
A REVISITED BRANCH-AND-CUT ALGORITHM FOR LARGE-SCALE
ORIENTEERING PROBLEMS

A PREPRINT

Gorka Kobeaga
Basque Center for Applied Mathematics BCAM

gkobeaga@bcamath.org

María Merino
University of the Basque Country UPV/EHU

maria.merino@ehu.eus

Jose A. Lozano
Basque Center for Applied Mathematics BCAM

University of the Basque Country UPV/EHU
jlozano@bcamath.org

July 21, 2022

ABSTRACT

The orienteering problem is a route optimization problem which consists in finding a simple cycle
that maximizes the total collected profit subject to a maximum distance limitation. In the last few
decades, the occurrence of this problem in real-life applications has boosted the development of
many heuristic algorithms to solve it. However, during the same period, not much research has been
devoted to the field of exact algorithms for the orienteering problem. The aim of this work is to
develop an exact method which is able to obtain optimality certification in a wider set of instances
than with previous methods, or to improve the lower and upper bounds in its disability.

We propose a revisited version of the branch-and-cut algorithm for the orienteering problem which
includes new contributions in the separation algorithms of inequalities stemming from the cycle
problem, in the separation loop, in the variables pricing, and in the calculation of the lower and
upper bounds of the problem. Our proposal is compared to three state-of-the-art algorithms on 258
benchmark instances with up to 7397 nodes. The computational experiments show the relevance of the
designed components where 18 new optima, 76 new best-known solutions and 85 new upper-bound
values were obtained.

Keywords orienteering problem · branch-and-cut · large problems

1 Introduction

The Orienteering Problem (OP) is a well-known routing problem proposed in the 80s, see [Tsiligirides, 1984]
and [Golden et al., 1987]. Given a weighted complete graph with vertex profits and a constant d0, the goal is to
find the cycle which, with a length lower than or equal to d0, maximizes the sum of profit of the visited vertices. In
addition to the length constraint, every feasible cycle solution must visit a given depot vertex.

The OP can be seen as a combination of the Knapsack Problem (KP) and the Travelling Salesperson Problem (TSP).
Given a set of items with an assigned weight and profit and a constant w0, the goal in KP is to find the subset of items
which, with a total weight lower than or equal to w0, maximizes the sum of the profit of subset items. In the KP, the
feasibility of a subset is checked in linear time. In the OP, however, the feasibility of a solution is checked by solving a
TSP-decision problem. A subset of vertices is feasible if there exists a cycle (Hamiltonian in the subgraph obtained
by the vertices) whose length does not exceed d0, finding such a cycle is an NP-complete problem. This simple but
non-trivial combination of two NP-hard problems makes the OP an interesting problem to study.

https://orcid.org/0000-0002-8669-4482
https://orcid.org/0000-0002-4947-2784
https://orcid.org/0000-0002-4683-8111

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

The occurrence of the OP in many real-life applications, such as logistics and tourism, has boosted the emergence
of many variants and algorithms to solve the problem over the last decades. A survey of OP variants, approaches,
and applications can be seen in [Vansteenwegen and Gunawan, 2019]. In this paper, we have focused on solving the
classical problem through an exact algorithm.

Some exact algorithms have been proposed for the OP, see [Laporte and Martello, 1990], [Ramesh et al., 1992],
[Leifer and Rosenwein, 1994], and [Gendreau et al., 1998]. The most competitive approach thus far was pro-
posed by [Fischetti et al., 1998] two decades ago. To our knowledge, no exact algorithm for the classical OP
has been published after this work. The first exact algorithm, a Branch-and-Bound (B&B) algorithm, was
published in [Laporte and Martello, 1990] where bounds for the problem were provided based on the Knapsack
relaxation of the OP. In [Ramesh et al., 1992], new bounds for the B&B were obtained by Lagrangian relaxation.
In [Leifer and Rosenwein, 1994] a Branch-and-Cut (B&C) algorithm was proposed, which included logical, connectiv-
ity, and cover cuts for the first time. In [Gendreau et al., 1998] a B&C was proposed for a variant of the OP which consid-
ers multiple depot nodes. The B&C approach in [Fischetti et al., 1998] outperformed the previous ones in middle-sized
OP instances by considering column generation, new valid inequalities (cycle cover and path inequalities), problem-
specific separation algorithms, and an efficient primal heuristic. In the last two decades, authors dealing with exact ap-
proaches have focused on solving variants of the problem, such as Team OP ([Boussier et al., 2007], [Poggi et al., 2010],
[Dang et al., 2013], [Keshtkaran et al., 2015], [Bianchessi et al., 2018]), Arc OP ([Archetti et al., 2016]),
Team Arc OP ([Archetti et al., 2014], [Riera-Ledesma and Salazar-González, 2017]) and Probabilistic
OP ([Angelelli et al., 2017]).

Recent results for large-sized instances of the OP, presented in [Kobeaga et al., 2018] and [Santini, 2019], have shown
that the state-of-the-art B&C algorithm in [Fischetti et al., 1998] does not obtain satisfactory results when the number
of nodes is larger than 400. In half of the large-sized instances, the named B&C algorithm does not produce any output.
In many of the other half of instances, the returned solution value is far from the values obtained by the heuristic
algorithms. The motivation of this work is to develop a B&C algorithm which is able to improve the values of the
best-known lower and upper bounds in the literature, and if possible, to obtain optimality certifications in a wider set of
instances than the state-of-the-art B&C algorithm. In our view, there is room for improvement for B&C algorithms in
the case of OP, mainly if we consider that some of the successful techniques developed for the TSP, such as shrinking
and efficient pricing, have not yet been adapted for the OP. This paper is an attempt to combine the adaptation of some
of those techniques with our OP specific contributions.

