8.2T INOSSOTd HDH -
0 0008T 910 8TTTL 12°0 GGLTIL 0 00081 €2°0 09789 L8970 G€LLY 0 00081 91°0 821 L¥°0 €LT1 INOSSOTd HdHA -
0 0008T 10°0 C¢10TL 200 V68TL 0 00081 T0°0 70€89 S1'0 91089 0 0008T 00°0 ¢8C1 80°0 8LCTT SLVYLS OO -
0 0008T 100 0T0TL €0°0 L88TL 0 00081 10°0 90€89 8¢€°0 £98.9 0 0008T 00°0 c8C1 80°0 8LC1 €STOTID=MHUS
0 0008T 10°0 ¢10TL 80°0 €G8TL 0 00081 T0°0 90€89 Sv'o CI8L9 0 0008T 00°0 ¢8C1 €9°0 TL21 3ys -
0 0008T 200 8T0TL 10°0 €06TL 0 0008T T0°0 S0€89 91°0 £T089 0 0008T 00°0 821 €2°0 9.C1 HONHYHAHY
den uedN den jsog den jsog den ueoN den jseg den jseg den uea deny jseg den jseg A3ore11g
R an a1 WL, an a7 swLL, an a7
guan) guen Tuen)
uon)

‘BpLTWA 297°d O1q8L

B.3. Chapter 4: Revisited Branch-and-Cut 179

B.3.2 Comparison with state-of-the-art Algorithms

In this appendix, we detail the experimental results for the four algorithms (FST
B&C, EA40P, ALNS and RB&C). Table B.47 shows the results for medium-sized
instances of generation 1, Table B.48 for large-sized instances of generation 1, Table
B.49 for medium-sized instances of generation 2, Table B.50 for large-sized instances
of generation 2, Table B.51 for medium-sized instances of generation 3 and Table
B.52 for large-sized instances of generation 3.

In the Best column, we show the global best-known lower and upper-bound values.
For each algorithm, we detail the best LB, the goodness gap GGap, the best UB,
and the meantime (in seconds). The GGap represents the relative distance between
the algorithm’s best LB and the global best-known LB. For the RB&C algorithm we
also detail the optimality gap OGap which represents the relative distance between
the obtained LB and UB by RB&C.

For each algorithm, generation and size, we have calculated the average gap and
running time over the instances where a feasible solution was obtained by the al-
gorithm. In those instances where the time limit was reached, a running time of 5
hours has been used. These averages are shown in the last row of the tables. The
symbols in the tables mean the following:

% : best-known solution achieved
— : not comparable result

.. the code finished unexpectedly

Appendix B. Detailed Computational Results

180

0% L0% ¥0°0 * 1866 ¥1°0 eI's 790 G0'8TC * oSerane
1L°9€ * 68T & 68T 99Ty ¥8°0 182 699 60T ez 0F'LE 68T 4 68T 68C 68C 00%Px
6%'Q * S0 « G0T €TT6T 860 €0z ST'L 9F'T 70c 02T 90T 4 Q0T S0C G0z srEul
G8'8¥ * TOT & Z9T 060TF « 29T CI'e €Tl 09T O0S'TTT T9T & 29T 29T 29T 66gid
G9° 0% * VT« LPT 9068 ¥0°C ¥PT 00 LT €1 09°ST LV« LPT LPT LVI 0ScE
T6'S * TeT & ZET 6CFIE & 28T T9S &« Ze€T 0C'1% ZET & 28T cel el ¥9gid