In this work, we have developed and adapted techniques to scale the B&C algorithm to large OP problems. Our main
contributions in this paper are the following:

• Develop a new joint separation algorithm for Subcycle Elimination Constraints and Connectivity Constraints,
which efficiently uses the shrinking techniques in [Kobeaga et al., 2020] to speed up the algorithm by reducing
the adverse effects of the shrinking for Connectivity Constraints (Section 4.2.1).

• Design blossom separation algorithms for Cycle Problems, which generalize the [Padberg and Hong, 1980]
and [Grötschel and Holland, 1991] heuristics, providing a considerable improvement in the solution quality
and running time (Section 4.2.2).

• Design an efficient variable pricing procedure for the OP inspired by the one developed in
[Applegate et al., 2007] for the TSP. It enables repetitive calculations to be avoided and the exact calculation
of the reduced cost of some variables to be skipped (Section 4.3).

• Conceive a three-level separation loop for the OP, which treats the cuts according to their relevance while
giving the same chance to the cuts with complementary incidence. This significantly reduces the running time
of the B&C algorithm (Section 4.4).

• Devise a combination of two alternative primal heuristics, a greedy one ([Fischetti et al., 1998]) in the separa-
tion loop and a metaheuristic based one ([Kobeaga et al., 2018]) at the beginning of branch nodes. The new
combination boosts the quality of the obtained solutions in large-sized problems (Section 4.5).

• Formulate the computation of the global upper bound in the branching phase for the OP, which enables the
upper bound obtained in the branching root node to be updated (Section 4.6).

The computational experiments presented in this paper show the importance of the proposed techniques and components
for the B&C algorithm for the OP. We compare our B&C algorithm with three state-of-the-art algorithms, two heuristics
([Kobeaga et al., 2018] and [Santini, 2019]) and one exact ([Fischetti et al., 1998]), on 258 benchmark instances with
up to 7397 nodes. In comparison to the literature, the revisited B&C obtains:

• 180 optimum values, from which 18 are new.

2

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

• 245 best-known solution values, from which 76 are new.

• 249 best-known upper-bound values, from which 85 are new.

The rest of the paper is organized as follows. In Section 2 the 0-1 Integer Linear model of the OP is introduced. In
Section 3 we present the valid inequalities for the OP. In Section 4 we detail the proposed B&C algorithm for the
problem. In Section 5 the results of the computational experiments are shown. The detailed experimental results can be
found in the appendices.

2 OP Modelling and Polyhedral Considerations

The OP can be defined by a 5-tuple ⟨G, d, s, 1, d0⟩, where G = Kn = (V,E) is a complete graph with vertex set V
and edge set E; d = (de) where de is the positive distance value (time or weight) associated to each e ∈ E; s = (sv),
where sv is a positive value that represents the score (profit) of vertex v ∈ V ; 1 ∈ V is a vertex selected as the depot;
and d0 is a positive value that limits the cycle length.

Let us define the following sets:

(Q : W) := {[u, v] ∈ E : u ∈ Q, v ∈ W} Q,W ⊂ V (1a)
δ(Q) := (Q : V −Q) Q ⊂ V (1b)
E(Q) := (Q : Q) Q ⊂ V (1c)
V (T) := {v ∈ V : T ∩ (v : V) ̸= ∅} T ⊂ E (1d)

where (Q : W) are the edges connecting Q and W , δ(Q) is the set of edges in the coboundary of Q also known as the
star-set of Q, E(Q) is the set of edges between the vertices of Q, and V (T) is the set of vertices incident with an edge
set T . For simplicity, we sometimes denote {e} and {v} by e and v, respectively, e.g., δ(v) and V (e).

We denote by RV , and RE , the space of real vectors whose components are indexed by elements of V , and E
respectively. In the model of OP, two types of decision variables are used, y = (yv) ∈ RV and x = (xe) ∈ RE ,
associated with the nodes and edges of G, respectively, where:

yv =

{
1 if node v is visited
0 otherwise

xe =

{
1 if edge e is traversed
0 otherwise

For (y, x) ∈ RV×E , S ⊂ V and T ⊂ E, we define y(S) =
∑

v∈S yv and x(T) =
∑

e∈T xe.

The OP goal is to determine a simple cycle that maximizes the sum of the scores of the visited vertices, such that it
contains the depot node 1 ∈ V and whose length is equal to or lower than the distance limitation, d0. Then, the OP can
be formulated as the following 0-1 Integer Linear model:

max
∑
v∈V

svyv (2a)

s.t.
∑
e∈E

dexe ≤ d0, (2b)

x(δ(v))− 2yv = 0, v ∈ V, (2c)
x(δ(H))− 2yl − 2yr ≥ −2, l ∈ H ⊂ V, r ∈ V −H, (2d)

3 ≤ |H| ≤ |V | − 3 ,

yv − xe ≥ 0, v ∈ V, e ∈ δ(v), (2e)
0 ≤ yv ≤ 1, v ∈ V, (2f)
0 ≤ xe ≤ 1, e ∈ E, (2g)

y1 = 1, (2h)
xe ∈ Z e ∈ E (2i)

where the objective function (2a) is to maximize the total collected profit. The constraint (2b) limits the total cycle
length. The degree equations (2c), together with the logical constraints (2e) and the integrality constraints (2i), ensure

3

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

that the visited vertices have exactly two incident edges and the unvisited vertices none. The Subcycle Elimination
Constraints (SEC) (2d) ensure that only one connected cycle exists. Throughout the paper, we use the notation ⟨H, l, r⟩
for the SEC defined by the set H ⊂ V and the vertices l ∈ H and r /∈ H . The constraints (2g) and (2i) impose that the
edge variables are 0-1, consequently, considering these together with the Logical Constraints (2e) and the bounds (2g),
the vertex variables are also 0-1. The constraint (2h) defines the depot condition.