g0 * 8ST & 8ST TO0¥C « 8GT €8C LTI 96T 060 8GT 4 8GT 8ST 8ST T9g[8
ze0 * 9LT & 9LT LT'80T 0LT €LT 188 & 9LT 060 9LT 4 9LT 9LT 9.1 638
69°L0T * 9ZT & 92T ¥6'I8T « 92T 199 & 92T 0T'991 92T « 92T 921 921 9zed
1e¥ * 62T « 6CT LV'S6T 8L0 8T 6TC 99T 12T O0F'¥6 62T 4 62T 6¢1 6C1 Sgedsy
00°0008T 6G'T 9T« VT TS6LT « ¥ZT 81 * $ZI 0€°9120T ¥PTT « Yl ¥l ¥TT STTsh
14T * SPT & SPT 9GL8T « SPT 689 &« SPT 0LCT <174 . ST SPT SPT ©0cis
16'6 * 6IT 6IT 8S98 « 61T 191 * 6IT OT¥I 61T « 6TIT 61T 61T 002dony
0% * LIT & LIT SLPIT &« LIT PLT * LIT 02T LIT & LIT LIT LIT 00TVOoxy{
8T'S * 8TT & €TT 1999 « €CT 899 & €CT 0T'S €TT 4 €CT €C1 €T 86TP
14°¢€ * ZO0T & TOT LGS6T & 20T 8L'T ¥6°C 66 09°C TOT 4 ZOT G0T 0T G6T9er
z8'T * €6 * €6 €966 « €6 11T 80°'T 76 ov'e €6 * €6 €6 €6 68In
62T * LL * LL 8C'T6 & L ¥9e &« LL ov'1 LA * LL L. L. gsrad
12°C * L8 * L8 7919« L8 00'T GT'T 98 0z'1 L8 * L8 18 L8 0STgony
L8°€¢ * 98 * 98 6L78 « 98 LT'T % 98 0%'GLT 98 * 98 98 98 0GIVOoIy
9%'1 * LL * L2 T8L8 o« L 19« LL 0e'T L2 * LL L. L. Fh1ad
20 * 18 * 18 1265 * 18 ¥Pe 0Le 8L 0S'T 18 * 18 18 18 LE1i8
QLT * i) * 1L 16°6% * 1L 960 & T ov'1T 1L * T 1. 12 9grad
8€°0 * €0T & €0T ¥8°0F « €0T ST'T * €0T 0€°0 €OT « €0T €01 €01 Lzliwlq
G0 * gL * gL Y967« gL 11T % QL 0€°0 gL * QL) gL perad
8T0 * Sl * QL 8663 *) 02’1 €e'1 12 0T°0 QL * QL) g, 0gri8
80°0 * i * ve 982, * 2% €60« 24 0€°0 2% * 4] 7S vg Lorid
870 * 99 * 99 1128 « 99 1 * 99 0g°0 99 * 99 99 99 goTuy
90°0 * 79 * 79 eLIE &« 79 6L0 & 79 010 79 * 79 79 ¥9 10T
10 * 19 * 19 6763 * 19 L0« 19 0Z°0 19 * 19 19 19 00TPI
€g'g * LS * L9 9028« L9 050 & L9 0z 65T LS * 29 LS LS 00THOIY
60°0 * 69 * 6S 1978 « 69 90 691 8G 010 6g * 69 68 69 00TOL|
qzT0 * 99 * 9g Ve« 9g 870« 99 0%'0 99 * 99 9¢ 9¢ 00TDOIY
L2°0 * 89 * 89 9207« 89 €90 TLT L5 07°S6 8¢ * 89 8¢ 8¢ 00TdON|
170 * 99 * 9g SLVE o« 9g ¥€'0 6.1 el 0%°0 9g * 9g 9¢ 9¢ 00TVOoIy
%0 * zs * 4 SLLT * zg 990 & zg 070 4 * zg T¢ TS 66IRl
80°0 * 79 * 79 103 * 79 4 * 79 010 79 * 79 ¥9 79 9613
90°0 * 6% * 6% ¥9'8T * 6% 190 & 6% 010 6% * 6% 6v 67 9.1d
$0°0 * LY * LY 1670 * LY €80 ¢IC 9% 010 LY * LY v Ly 9LIe
G0°0 * 44 * 514 66°ST * 374 €0« 5374 010 574 * 534 v e 0Ls
.00 * 9% * o €16 * 9% 00T * 9% 00°0 9% * 9% 9% 9F 8g[izeIq
20'0 * L8 * Le v6 * Le 0€0 & L8 00°0 L8 * L€ L& Le gguleq
10°0 * 62 * (it4 1¢°6 * 62 Y20« 62 00°0 6C * 62 6 6% TG[e
10°0 * oge * 0g 0z * oe Y20« og 00°0 0og * 0g 0 0¢ SPMU
200 * 1€ * 1€ 666 * 1€ eT0 & 1€ 00°0 1€ * 1€ 1€ ¢ 8pIs
€0'0 * 1€ * 1€ LL9 * 1€ G0 « 1€ 00°0 1€ * 1€ 1€ ¢ 8pwne
awLJ, deno gn denp g1 Pwil denn g7 ouwny denn g Puwll an depn g1 dn d1 edueysul
oRdY SNIV dOvvd LSd 3sog

007 > u ‘T woreIouan) :Lj ¢ oqe],

181

Revisited Branch-and-Cut

B.3. Chapter 4

70801 67T 11°0 89°¢OSIT CI'€ 78066 ey 188l cey o8eIrore
00°0008T 1S9 L89S 4 6823 00°0008T T8'C 0¥1¢ 8L'TS6ST 08T 971G 21696 6828 L6glerd
00°0008T 0Z°¢ TGLE &« 2€9¢ 00°0008T 086 9.7¢ GT'T8ES Wer Syig TSLE TE9E PE6SHE
00°0008T 0TS 9828 & €6S€ 00°0008T 8¢'L 8TEE TSTIES ¥S9 86e¢e 98LE €69 ST6SH
00°0008T €T'T 0LST & IPSZ 00°0008T €82 veT C9T9ve TSl 05€% 0LS% TI¥Sc TV
00°0008T €9CI 6¥TT « Q96T 00°000ST S¥'L 8IST 06¥66C €94 QT8I 6¥2C G961 S6LEW
00°0008T LT°0 08LT & LZLT 00°0008T S8'S 9z9T V6189 868 TLeT . : 06LT L2LT 8g0gqod
00°0008T 00°L SIPT & 9TET 00°0008T 29T 62T 6C°C0¥ 8T 62T 00°0008T L8°€T OPIT GQIPT 9IET g6gead
00°0008T 600 TLIT & 0LIT Z¥°8809 % 0LIT 928V 92°0 2911 : : ILIT O0LIT 61Igen
GT'EOLPT & ISTT & TSIT 0000081 8¥'¢ ITIT €2°0S¢T S6'8 8T0T IGIT TSTT ggIgn
T9'GG8ST « 002T & 00ZT 00700081 T¥'C LT LT'1S6 60T 690T ° : : 00T 0021 €0TTP
S OTOLT & 9T2T &« 9ZZT 00700081 T.°S 9STT 18°69% 18°% L9TT 00°0008T 96cT I¥'Lc 068 93¢l 9%¢T 688IIT
88°'9ZCTIT & £86 * €86 00°0008T 99°¢ L¥6 8G°GL6 8G°0T 6.8 : : : : €86 €86 LISIn
00°0008T V0 Z8TT &« 9LZT 0865691 88T TSTT 0G'8LT Ge'g 9%¢T 00°0008T 8G' 1€ €L8 T8TT 9.TT SpLTwa
00°0008T Tg'0 726 * 226 00°0008T L¥'¢ 068 0L°L82 ¥T'8 978 : : : o6 ¢g6 SS9TP
00°0008T €£0 006 % L68 00°0008T 1991 S¥L L¥°98¢ 06'T 088 006 L68 LLSTH
00°0008T I¢T 79L * vSL 0S°€28%T 99°0 6L 9% 121 AN 8¢L : : : 9L $SL TEPIn
00°0008T L¥'L ¥80T 6CF €00T 00°0008T 8POT GT'8TS 870 ¢F0T 00°0008T 0£2T 92°€T 606 ¥8O0T SVOT 00FTH
00°0008T #2°0 L18 * Q18 00°0008T L0'€ 06 167901 ov'g 1L : : : : LTS GIS 6LEImIu
LT°0VLL * 718 * P18 0T°G8SHT 9¢°¢ G8L 89°68 €6°¢ Z8L 00°0008T 978 L£0 118 $I18 $I8 €Tl
6£°6929 * 208 * z08 00°0008T GL'T 88 SH'201 67V 992 : : : : 708 T08 FOELTIX
G8°9T6L * STL * STL 00°0008T ¥2'¢C 669 L8VEY G9'6 979 STL GTL 1621P
£8°6189 * QL9 % GL9 00°0008T T¥°¢€ 799 G9°09 TC9 £€9 : GL9 L9 gLr19od
092108 * LLL * LLL 00°0008T ¥#G'T G9., 629 060 0LL O%'LT6¥ LLL o« LLL LLL LLL PROTWA
TO'9TL9T 099 * 099 00°0008T T¥V'¢ 79 ¥0°06 00°¢ 229 : : : : 099 099 090N
18°€8T¥ * 909 * 909 00°0008T €T'¥ 18G T6°SY 19 TLS 00°0008T 809 €20 ¥09 909 909 goorad
05°8ZSE * 959 * 9G9 0£¥82LT 96°¢ 0€9 018 99°¢ 2£9 : : : : 969 999 0001fsp
89°VIG * se¥ * s¢T T8'C96C 8TC 8TV 657¢ g9'¢ Ty 02765 8eY & 8ev 8¢F 8eF g8l9erl
19°88T * 6ev * 6ev 0€°28TF ¥T'1T vev LLLT 8T'C 6cF 0T°LL0T 68% & 6ev 68y 68F voLn
95°00¥% * €0S * €08 0£°099 8e'¢ 987 75601 61T L6V 0TFE9 €08 & €08 €05 €05 99918
87°C6 * 98¢ * 98¢ LT°281e ¢S'T 08¢ ¥2'€T €ee LLe 0LSTL 98¢ &« 98¢ 98¢ 98¢ 199D
00°0008T ¥#9'¢T 96€ 62°0 e 0L'9980T « eve 68'8C ¥0'C 9¢¢ 00°0008T €SS 99¥ LTe 968 gpe ¥god
T8°'Th * zee * TTe G9'60TE GQ'T LTE 9L°€T F0'¥ 60 0969 T8« TTE TTE TE GLGYea
00'¥¢ * 2514 % 2514 8T%0zT 86T PAZS €6°LT z8°C ¥re 07’19 7451 . ¥9€ 78E PSE pAGn
g ave * L8¢ * L9¢ Z°S091 80°¢ 9¥e 81°€T 44 8v¢ 09°€01% - 820 9g¢ Lge L€ 19ged
00°0008T €20 9z¥ * (147 0T 9¥81T 140 444 €0°¢. ¥2°0 %47 : : : : 9y QqTh gegle
0S°2Ie * £9¢ * £€9¢ $G°08€T 01T 68¢ AN 9% L¥e 00°€6S €98 & €9¢ £9¢ €9¢ gEgme
LE°€T * (1}44 * 0zg £6' 1621 ¥6°0 JARS 0T'6T 98T SIe 0g°L¥E 0Z¢ « 0ze 02¢ 0%e €6%P
2L * 1X<t4 * 1X<t4 TL'8TET 08°0 6¥C ¥6°9 6L°C Yo 06°FT 18 « 16 1S¢ 162 Thpqod
00°P1I¥ * e1¢ * e1¢g ¥L€0TT T6'T 20€ T6°6 960 0T¢ 0£€es eIe « ¢I1e ¢Ie ¢1e 6gpd
S0°6C * oge * 0Sg efegfelele 98°0 Vizs ¥8°2¢ 620 6VE 06681 0ge & 0S¢ 0S¢ 0S¢ 1¢H18
00°0008T 0€'T 16¢ * 82T L0°950T * 82T 81T QLT $2¢ 00°0008T 0€T « 82Z 08¢ 8T LT¥W
o], deno dn denn g1 awILJ, denn d1 owILg, denn g1 awLJ, an denp g1 an d71 aoure)su|
oRdY SNIV dOoyvd LSd 3sog