As mentioned in the introduction, the OP can be seen as a combination of the TSP-decision and the KP problems.
Particularly, the OP is a Cycle Problem (CP) where the solutions, which are cycles, need to satisfy a certain length
constraint. This relation with the two classical optimization problems is useful when identifying the valid inequalities
and their respective separation algorithms for OP. Let us show how the solution space of OP is related to those
well-known problems. The OP Polytope (POP) of the complete graph Kn is defined by:

POP := conv{(y, x) ∈ RV×E : (y, x) satisfies (2b), (2c), (2d), (2e), (2f), (2g), (2h), (2i)} (3)

The Knapsack Polytope (PKP), see [Balas, 1975], is a well-studied polytope closely related to the POP :

PKP := conv{x ∈ RE : x satisfies (2b), (2g), (2i)} (4)

Since the solutions of the OP are cycles, the Cycle Polytope (PCP), plays a crucial role when solving the OP with B&C.
Based on [Bauer, 1997], the PCP can be characterized as:

PCP := conv{(y, x) ∈ RV×E : (y, x) satisfies (2c), (2d), x(E) ≥ 3, (2f), (2g), (2i)} (5)

We have the following relationship:

POP ⊂ PCP ∩ (RV × PKP) ∩ {(y, x) ∈ RV×E : y1 = 1} (6)

Consequently, the potential valid inequalities for the OP are those which are valid for PCP and the PKP . However, the
POP and the intersected polytopes in the relationship (6) are not equal and alternative valid inequalities are needed to
deal with the OP. An example of a point in PCP ∩ (RV × PKP) ∩ {(y, x) : y1 = 1} but not in POP is given in Figure
2 of [Fischetti et al., 1998].

3 Valid Inequalities

In this section, we present valid inequalities for the OP . The straightforward inequalities, as motivated in Section 2, are
based on the PKP (Edge Cover inequalities) and PCP (Comb inequalities) relaxations of the POP and they were mainly
proposed in [Fischetti et al., 1998] and [Gendreau et al., 1998]. Additional valid inequalities to those based on PKP and
PCP have also been proposed in the literature: the Connectivity Constraints in [Leifer and Rosenwein, 1994], the Vertex
Cover inequalities in [Gendreau et al., 1998], and the Cycle Cover and the Path inequalities in [Fischetti et al., 1998].
The novelty of this section is an alternative representation of comb inequalities, which is then used for the efficient
pricing in Section 4.3.

3.1 Connectivity Constraints

The Connectivity Constraints (CC) are well-known inequalities for the OP, e.g. [Gendreau et al., 1998] and
[Leifer and Rosenwein, 1994], and are a particular case of the conditional cuts proposed in [Fischetti et al., 1998].
The CCs exploit the depot constraint (2h). Given a lower bound, LB, of the OP, let T be a subset of nodes such that
1 ∈ T , |T | ≥ 2 and

∑
v∈T sv ≤ LB. The inequality defined by T

x(δ(T)) ≥ 2 (7)

is valid for the OP. Since x(δ(T)) = x(δ(V − T)), the inequality can also be defined for T ⊂ V such that 1 /∈ T and∑
v/∈T sv ≤ LB. So, it is always possible to assume that |T | ≤ |V |/2.

3.2 Comb Inequalities

The comb inequalities were generalized from the TSP to cycle problems in [Bauer, 1997]. A comb is a tuple
⟨H, {T1, . . . , Tt}, L,R⟩ of three vertex subsets and a family T = {T1, . . . , Tt} of vertex subsets such that satis-
fies the following properties:

i) t ≥ 3 and an odd integer

4

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

ii) Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ t

iii) Ti ∩H ̸= ∅ and Ti −H ̸= ∅ for i = 1, . . . , t

iv) L = {li} such that li ∈ Ti ∩H for i = 1, . . . , t

v) R = {ri} such that ri ∈ Ti −H for i = 1, . . . , t

The set H is called the handle, the sets in T are called the teeth, the set R is called the Root set, and L is called the Link
set. Then, the inequality

x(δ(H)) +

t∑
j=1

x(δ(Tj))− 2y(R)− 2y(L) ≥ 1− t (8)

is facet-defining for PCP , as was shown in [Bauer, 1997], and therefore, a valid inequality for OP . When all the teeth
consist of exactly two vertices, the comb inequalities are known as blossom inequalities.

3.3 Edge Cover Inequalities

The maximum length constraint (2b), which is a capacity constraint for the edge variables, defines a KP polytope, as
explained in Section 2. For every feasible (y, x), the edge variable, x, belongs to PKP . For the OP, the Edge Cover
inequalities are the cover inequalities of the associated PKP ([Balas, 1975]). These inequalities were first introduced
for the OP in [Leifer and Rosenwein, 1994] and also used in [Fischetti et al., 1998] and [Gendreau et al., 1998]. Let
F ⊂ E be a subset with

∑
e∈F de > d0, then:

x(F) ≤ |F | − 1 (9)

defines an Edge Cover inequality for the OP. We assume that F is a minimal cover, i.e. for every F0 ⊊ F , we have∑
e∈F0

de ≤ d0.