007 < u ‘T UOryeIouan) Q)¢ AR,

Appendix B. Detailed Computational Results

182

£€9°0¢T * * LLELT ST'0 8€C €90 68°C6 * o8eroAe
99°69L * ZG98T &« TS9ET I6FLIT 990 T9SET 089 FCT THPET 09°€6T TS9ET « ZG9ET TG98T TS9ET 00FPa
€9°L98 « £T60T & €Z60T $9°0L8 TI'T 1080T 628 ¢S0 99801 0%'c98 €T60T €C60T €T60T €T60T SILUll
¥£°€29 * Z816 * T816 TIe6e 8€0 P16 €T€ 9.0 116 09°92%F T8I6 % Z816 T816 7816 66cid
Q661G * 8T¥8 * 8T8 1€°G1¢ 820 YO8 98T L1 7068 08°€0T 8PS * 8T¥8 8CV8 8Zk8 08ce
ge'eT * 599 % 599 LTYIe o« ¥G999 ¥6'G €T €L19 00°€% 7599 * 73999 G99 999 $9zid
£€9°79 * 12¢8 * 12¢8 9.L87 790 6928 L¥'e GQLT GLTI8 0968 12¢8 * 12¢8 12€8 1268 T9TI8
2991 * LLT6 * LLT6 GE'6LET « LLT6 6T'ST €00 V.16 09CST LLI6 * LLT6 LL16 LLT6 6518
I8768C « 2999 * 2999 89'10% * 2999 6L 900 8699 OT'¥L 2999 * 2999 2999 2999 9zgid
60°7S * L869 % L869 €L'66C 010 0869 18T €L0 9869 09FLT L869 % L869 1869 1869 Sggdsy
T S6 * €89 * ¥€£89 0076¢ 9.0 T8L9 ¥ T 0 6189 09°9 7£89 * 7£89 €89 TE89 GTTSH
06'6€T * 68LL * 68LL 12881 060 6TLL LL'8 « 68LL 0L'S8 68.LL * 68LL 68LL 68LL z0g18
29'0T * 61¥9 * 6179 86°68T 60°0 eIv9 L6'T 02 8L29 0L¥¢ 61%9 * 6179 6179 619 00501
8T'9T * LPS9 * LPG9 TT°9TT * LS9 1.1 020 €59 0.°89 LPS9 % LVS9 LPS9 LPS9 00TVOoIy
¥2'86C * 0.99 * 099 1788 €10 1999 €€ ST0 0999 0T¥L 099 % 0.99 0499 0,99 86TP
60°9% * 1648 * 164G €C'€9z 910 8.8 69T QT €0LG 08'8¢T T16.LS % 1648 16.S 164G G6TeRI
96'VT * 096¥ * 0967 6S°60T 020 0S6¥ T 8¢°0 176¥ 02'¢6T 096¥% * 096¥ 0967 096 69In
g8'T * (VX474 * 6.2V 19°L9 * 6LZ% L¥'E 6.0 Svev 02T 6.2V * 6.2V 6. 6.2y gerad
¥6°91 * 698¥ * 698¥ 96'T9 * 6987 61T * 698%F 08°7¢C 698¥ * 698¥ 6987 698F 0STHOL|
€7°09 * 8167 % 8167 90°08 * 816% 97’1 €0 T06% 0F'19¢ SI16¥% % 8167 816% SI6F 0STVOL|
€T'Ce * £00¥ * £00¥ 0z°00T G8'0 696 TO'E S6°0 g96¢ 0706 £00¥ * £00% €00¥ €00y ¥prad
g9°0T * 982¥ * 982¥ 08689 « 98Z% 60¢ 9¢F 6607 06961 98TF * 982¥ 98¢y 98gF LgT1i8
Al * 60S¥ * 60ST £9°¢g * 608y ST'T * 608y 01'C 608¥ * 60S¥ 60sy 60¢F 9grad
96°0 * £8€¢8 * £8€g 10°€C Te0 99¢¢ 141 ¥0°0 18¢S 08'8¢G £8€¢ * £8€¢ £€86G €8eS LzIWIq
101 * L16¢ * L16€ GT'SS * LTI6E TC'T 9%°0 668¢ 0S°0 L16¢ % L16¢ L168 L16¢ ¥orad
2979 * TLEY * TLEY 19°0% * TLEF LT ¥€°0 9Gey 08°Ge TLEY * TLEY 19157 1,67 0118
0z°0 * 2992 * 2992 19°69 * L4992 SO0'T * 4992 090 2992 * 2992 299z 299z Lotad
18°C * vPse * 4454 339¢ * ¥PGe 011 0%°0 0gge 0£°L9 ¥Pee % ¥Pee ¥Pee P goTull
ST'¥ * gg9ge * elefele 6192 * GG9¢ 780 « gg9¢ 00°¢ST 999¢€ * gg9¢e Ggo¢ §99¢ 1010
9¢°0 * 69€e * 69€e 08°0¢ * 6GE€E 090 « 69€¢ 0T'0 69¢e * 69€e 65€€ 698¢ 00TPI
1€ 1T * 060¢ * 060¢€ 15°6€ * 060¢ 090 920 780¢ 0106z 0608 * 060¢ 060¢ 060 00TEHOIY
z9'e * L0€¢ * L0€¢g T8 0g * L0SE G90 « L0€€ 00°S¥ L0€¢ % L0€¢ L06€ L0€e 00Toxy
TT'T * LV62T * LY6T LT6€ * L¥6C 090 ¥S0 1662 09°G8 LV62T * LV62T LV6T LV6T 00TDON
8T'€T * |8 245 * 1928 6£°8¥ 900 682¢ TS0 600 8€Z¢ 049 1v2e % |8 245 15445 Wee 00Tdom]
040 * tax44 * zize ¢8°ce * 212 .90 « 2128 060 tax44 * tax44 c1ze ¢lee 001Voxy
6z'¢ * 96T * 96T 80°2¢ * ¥P6T 670« ¥P6C 06°0 96T * 96T ¥P6T TP6T 663l
056 * 96€¢ * 96£¢ 86°TE 900 v6ee TP 90°0 ¥6e¢ 04T 968¢ % 96€¢ 968e 968¢ 9618
971 * 80LZT * 80LZT ST 6T * 80LZ S0 « 80LZ 0%'0 80LT * 80LT 80L% 80Lz 9.id
290 * 0SS2T % 0SS2T 90°9T * 0SSC €70 « 0SSZ 0T'0 0SS * 0SS 088 095 9L[P
LLT * 982T * 982T G9'Tg * 982 1€0 ¥0°0 68T OV'6T 982T * 982T 98¢% 98%T 0LIS
970 * 0222 * 0222 TeTT % 0222 ¢S'T 600 812 0OT'0 0222 % 0222 002 0%ge 8S[rzeiq
€T'¢ * L68T * L68T 7201 * L6ST GE0 & L68T 07°€6 L68T % L68T L1681 L6ST gguIpIeq
960 * PLOT * VLT €101 * PLI9T ST0 9£0 8991 o0 7L9T * 7L91 ¥291 7291 TG1e
01°0 * Y191 * 19T 612 * PIOT ST0 « PI9T 0T'0 7191 * 7191 P19T1 P19T1 STY
zeT * T9LT * T9LT 18°L * T9LT 020 890 6V.LT 0z°0 T9L1 * T9LT T9.T TOLT gt
300 * LTLT * LILT 109 * LILT T€0 & LILT 000 LILT * LILT L1LT L1LT 871e
awLJ, depo dn denn g1 awLg, denn g1 owrt], denn (7 sy, an denn g1 an d71 aoue)sU]
D7dY SN'TV dovvd LSd 3sog