3.4 Cycle Cover Inequalities

Every feasible cycle F ⊂ E satisfies the equation x(F) = y(V (F)). Let F ⊂ E be a subset that defines a cycle with∑
e∈F de > d0, then the inequality

x(F) ≤ y(V (F))− 1 (10)
is valid for the OP. These cuts were used in [Fischetti et al., 1998] and [Gendreau et al., 1998].

3.5 Vertex Cover Inequalities

Let UB be an upper bound of the OP and Q ⊂ V be a subset with
∑

v∈Q sv > UB, then:

y(Q) ≤ |Q| − 1 (11)

defines a Vertex Cover inequality for the OP. We assume that S is a minimal cover. These inequalities were first used
for the OP in [Gendreau et al., 1998].

3.6 Path Inequalities

The goal of these cuts is to exclude the paths that due to the length constraint (2b) cannot be part of a feasible solution.
Let P = {[i1, i2], [i2, i3], . . . , [ik−1, ik]} be any simple path through V (P) = {i1, . . . , ik} ⊂ V − {1}, and define the
vertex set:

W (P) := {v ∈ V − V (P) : d1,i1 +
∑
e∈P

de + dik,v + dv,1 ≤ d0} (12)

Then the following Path inequality

x(P)− y(V (P)) + y1 + yk −
∑

v∈W (P)

xik,v ≤ 0 (13)

is valid for the OP, see [Fischetti et al., 1998].

5

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

4 Branch-and-Cut Algorithm

In this section, we present the principal contributions of this paper. These contributions deal with the separation
algorithms of inequalities stemming from the cycle problem (SECs and comb inequalities), the design of the separation
loop, the pricing of variables for the column generation and the calculation of the lower and upper bounds of the
problem. In Figure 1 a flowchart representing a simplified B&C algorithm can be consulted.

INITIALIZATION

Initial
Heuristic

LP0

subproblem
of LP

Pricing

SEP

Add cuts

OptimalStop

BRANCH-AND-CUT

SEP

Add cuts

Infeasible
or LB ≥
bUBNc

No more
cuts to
add

BRANCH

Stop

Branch

Primal
Heuristic

Pricing

Infeasible
or LB ≥
bUBNc

Unbranch

64

66

4

4

4

4

6

4

6

4

Figure 1: Flowchart of the Branch-and-Cut algorithm considered in this work. BRANCH is an oracle which returns an
unevaluated node in the branching tree. SEP refers to the separation algorithms. At each action box of the flowchart the
subproblem LP0 is updated and solved.

4.1 Initialization

First of all, we obtain an initial heuristic solution. To that aim, we make use of the EA4OP metaheuristic in
[Kobeaga et al., 2018] considering a small size population.

Next, we build the initial subproblem, LP0. Given the computational requirements of considering all the variables and
constraints that define the OP, an initial subproblem LP0 is built. The LP0 is initialized considering the following subset
of constraints and variables:

i) All the vertex variables.

ii) Edges in the 10 nearest neighborhood graph.

iii) Maximum length constraint (2b), degree constraints (2c), and depot constraint (2h).

iv) Variable bounds, (2f) and (2g).

6

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

Immediately after the initialization, the edge variables are priced, see Section 4.3. In the rest of the paper, we use the
LP0 symbol to refer to any subproblem of the OP, regardless of whether it is the initial one or not.

4.2 Separation Algorithms

In this section, we present the heuristic and exact separation algorithms used to find the violated inequalities. Our
contributions are concentrated in the separation algorithms for SECs, CCs and blossom inequalities. Hence, we
only give details of these separation algorithms in the section. The details of separation algorithms for the rest of
the inequalities (Logical Constraints, Edge Cover, Vertex Cover, Cycle Cover, and Path inequalities) can be found
in [Fischetti et al., 1998].

Let (y∗, x∗) be a solution of a particular LP0 problem and define V ∗ = {v ∈ V : y∗v > 0} and E∗ = {e ∈ E : x∗
e > 0}.

Then, G∗ = (V ∗, E∗) is called the support graph associated with the solution (y∗, x∗).

4.2.1 SECs and CCs

Violated SECs (2d) and CCs (7) are found using a common separation algorithm. This is natural since, in both constraint
families, the incidence vector of the arcs, x in the inequality can be written as the star-set value, x(δ(Q)) of a subset
Q of vertices. Since δ(Q) is the cut associated with Q, the separations of both inequalities are closely related to the
minimum cut problem. In [Kobeaga et al., 2020] it was shown that the shrinking techniques substantially speed up
the SEC separation algorithms. However, as explained below, the shrinking might also have a negative impact on the
finding of violated CCs. In this section, we study how to efficiently use the shrinking to speed up the joint separation
algorithm by reducing the adverse effects for CCs.

Given a solution (y∗, x∗) and a subset Q, the subset Q could generate at the same time a violated SEC and a violated
CC for (y∗, x∗). Since the CCs do not depend on the value of the vertices, while the SECs do, the CCs tend to be more
violated and more stable, i.e., remain active in subsequent updates of the LP0, than the SECs. Therefore, we treat the
CCs with a higher priority.

Although SECs are part of the OP model, in order to control the size of the working LP0, they are included only when
required. This strategy is reasonable since there exist polynomial exact separation algorithms for SECs. In contrast, the
separation problem for CCs is not known to be polynomial, and it can be modeled as follows:

min 2
∑
v∈V ∗

y∗vzv − 2
∑
v∈V ∗

x∗
(v,u)zvzu (14a)

s.t :
∑
v∈S

svzv ≤ LB (14b)

z1 = 1 (14c)
zv ∈ {0, 1} ∀v ∈ V (14d)

where z = (zv) are binary variables whose values are zv = 1 if the node v is selected and 0 otherwise. The problem (14)
is a Quadratic Knapsack Problem (QKP) with a fixed variable. Consequently, there exists a violated CC for (y∗, x∗) if
and only if the optimal solution of Problem (14) has a value lower than 2. Taking into consideration that repeatedly
solving QKPs during the B&C is not viable, the CCs are not separated exactly, but in a heuristic manner take advantage
of the SEC separation algorithm. The well-known approaches for the separation of SECs in the TSP, the connected
component heuristic and Hong’s approach can be extended to jointly separate the SECs and CCs:

Connected components heuristic. The straightforward heuristic to find violated SECs and CCs is to search for the
connected components of G∗ using the depth-first-search algorithm. When a connected component contains the depot
vertex 1 and the sum of the vertices scores in the component is lower than LB, we record the associated CC of the
component, otherwise, we record the associated SECs.

Extended Hong’s approach. There are two main strategies to exactly separate SEC inequalities in cycle problems, which
are extensions of Hong’s approach and the Padberg-Grötschel approach (also known as the Gomory-Hu tree-based
approach) for the TSP, see [Kobeaga et al., 2020]. In both approaches, the separation is carried out by solving a
sequence of |V ∗| − 1 (s, t)-minimum cut problems. On the one hand, in the extended Hong’s approach, the vertex
with a higher y∗ value (the depot vertex 1) is fixed to be the source, s, and the sink vertices, t, are chosen from the set
V ∗ − {1}. On the other hand, the extended Padberg-Grötschel approach is based on the so-called Gomory-Hu tree
(directed and rooted in 1), which is constructed by solving |V ∗| − 1 (s, t)-minimum cut problems.

7

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

As mentioned above, and as already proposed in the literature, the SEC separation strategies are leveraged to find
violated CCs as well. Although the extended Padberg-Grötschel approach obtains a larger number of violated SECs, it is
not appropriate to find violated CCs, since the obtained sets do not contain the depot vertex 1. Contrarily, the extended
Hong’s approach for SECs can be easily adapted to additionally find violated CCs. It can be achieved, by solving at
each step of the separation algorithm the (1, v)-minimum cut (useful to find violated SECs) and (v, 1)-minimum cut
(useful to find violated CCs) problems. For these reasons, we use the extended Hong’s approach as the base strategy for
the joint separation algorithm.

The running time of these SEC separation algorithms can be improved using the shrinking techniques for cycle problems,
as was seen in [Kobeaga et al., 2020]. In this publication, three general shrinking rules (C1, C2, and C3) and three SEC
specific shrinking rules (S1, S2, and S3) for cycle problems were presented. However, although the shrinking is a key
strategy for efficiently separating the SECs, it might be unfavorable for the separation of CCs. The point is that when
the vertices are contracted and grouped, the chance to obtain the subset of vertices with a score sum lower than LB
decreases, consequently, some violated CCs might vanish. Note that, the mentioned shrinking techniques are safe for
valid inequalities of the cycle polytope and CCs are not. Therefore, since CCs are important cuts for OP, shrinking
might have a negative impact on the performance of the overall B&C algorithm for the OP. One contribution in this
paper is to propose strategies to minimize the possible disadvantages of the shrinking (which is important to speed up
the separation) in the joint separation algorithm for SECs and CCs.

Following this, not all the shrinking strategies for cycle problems described in [Kobeaga et al., 2020] are adequate
for the OP problem. Particularly, we exclude the S2 shrinking rule (which leads to excessively aggressive shrinking
strategies and hence to vanish violated CCs in some cases) and only consider the shrinking strategies C1C2 and S1 in
the preprocess of the joint separation algorithm. Once entered in the separation algorithm, the shrinking rule S3, which
contracts the sink and target of the solved minimum cut, contributes positively to separating both families of constraints
since it enables a wider family of subset candidates to be obtained. Hence, the S3 rule is used in combination with the
C1C2 and S1 shrinking strategies in the separation algorithm. After the S3 rule is applied, we search for new shrinkable
sets using the selected shrinking strategy.

Classically, the candidate subsets for SECs and CCs are obtained by the minimum cut algorithm. However, considering
the importance of CCs, we intensify the search for extra candidate subsets for CCs, which is made more efficient by
taking advantage of the vertex clustering obtained by the shrinking. We propose new strategies based on the following
lemma:
Lemma 4.1. Let (y, x) be a vector that satisfies the degree constraints. If U and W are subsets of V such that W ⊂ U ,
the following inequality is satisfied:

x(δ(U −W)) ≤ x(δ(U)) + x(δ(W)) (15)

Proof. When (y, x) satisfies the degree constraints, the identity x(δ(T)) = 2y(T) − 2x(E(T)) is valid for every
T ⊂ V . Replacing the respective expressions in the inequality (15) we obtain:

2y(U −W)− 2x(E(U −W)) ≤ 2y(U)− 2x(E(U)) + 2y(W)− 2x(E(W))

Considering the hypothesis W ⊂ U , we have y(U −W) = y(U)− y(W).

x(E(U))− x(E(U −W)) ≤ 2y(W)− x(E(W))

Also, if Q ⊂ S, the equality E(S −Q) = E(S)− E(Q)− δ(Q) ∩ E(S) holds.

x(E(U))− x(E(U)) + x(E(W)) + x(δ(W) ∩ E(U)) ≤ 2y(W)− x(E(W))

x(δ(W) ∩ E(U)) ≤ 2y(W)− 2x(E(W))

x(δ(W) ∩ E(U)) ≤ x(δ(W))

This last inequality is satisfied due to δ(Q) ∩ E(S) ⊂ δ(Q), which proves the lemma.