007 > u ‘g UM eIuan) 6} ¢ AR,

183

Revisited Branch-and-Cut

B.3. Chapter 4

16°69€ST 90°¢ 070 €6°.T8CT 18T 2£°€60T ere OT¥¥9TT 6% o8eroAe
00°0008T ¥1°G 9PTLET LLBISZ 00°0008T S9°G 86099z 00°0008T 8£'¢ Te¥TLe 9vcL6C LL618% LegLeld
00°0008T 96'% G0S96T « PEOL8T 0000087 SO'TT 89€99T 08°L8LE €T°8 6V9TLT G0896T PEOLST PE6SIE
00°0008T €9 6TLLET PCPP8T 0000087 T6'C 00SELT OF'TISS 0¥ 8L99LT 6TLL6T TTPPST GI6SIE
00°0008T S0°C 68TOST « 60TLPT 00°0008T 88°L GIGGET GT'ST9C ¥#S'F erovT 68T0ST 60TLVT T9VFIW
00°0008T TL0¢ S68CPT CT'¥ 86686 00°0008T €L°0 TVIZOT 96'S8LY « L6€€0T G6STVT L6EE0T S6LEH
00°0008T 60°0 G66.L6 * 2066 00°0008T 859 LSVI6 L€°0T8 6T°9 Tv816 00°0008T STPT 19688 S66L6 TO6L6 8c0gqed
00°0008T 689 LET8L * £P8TL 00°0008T 9¢'T 1GRTL LSOFF 18°C 8T0T. 00°0008T QeTT LLSP9 L£T8L ¢¥8T. 6ggid
00°0008T ST0 68118 * 1608 00°0008T 80°F 0T9LL 90°L¥¥ 8v'¢ Z0T8L 00°0008T ¥0'0T 06L2L 6€T18 ¥1608 6T€n
00°0008T 61°0 QLLTO " 67979 00°0008T 99°¢ TSOT9 SETITT 98°'9 11209 00°0008T 16°9T 94685 GQLLP9 6%9%9 gSIgn
IG°€699T « 9Z¥€9 * 9Z%€9 00°0008T T8'C 9€9T9 82789 186 z0TLe : : : 9Tve9 9TFE9 €0ITP
00°0008T €T QTHY9 * 80€£€9 00°0008T 9L°¢ 8T609 L0°98C 60°S 78009 00°0008T 6L LT LV0TS STPP9 80£€9 688IIE
00°0008T LGS0 1215544 * 55 £ A4S 00°0008T ¥.F 9.91¢ 6£¥EL) 99£05 : : : $GGPS QPCPS LISIN
00°0008T 8€°0 £0€89 * Tv089 00°0008T L0°C 9€999 G8'G6T 66'1 68999 €0€89 TP0S9 SpLIwA
00°0008T GO'€T €80ES 1%°9 8GT9¥ 00°0008T & 61IE6% L1°€89 L7 112L¥ €80€8 6TE6F GGITP
00°0008T €96 ¥S10S 6£°0 92ES¥ 00°0008T LS'6 VIV 8¢¥ee % Q0G8S¥ PCTOS Q0SS LLSTH
00°0008T ST°0 STOLY * 9T69¥ 00°0008T 8T'¥ 78671 16°00T eleitd 0T8¥%¥ : : : : 8TOLY 9%69F zepIn
00°0008T T8'ST 86TF9 eq'y YeIvS 00°0008T « 26998 ST'¥6L 2270 8GT9¢ 00°0008T 92,79 TT'9 TTTES 86TF9 T699¢ 00V TH
00°0008T #2°0 L8LI9V * 9L99% 00°0008T 9€C 9LGS7 TIGLIT 0€'C 20981 : : : : L8L9% 9L99% 6LETMIU
00°0008T LT°0 0sved * LLEEY 00°0008T 00°G 0TZT¥ 8.°68 e 6SFTY 00°0008T 0S¥PEF L00 LVeEy 0SFEF LLESF €TETI
00°0008T 0Z°0 69€TV " QLTTY 0%'€982T L3¢ €680% 896 S0¥ 1950¥ : : : : 6S€Cy SLTTh VOgIM
00°0008T 0%°0 7G98LE * 8LLLE 00°0008T SS°C GT89¢ ST'68C S6'9 €81G¢e $G8LE 8LLLE T6TIP
00°0008T ST°0 001LE * ge0Le 00°0008T ¥6C 9¥6Se 76769 9z°¢ 978G¢ : : : : 00TLE gg0Le €LITqod
00°0008T €70 2560% * LLLOY 00°0008T €T 0¥z0¥ L9°G¢ ST'T 80£0¥ 00°0008T ¥$S60% 220 28907 2¢S60% LLLOF FSOTWA
00°0008T 6£°0 1629¢ * IS19¢€ 00°0008T 0¥%'C ¥8TSE 8L LL 88°C 0T1S¢ : : : : 1629¢ 16T9¢ 090In
00°0008T 61°0 2608¢ * 0£0€e 00°0008T 9LC 0c12e 61°9¥ 68°¢ 9vLIE 00°0008T 90'8T 990.% ©60€E 0g0ee goorad
00°0008T TT0 GT6SE " GE8SE 00°0008T €¢'¢ 179%¢ ¥ees €8¢ cOPFe 00°0008T AT6S¢ ST°0 TLLGE QT6GE gesse 0001fsp
06'9¥22T & VLVST * VLVST 79°2299 16°T 186¥C 9¢°TE 19'C 198%¢ : : : : $LVST PLPST €8Lyed
TV 6786 * £TTVT * £TTVT 90°¢5LS TV'I 8L8€T 1.°8% 8L'T €6LET 05°0€89 8TTPT « €TTVT €TThT €TTVe ¥TLn
00°0008T 120 69592 * Y1992 T 01 S0'C 1L65¢ 87'9€T 290 9££9¢% : : : : 6999¢ $TS9Z 99918
L9'¥GG * €0ST1Z * £0S12T Y191y 91 18212 06°C% 63T 291Te 072892 €0S1T « €0STZ €0STZ €0STC AS9P
00°0008T 07'0Z 8¥2TT 780 €GLLT 00°0008T « 006LT T8'TV 70 1Z8LT 00°0008T 99STZ €IV 09TLT 99ST¢ 006.LT ygod
0L°9T96 * TGZ8T * TGT8T 70680 9V'T FS6LT L6FT 66C GOLLT 0T°'1E6 TGT8T « TGT8T TST8T 15TST GLGyeI
289201 * TISE6T % TISE6T 0T'688S L9'T 8T06T €897 66T 9968T 0S°219 ISE6T « TSE6T TSE6T 1GE6T vLen
G6'T961 * 9LG6T * 94861 1€°062 LT Z606T 4 8¥'¢ 76881 OT"LS¥PT 9LG6T & 9LG6T 9LS6T 9L86T 19ged
00°0008T 60°0 CL61C * V9612 182681 88°0 19L12 S0°S6 0z°0 0T61C 0.4°660¢T PS61IC &« PS61C $S6TC ¥S61C SESIe
00°0008T €80 00861 * GE961 68°79ST 180 GOT61 A 88’1 G9z61 00°0008T 0086T 610 86G6T 00861 GE96T zegMe
00°0008T 00 L00LT * S669T TVIeT9 €01 02891 ST AT 2871 6291 : : : : LO0LT G6691 £67P
¥6°092.€T * i5iad! * iZidd! YL0IPF 090 TTHHT £€8°9 9¥'1 cLTVT 01°6S29 421474 S PSYPT F8FII P8TPT vy qed
98°G9LE * TLI9T * TLTI9T 79629 2270 8TIOT LL°TT £€5°0 G8091 0€°'8S62T TLI9T & TLI9T TL19T 1LT9T 6evad
1%°608% * S8TE8T * STES8T T8 0F.LG * S8TE8T 8EL'IS LT0 18T8T 0S°696 S8IE8T & S8TES8T 8TEST 8TE8T 1718
00°0008T L9°¢ 18821 * €E6TT $6'7¥1c 800 €T6TT €L'9T 4 L8LTT 00°'0008T ¥62ZT €£0 ¥681T $6ca1 €E61T ATPH
oLy, deno dn denn g1 o], denn g1 o], denp g1 awLg, an denn g1 an d71 aoue)sU]
DY SN'IV dOovvd LSd 3sog