We use the following notation for shrinking. Let Ḡ = (V̄ , Ē) be the graph and (x̄, ȳ) the vector obtained by applying
a shrinking strategy to G∗ and (y∗, x∗), respectively, and π : P(V̄) → P(V) the unshrinking function. Let S̄ be
the subset obtained by the (v̄, 1̄)-minimum cut (where 1̄ is the contracted vertex that contains the depot vertex 1), so
1 ∈ π(S̄), and suppose that x(δ(S̄)) < 2. Note that, x(δ(S)) = x̄(δ(S̄)), where S = π(S̄). If

∑
v∈S usv ≤ LB,

the subset S defines a violated CC. Otherwise, after each (v̄, 1̄)-minimum cut problem is solved, and in the case that
x(δ(S̄)) < 2, we test the following strategies to find candidate subsets for CCs:

i) First, when |π(1̄)| > 2, we check if y1̄ < 1 and
∑

v∈π(1̄) sv ≤ LB. If this is the case, the subset Q = π(1̄) defines
a violated CC.

8

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

ii) Then, we check if there exists v̄ ∈ V̄ − 1̄, such that x(δ(S̄)) + 2yv̄ < 2 and
∑

v∈π(S̄−v̄) sv ≤ LB. If both
inequalities are satisfied for v̄, the subset π(S̄ − v̄) defines a violated CC.

iii) Finally, we sort the vertices in S̄ − 1̄ in non-decreasing order of ȳ, and check greedily for the greatest subset
S

′
= {v̄1, . . . , v̄k} of S̄ such that x̄(δ(S̄)) + 2

∑
v∈S′ yv̄ < 2. If

∑
v̄∈π(S̄−S′) sv ≤ LB, the subset π(S̄ − S

′
)

defines a violated CC.

4.2.2 Comb Inequalities (blossoms)

For the B&C presented in this work, we only use the blossom subfamily of comb inequalities. In this section, we
present two heuristics to search for violated blossom inequalities in cycle problems, and in particular, for the OP. The
heuristics are extensions of the [Padberg and Hong, 1980] and [Grötschel and Holland, 1991] separation algorithms,
developed in the context of the TSP.

The key point of the heuristics for blossom inequalities is to identify a subset of candidate handles to restrict the search
of violated blossoms. In the literature of OP, a heuristic to find handle candidates is detailed in [Fischetti et al., 1998].
In this heuristic, the search is guided by the greedy algorithm of Kruskal for the Minimum Spanning Tree. At each
iteration of the Kruskal algorithm, a new edge is inserted into the tree, and the connected component containing the
edge is chosen as a candidate handle. In this work, we consider two alternative approaches to finding candidate handles:
the Extended Padberg-Hong heuristic and the Extended Grötschel-Holland heuristic.

Extended Padberg-Hong heuristic (EPH). [Padberg and Hong, 1980] proposed a blossom separation heuristic for the
TSP, which is known as the odd-component heuristic. In this heuristic for the TSP, the violated blossoms are found by
restricting the set of candidate handles to the connected components of the fractional graph G∗

1 = (V ∗
1 , E

∗
1), where

E∗
1 = {e ∈ E∗ : 0 < x∗

e < 1} and V ∗
1 = V (E∗

1).

We generalize this heuristic for the general cycle problems by applying the Padberg-Hong algorithm by levels. A
level, λ, is defined by each different value of the set {y∗v}v. We call L the set of distinct levels. Note that, the
number of levels, |L|, is bounded by |V |. Associated with a level we have the level graph G∗

λ = (V ∗
λ , E

∗
λ), where

E∗
λ = {e ∈ E∗ : 0 < x∗

e < λ} and V ∗
λ = V (E∗

λ).

A faster heuristic to find the handle candidates can be designed by omitting some connected components of G∗
λ. At

every level, λ, we discard the connected components, Cλ
i , such that yv ̸= λ for all v ∈ Cλ

i . Now, we identify the
connected component of vertices with yv = λ. So, in total, we search for |V ∗| different connected components of, in
the worst case, G∗

1.

Once we have identified an initial list of candidate handles, the next step is to find the associated teeth for these handles.
Let H be a candidate handle, and define the set of teeth as TH = {e ∈ δ(H) : x∗

e ≥ λ}. Recall that the teeth of
blossoms are edges. Not all the teeth families obtained using this strategy satisfy the comb (blossom) definition. If
two teeth overlap in v /∈ H , then these two teeth are removed from the family of teeth TH and the handle is updated as
H = H∪{v}. If, eventually, the list of teeth TH consists of an odd number of at least three disjoint teeth, ⟨H, TH , L,R⟩
forms a blossom inequality where Li = T j

i ∩H and Ri = T j
i −H . If there is just one tooth i.e., TH = {T}, we test if

H defines a violated CC. In the case that it does not, then H alone defines a violated SEC.

Extended Grötschel-Holland heuristic (EGH). Another fast heuristic for the TSP was proposed
in [Grötschel and Holland, 1991] whose aim was to minimize the influence of small perturbations of x∗ in
the separation algorithm. We have adapted this heuristic for the OP using the strategy of levels mentioned above. In this
approach, the handles are considered as the vertex sets of the connected components of the graph G∗

λ,ϵ = (V ∗, E∗
λ,ϵ)

where
E∗

λ,ϵ = {e ∈ E∗
λ : ϵ ≤ x∗

e ≤ (1− ϵ)λ}
for a small ϵ, 0 < ϵ < 1. Let H denote the vertex set of such a component, a candidate handle, and let e1, . . . , et be the
edges in the set

TH = {e ∈ δ(H) ⊂ E∗ : x∗
e > (1− ϵ)λ}

in the non-increasing order of x∗
e . If t is even, then append to TH the edge with the highest x∗

e in

{e ∈ δ(H) ⊂ E∗ : x∗
e < ϵ}

If the edges intersect, the strategy outlined above is followed to obtain a handle H and a teeth family TH that satisfies
the blossom definition.

In Figure 2 we illustrate the EPH blossom heuristic for cycle problems. In Figure 2.a) the given support graph is
presented, where there are three distinct levels, L = {1, 1/2, 1/4}. In Figure 2.b) the candidate handles are pre-
sented. Three candidate handles are obtained in level 1: {1, 2, 3}, {5, 6, 7} and {10, 11, 12, 13, 14, 15, 16}. Two

9

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

1
2

3

4

5
6

7
8

9
10

11
12

13

14
15

16

1
2

3

4

5
6

7
8

9
10

11
12

13

14
15

16

1
2

3

4

5
6

7
8

9
10

11
12

13

14
15

16

y∗ = 1 y∗ = 1/2 y∗ = 1/4 x∗ = 1 x∗ = 3/4 x∗ = 1/2 x∗ = 1/4

a) b) c)

Figure 2: Illustration for the Extended Padberg-Hong blossom heuristic. Figure a) represents the support graph, with
the vertex and edge values detailed in the bottom legend. Figure b) shows all the handle candidates obtained by the
heuristic. Figure c) a violated blossom found by the heuristic involving vertices with different y values.

candidate handles are obtained in level 1/2: {10, 11, 12} and {14, 15, 16}. There are no candidate handles ob-
tained in level 1/4. Next, we check for violated cuts. The star-set of {10, 11, 12, 13, 14, 15, 16} is formed by two
non-overlapping edges, so it is excluded. The candidates {5, 6, 7} and {10, 11, 12} define violated blossoms, e.g.,
⟨{10, 11, 12}, {{8, 10}, {9, 11}, {12, 13}}, L,R⟩ where L = {10, 11, 12} and R = {8, 9, 13} shown in Figure 2.c).
The candidates {1, 2, 3} and {14, 15, 16} define violated SECs, e.g. ⟨{1, 2, 3}, 1, 4⟩ and ⟨{14, 15, 16}, 14, 1⟩, but first
for {1, 2, 3} it should be checked whether it defines a violated CC.

4.3 Column Generation

During the B&C algorithm, only a subset of edges is included in the working LP0. At certain points of the algorithm,
we need to price the excluded edge variables, and add to the LP0: 1) to guarantee that the working relaxation is an
upper bound of the problem or branched subproblem and 2) to recover, whenever it is possible, a feasible LP0 after
feasibility breaking cuts have been added to the LP0. Taking into account that usually only a small subset of variables is
included in the LP0, and that the excluded variables could participate in multiple cuts of the LP0, the pricing phase
could constitute a bottleneck of the B&C algorithm. In this section, we develop a technique, inspired by that used
in [Applegate et al., 2007], which enables us to avoid repetitive calculations and to skip the exact calculation of the
reduced cost of some variables.

Let us call LV the family of SECs (2d), CC (7), and comb (8) cuts. In these cuts, the edge variables with non-negative
coefficients can be represented as the sum star-set of subsets of vertices. Complementarily, let us call LE the family of
Logical (2e), Edge Cover (9), Cycle Cover (10) and Path (13) cuts. Note that the Vertex Cover (11) inequalities do not
contribute to the reduced cost of the edge variables. So, in the OP, the reduced cost of an edge variable, e = [v, w], can
be calculated by:

rce = −deπd0 − πv − πw + rcVe + rcEe (17)
where πd0

is the dual variable of the maximum length constraint (2b), πv and πw are the dual variables of the degree
constraints (2c) of v and w respectively, and rcVe and rcEe are the contributions made by the cuts in LV and LE ,
respectively. We will see that the rcEe values can be obtained in linear time in terms of |V | and |LE |, and we will
reproduce the pricing strategy used in [Applegate et al., 2007] to calculate the rcVe values.

It can be seen that the cost of the calculation of all the rcEe is O(|LE ||V |). To that aim, it is sufficient to check that the
number of edges with a non-negative coefficient in each cut of LE is bounded by |V |. In the case of Logical, Cycle
Cover, and Path inequalities, it is derived from the definition of the valid inequality. For Edge Cover inequalities, this
bound is obtained in Lemma 4.2.
Lemma 4.2. Let T ⊂ E denote a subset defining a violated cover inequality. If the degree equations (2c) are satisfied
by (y, x) ∈ RV×E then |T | ≤ |V |.

10

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

Proof. When the degree constraints are satisfied by (y, x), as a consequence of the well-known equality x(δ(S)) =
2y(S) − 2x(E(S)), the inequality x(E(V (T))) ≤ y(V (T)) is always satisfied. Suppose that T violates the cover
inequality (9) then

|T | − 1 < x(T) ≤ x(E(V (T))) ≤ y(V (T)) ≤ |V | (18)

Calculating all the rcVe values has a O(|LV ||V |2) complexity when the cuts are stored externally as edge variable
coefficient arrays. The strategy used in [Applegate et al., 2007] speeds up the pricing by obtaining a fast lower bound
of the reduced cost rcVe (TSP is a minimization problem) and excluding for exact pricing the edges that have a negative
lower bound. In order to use this strategy for the OP, first, the edge variables of the cuts in LV must be represented and
stored as a family of subsets of vertices, as we have done in Section 3. Let S = F1 ∪ . . . ∪ Fr be the family of all the
subsets involved in the cuts of LV where Fi = {Hi} ∪ Ti. For combs, Hi and Ti represent the handle and teeth set,
respectively. For SECs and CCs we can assume that Ti = ∅ and Hi = ∅, respectively.