007 < U ‘g UOeIIUaN) 0G"e AR,

Appendix B. Detailed Computational Results

184

SVTLT « * GG08T SS0 gee 680 99°6%1 * o8eIoAe
oV'PIT &« €TTET & €TTET 8SLTL 9.0 TCIET 8ELL 20T 880€T 0T'€6% €TTET & €TTET €TCeT €TCET 00%Pa
89°L2E &« 89€0T & 89¢0T T'82¢ 0£0 LEE0T LZ€9 T60 €LT0T 08°F7ES 89€0T 89€0T 89¢0T 89€0T SIgUll
€T'eI6 « ePe0T & ePe0T TT6VS 90T €e30T TS6'E 1.°€ 6966 09°€9¢ ePe0T & ePe0T €PE0T €Pe0T 66g1d
08°92T « TLL6 * VLL6 88L¢ 8001 68.8 TC€ ST'TT ¥898 0£'€1g vLL6 * VLL6 ¥L.6 ¥LL6 08ce
65981 * LETS * LEI8 82598 & LEI8 GZ9¢ S80 8908 04°0Z LETS ” LETS 1818 Le18 $9zid
62°€8 * 9726 * 9726 ¥S679 6£°0 0Tg6 L86'€ ¥9'1 7606 OV'€ET 9726 * 9726 9vz6 9¥c6 TITIs
£9°C¥ * 82€9 * 82€9 88601 « 8TE9 GSO'IT 670 1629 0Z°0T 82€9 * 82€9 8TE9 8%E9 65Ti8
00°0LTT & £669 * £669 6S°LLT & €669 €108 TT'T 8069 09°C¢ £669 * £669 €669 €669 9zcid
19°8¢ * ovLL % ovLL - - - - - - 0£°0¢T ovLL * ovLL ovLL OFLL Sgedsy
29'9 * QLS. * QLS. eralici . GLGL 9ET'T * GLSL 0T'TLI QLS. * gLGL GLGL GLSL STTsY
92818 « 9198 * 9198 8828 090 988 TSFOT €10 G098 08'%2C 9198 % 9198 9198 9198 038
L8°€ * 9929 % 9929 LLS8T 4 9929 GLL'T G680 €129 0T'0% 9929 * 9929 9929 9929 00TdoI
1¥°26 * €C19 * £CT19 T'ceT 800 8TT9 AILT G1'0 PIT9 0€3TT €219 * €219 €CI9 €219 00TVoIy
ST'I9Y « 0z€9 * 0z€9 1601 * 0289 SPT'L LVO 0629 0T'98C 0z€9 * 0z€9 07€9 0289 86TP
9g°¢e % G619 % Q619 - - - - - - 0667 S619 % S619 G6T9 G6T9 G6IIel
6S'8 * TLTS * TLTS LTV6 o« TLZS SP60 TLZS 02°TS TLTS ” TLZS TLtS Tlts 69In
1G°€8 * G068 * Q068 8ETV8T L£°6 668 GT9E 800 068 0F'TTIl g06¢ * S06¢€ G06¢ g06e ggrad
€5°8¢C * TIeS * TIEeS G0'€9 & PIES TI0°T * PIES 09207 vIeS * vIeS PIES TIES 0STHOM
157l 14 % 6€0¢8 * 6£0S €701 ¥0°0 1805 L0°T 0%°0 610S 0L°0¢¢ 6€0¢S * 6£0S 6608 6£0S 0GTVOIy
S9°9TT * avLe % avLe T6°CIT €00 ¥hLE 119 0T’ 00L& 09°CIT SPLE * SPLE gvLe ghLe PPId
T0FT * 7396¢ * 73968 60°L89 « 796E 788’1 * ¥96¢ 09°'S8 7568 * 7368 ¥S6¢ 96 LETI8
05°08 * 06S¥ * 06S¥ 7819« 068 9211 * 068 0.°98 06€¥ * 06€¥ o6ey o6ey 9grad
L0°0% * G9€T * Q98T 6'6¥ LT°0 1962 619C AT°0 19¢¢ 06°6L g9¢C * g9¢C G9gT Q9gT LTIilq
8€°L0CY « L88¢ * L9ge 1866 « LGGE 7880 187 gske 0S9°ICOT LGSE * L9G¢ 166 Lqqe pord
69 * 6LLE * 6LLE 6. S0°0 LLLE 8GET T80 STLE 09T 6LLE % 6LLE 6L.¢ 6L.¢ 0cgIi8
1870628« LL81 * LL8T 9T'q9 & LL8T 9180 00F 2081 06°099 LLST * LLST LL8T 1181 L011d
20'9T * 9862 * 9862 08¢« 9862 ¥60C V0 €L6C 06'1¢ 9862 * 9862 9867 9867 SOTUT]
L8°T * avee * avee 19°8% * SPee $9S0 gPee 08°6T svee * svee ghee qpee 1010
0z°€T * 9262 * 9262 Ge9T * 9Z6C C8F'0 0T0 €T6% 0T°€IT 92632 % 9262 926 9t6C 00TPI
9¢'T * 6%0¢ * 6%0¢ 9618 « 6708 1.0 « 6¥0¢ 09T 6¥0¢ * 6708 6708 6%0¢ 00THOIY
0L°0 * L91¢ * L9178 80'TE & L9T€ 8S0 780 w1e 0L°01 L9T¢ s L9T¢ L9T€ L91¢ 00Toxy
78T * gg1e * gg1e L9VE & GGTIE 6E70 « ggIe 0S'T e1eh €5 * e1ed €5 GGTE GSTE 00TDOILY
ge'0 * 7082 * 08T €868« ¥08C 190 89°0 G8L% 090 7082 * 082 708z T08¢ 00THOL
I8'T * 1128 * 1128 1€0E « TIZE€ 6L80 160 081¢ 0£°€9 112¢ * 112¢ 112¢ 1128 00TVoIy
10°€ * 8062 * 8062 - - - - - - 06'% 8062 * 8062 8062 806T 66381
99°G * 0L1ge * 0LIE TT ST €10 991¢ S0F%'T €10 991¢ 0919 0L1g % 0L1Ige 0L1¢ 0LTE 9618
201 % (1}5 24 * (1}5 24 €708 * 0e¥Z 8950 « 0e¥Z 020 (1}3 44 % (1}3 44 os¥c ogke 9Ld
96°C % L9%C * L97C 87°0¢ * LOTC 2980 4 L9%C 070 L9%C * L97C L9vC L9%T 9LIP
670 * 8012 * 8012 G9'6 * 80TIZ 8080 « 80IZ 0%'0 8012 * 8012 801Z 80T¢ 0L3S
200 * Z0LT * Z0LT 60°TT * TOLT TTL0 « Z0LT 000 TOLT % TOLT TOLT T0LT 8g[rze1q
9% % 9¢0T * 980T ¥8°¢1 * 9€0T 2890 610 $€0T 0L¥2T 9€0T * 9¢0T 90T 901 gguIpIaq
9’1 * 66€T % 66€T 189 * 6681 2TZ0 L00 86ET 0Z°0 66€T * 66€T 66€1 66€1 1G110
900 * TILT * TILT 16°8 * PILT GQIZT0 « 79LT 00°0 POLT * POLT POLT TILT STAY
TL0 * 08¥1 * 08¥1T 18'8 * 08¥T €T°0 * 08¥T 020 08¥1 * 08¥1 0871 0871 8718
LTI * 6701 * 6701 8T°L * 670T 6500 « 6%0T 09'8¢ 6701 * 6701 6701 6701 sTiIe
o], deno dn denn g1 awLJ, denp g1 awLg, denn g1 awILJ, an denn d1 an d71 soure)su]
ondy SN'TV dOovvd LSd jsog

007 > u ‘g uoreIouan) 1G'q AR,

185

Revisited Branch-and-Cut

B.3. Chapter 4

VLRSI ¥3G ¥€0 9z°L€8CT LV FP'89TT 08T 8L 6VLET 8L9 o8eroAe
00°0008T 9.°¢ g88PEeEe & g822TTE 0008T 66°C Gv9zTe 00081 870 $¥L02E a88Fee g8zeee LegLeld
00°0008T 8S'2 SOT6TT « T120ZIZ 0008T ¥6°¢ 19960z L8188 61T G8€.L0T S0¥62c 180TIT VE6SIE
00°0008T 629 998L1T 4 G69€0Z 0008T 760 PISTOC €T°€65S ¥I'C 92661 99¢L1C S69£0T GI6SIE
00°0008T S9°¢ T992ST &« G669%T - - - - - - T9GCST S669VT T9TFIW
00°0008T T19°¢Z T6L9TT 698 81768 0008T 81T 08886 A88'SSTI¢ & L0LL6 : : T6LITT L0LL6 S6LEH
00°0008T €S°F 900ZTT 8T690T 0008T 67’1 LEES0T 98¢°LT6 11°% 299%0T 00°0008T 68°6 95€96 900TTT 86901 8£0£qod
00°0008T 8€°G 19206 * 60788 0008T 8¢€°0 78058 TeLTTh TSl 76078 00°0008T 67°6c 93g09 19206 60¥S8 6egid
00°0008T TIT°C 05018 100 €726 0008T 820 0€16L 8GL'69¢ 99T €I18L 00°0008T 61918 « IGE6L 05018 19€6L 61ggn
00°0008T 0Z°S 9908 * L00¥ L 0008T TL'1 €eLTL 6096191 280 00¥€. 00°0008T 1962 16038 9908L L00¥. gSIgn
00°0008T TZ'0 £L628 * L8LZ8 0008T 90°C T80T8 668'89TT 6S°9 €eeL. 00°0008T 91’8 GE09L €.6T8 L8L78 €0TTP
00°0008T 9%'T 90TTL * 99002 0008T 18°C 96089 €L6°TVC ¥ET TC¥89 00°0008T 60'8¢ TLEEF 90TT1L G900L 688TIL
00°0008T 66°S 0L9L9 €00 819€9 0008T 86°0 91089 LPETOET & 6€9€9 00°0008T 00'8T 9812S 0L9L9 6£989 LISIN
00°0008T LT°0 0T0ZTL * G8STL 0008T 68°0 YWe1L 63°5TT 62T 8G60. 00°0008T 0¥ 6689 0T0TL G88TL 8pLTWA
00°0008T €¥'T Sv629 * 87029 0008T 9L'T 98609 LPTTL9 CES 87L8S 00°0008T €S°LT 89TT1S SP6C9 8F0T9 GGITP
00°0008T €9 60887 9¢€0 89LGV 0008T * Ge6SY GT9°G6C €90 69 : : 60887 GE€6ST LLSTH
00°0008T %20 S68LY * S8LLLY 0008T 4N} Thely 910°8¢T gee 2899% - : : : G68LY 8LLLY TEPIn
00°0008T CI'S 16¥69 68°F 199%¢G 0008T * 0LPLS TIS66S THO 977LS 00°0008T €50.9 99°F TOLYS T6F6S 0LVLS O0FTH
00°0008T €10 SL6TY * 0262¥ - - - - - - : : : : GL6TF 0T6Cy 6LETMIU
00°0008T 9¢£°0 P8eLY * eITLY IS €9°¢ 00SSF 9T5°¢6 121 1%99% 00°0008T $8°G 8GTFF ¥8eLY €1CLF €Tellt
00°0008T 9%'0 gLOZY * IS8TV 0008T 870 6L91% 60T°18 691 ¥ICI¥ 00°0008T gg'e 8LV0V GL0TF 188I¥F FOETE
00°0008T €9°T €Q1ITh * 60ST¥ 0008T £€8°¢ 61668 G98°66C VI'8 TEI8E 00°0008T LV’ 90T0E €STeh 60STF T6TIP
VL EEIST & LGTIV % LGTTV 0008T 08T €IG07 8ST'99 88°C 6900 - : : : LSTTV LeeTy gL119ed
0S°01.8 * 699.L¢ * 6998 68°98c¢ 081 8LILE L0T¥S €70 80GLE 00°0008T ¥69.¢ $0°0 €89.€ 699.& 699.& FSOTWA
00°0008T 0Z°0 69GSLE * T67.LE 0008T 8€°C 8689¢ 9.8°GL ejate 0L89¢ : : : : 69GL¢ T6FLE 090In
69°GS6ET &« 9296¢ * 92S6¢ 0008T 6S°C 098¢ €0€°LV €6'T 79.8¢ 00700081 S¥S6E 610 6¥P6E¢ 98s6e 9zg6e gooTid
00°0008T 90°0 254K * vevie 296ST qz'T 0v0IE 6LT°6L 98T £760¢ : : : : PSPIE PEPIE 000T1(sp
86°CISE * 99GLT * 99G.LT - - - - - - 0£°2£2L 99GLT & 99GLZ 99SLT 99GLT g8Lyel
¥G°2€L0T1 * STE8T * STE8T 9'850GT IT'T €608C £9T°6% L¥1 TE6LT 09°0.L89 SVE8T 8PE8C 8FE8T 8PE8T FTLn
00°0008T TZ'0 090LT * €T0LT SLYELT T8I 60,91 898°¢V1 1.0 20691 00°0008T S8¥0LT 200 0TOLT SFOLT €TOLT 999138
68°LLL8 * 29s¥T * 41544 L8009 86°C 608€C L88'1¢ e TLLET 0L°E€S0¥ 29S¥T « T9S¥T T9SPC T9SFT LS9P
00°0008T 110 SISVT * Z6TVe T0ePsL LTO LTHYT 19581 i 0€I¥Z 00°0008T FI6IE « Zevve 81Svc ce¥PT ¥god
66°626 * 60102 * 60102Z - - - - - - 0S°92Z¥1 60T0Z & 60T0Z 60T0Z 6010 GLGIer
63°€69C * 9002 * ¥9002 10 TL9T 11T 19861 99761 98'T 1696T 0€°60¥1 79002 ¥9002 $900c ¥900% FLSn
19°6€9T * 81 * Z8TPT - - - - - - 08°€7801 T8PPT & Z8TPT T8PPI 434 19ged
00°0008T 190 TLY6 * vIv6 g'ereeT eT'T 80€6 68076 16°0 876 : : : : TLV6 PI¥6 gegre
PP°81¢ * 86%ST * 86TST 98°¢eSy SO'T GeeqT LYLTT 10°T TesT 02°66 867ST 867ST 86FST 867ST TEGIIE
00°0008T TIT°0 G61ST * L91GT Te'628¢ 901 678%C TST6T 720 I186%¢ 00°0008T S88ISC « L9TGZ 88TSC L9195 €6¥P
9L TLSTT & 6ISVT * 61ISPT 612611 ¥8°0 G697 1 8159 00°¢ 7TV 00°0008T 68STT 6ISPT 6ISYI 618V vy qed
00°0008T 10T 1eeST * 9LIST ¥.'8C¢T1 £€9°0 080GT 96°01 780 2608T 00°0008T 962ST 110 09TST 96TST 9LTGT 6evad
LTHI8L * TI60T * T160T SYTIvE $0°0 L0601 F0S 7S 980 LT80T 06°9%01 TI60T & TI60T TT60T 1160T 1718
00°0008T LT L8E7T 100 612HT GO'TETT * 0ZZV¥T 677Cl ¥2°0 98T¥T 09°.229 (1[4 74 S (1} 4474 S T4a 40 0TZH¥T LT¥B
awL], deo dn denn g1 Sling denn g1 awLJ, denn g1 awLg, an denn g1 an d71 aoue)sU]
oRdY SNIV dOovvd LSd 3sog

007 < U ‘g UOreIouan) 7G'e IR,

	Tesiaren nondik norakoak
	Esker Onak - Acknowledgments
	1 Introduction
	1.1 The Orienteering Problem
	1.1.1 Complexity

	1.2 Variants of the OP
	1.3 Benchmark instances for OP
	1.4 Review of the literature approaches for the OP
	1.5 Objectives of the thesis

	2 EA4OP: An Evolutionary Algorithm for the OP
	2.1 Introduction
	2.2 Solution Codification
	2.3 Components
	2.3.1 Initial population
	2.3.2 Genetic Operators
	2.3.3 Tour improvement operator
	2.3.4 Drop operator
	2.3.5 Add operator
	2.3.6 Stopping criteria

	2.4 Computational results for EA4OP
	2.4.1 Parameter and heuristic selection
	2.4.2 EA4OP components validation
	2.4.3 Comparison with state-of-the-art algorithms

	2.5 Conclusions

	3 Shrinking and Separation Algorithms for Cycle Problems
	3.1 Introduction
	3.2 The Cycle Polytope
	3.3 Shrinking for the Cycle Polytope
	3.3.1 Shrinking for the Cycle Polytope
	3.3.2 Safe Shrinking Rules for the Subcycle Closure Polytope

	3.4 Separation Algorithms for Subcycle Elimination Constraints
	3.4.1 Dynamic Hong's Exact Separation Algorithm
	3.4.2 Extended Padberg-Grötschel Exact Separation Algorithm

	3.5 Computational Experiments
	3.5.1 Benchmark Instances
	3.5.2 Shrinking Strategies for SECs
	3.5.3 Exact Separation Algorithms for SECs
	3.5.4 Results

	3.6 Discussion
	3.7 Conclusions

	4 RB&C: Revisited Branch-and-Cut Algorithm
	4.1 Introduction
	4.2 Valid Inequalities
	4.2.1 Connectivity Constraints
	4.2.2 Comb Inequalities
	4.2.3 Edge Cover Inequalities
	4.2.4 Cycle Cover Inequalities
	4.2.5 Vertex Cover Inequalities
	4.2.6 Path Inequalities

	4.3 Initialization
	4.4 Separation algorithms
	4.4.1 SECs and CCs
	4.4.2 Comb Inequalities (blossoms)

	4.5 Column Generation
	4.6 Separation Loop
	4.7 Primal Heuristics and Lower Bounds
	4.8 Branching and Upper Bounds
	4.9 Computational results
	4.9.1 Evaluation of Components
	4.9.2 Comparison with state-of-the-art Algorithms

	4.10 Conclusions

	5 Software for OP
	5.1 Installation
	5.1.1 Install Heuristic Algorithm
	5.1.2 Install Heuristic and Exact Algorithms

	5.2 Usage

	6 Conclusions, Future Work and Contributions
	6.1 Conclusions
	6.2 Future Work
	6.3 Contributions

	A Pseudocodes
	A.1 Shrinking and SEC Separation Strategies
	A.1.1 Shrinking Strategies
	A.1.2 Exact SEC Separation Strategies
	A.1.3 Directed Rooted Gomory-Hu Tree

	B Detailed Computational Results
	B.1 Chapter 2: Evolutionary Algorithm
	B.1.1 Initialization Parameter
	B.1.2 Contribution of the genetic components
	B.1.3 Add operator
	B.1.4 Comparison with state-of-the-art Algorithms

	B.2 Chapter 3: Shrinking and exact SEC for Cycle Problems
	B.3 Chapter 4: Revisited Branch-and-Cut
	B.3.1 Configuration of Components: Detailed Results
	B.3.2 Comparison with state-of-the-art Algorithms