Based on the representation of the cuts in LV by means of subsets of vertices, the cuts are stored in an efficient data
structure by pointing to the subsets involved in the cut. This way each subset is saved once at most for all the cuts.
Moreover, it allows us to speed up the evaluation of rcVe values as explained below.

Since the OP is a maximization problem, during the pricing, we need to identify the edge with positive reduced cost.
We aim to define upper bounds, r̂ce, of the reduced costs rce, to exclude for exactly pricing the edges that have a
non-positive upper bound r̂cVe .

For each subset, S ∈ S, let us call πS the dual of the subset S defined as:

πS =

r∑
j=1

χj(S)πj (19)

where χj(S) = 1 if S ∈ Fj and 0 otherwise, and πj is the dual variable associated with the cut j. Then, the contribution
of the cuts in LV in the reduced cost of an edge e can be written as:

rcVe =
∑
S∈F

V (e)∩S ̸=∅
V (e)−S ̸=∅

πS (20)

where πS is the dual of a subset S. Since, for the edge e = [v, w], each S must contain either v or w, an upper bound,
r̂cVe , of rcVe can be obtained by:

r̂cVe =
∑
S∈F
v∈S

πS +
∑
S∈F
w∈S

πS

which satisfies rcVe ≤ r̂cVe . Therefore, we have the desired upper bound:

r̂ce = −deπn+1 − πv − πw + rcEe + r̂cVe (21)

Note that, each edge appears at most twice in a comb inequality, so the calculation of all the r̂cVe has a O(M |LV ||V |)
time complexity where M is the maximum number of subsets involved in a cut. Therefore, the calculation of all the r̂ce
has a O(M |LV ||V |) time complexity. In our B&C, the value of M is related to the number of teeth in the combs. To
ensure a true linear time complexity procedure, one could limit the number of teeth in the combs. However, in practice,
the number of teeth tends to be small and it can be assumed that M << |V |.
We can exclude for exactly pricing the edges that ˆrce ≤ 0. For those edges that ˆrce > 0, the exact reduced cost, rce,
can be calculated by using the upper bound value:

rce = r̂ce − 2
∑
S∈F

V (e)⊂S

πS (22)

The pricing loop is done in batches. In the first step, a fixed number of r̂ce are calculated, the first batch of variables
and those with positive values are preselected. In the next step, for those preselected variables, we calculate the exact
reduced cost, rce, and add to the LP0 the edges whose value is positive. Then, the LP0 is updated. Next, we select

11

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

the second batch of variables and we repeat the procedure. When the pricing aims to obtain the upper bound of the
branched subproblem, we exit the pricing loop when a whole round of evaluation is performed without introducing a
variable to the LP0. When the pricing aims to recover a feasible LP0, we exit the pricing loop once a feasible LP0 is
obtained without the need to price all the excluded variables.

4.4 Separation Loop

The separation loop to find the violated cuts is accomplished in three subloops. In the inner loop, we consider the
separation of logical constraints (2e) and the connected components heuristic for SECs and CCs. In the middle loop,
we consider the separations of cuts which are related to the cycle essence of the OP, i.e., SECs, CCs, blossoms, and
Cycle Cover cuts. In the outer loop, we consider the rest of the cuts, i.e., the Edge Cover, Vertex Cover, and the Path
inequalities. The separation loop is illustrated in Figure 3.

At each subloop, the separation of the considered cuts is performed sequentially, instead of restarting from the beginning
of the list. This is, we always carry out the next separation in the subloop list, regardless of whether or not we are
coming from an interior subloop. This way, we give the same chance to all separations in a subloop and decrease the
probability of bounding in the same separation algorithm in consecutive iterations of the subloop.

The separation algorithms of the inner loop are fast since both have a O(|E∗|) time complexity. First, we carry out the
connected components heuristic and then the separation of logical constraints. In the inner loop, intending to keep it as
a fast loop, we price the edge variables only when the floor part of the objective value is equal to the lower bound of the
OP, i.e., if ⌊s · y∗⌋ = LB. When both separations fail and no new edges have been added, we find a feasible solution
using the PB primal heuristic (see Section 4.5) and update the LB if needed. We add the associated CC of the heuristic
solution if it is violated and then we price the variables. When a new CC cut or a priced edge has been added to the LP0,
the inner loop is repeated. Otherwise, we return to the middle loop.

The middle and outer loops only differ in the considered constraint families. In the middle loop, we consider the
separation algorithms in the following order: the extended Padberg-Hong algorithm for blossom, the extended Grötschel-
Holland algorithm for blossom, the joint SEC/CC separation algorithm, and Cycle Cover separation algorithm. In the
outer loop, we consider the Edge Cover algorithm, the Vertex Cover algorithm, the Path algorithm. When we enter in
any of the loops, the first step is to execute the lower level subloops. Then, we start with the first algorithm on the list.
If no violated cuts are found we move on to the next algorithm. If violated cuts are found, we first add the cuts and
optimize the LP0. Then, we search for a feasible solution using a primal heuristic and update the LB if needed. We add
the associated CC of the heuristic solution in case it is violated and then we price the variables. At this point, we move
to the lower level loop and continue with the next separation in the list.

In the separation loop, after adding the violated cuts found in a separation algorithm, we check if any edge variable or
constraint can be removed from the LP0. We remove an edge variable from the LP0 if, during a number of consecutive
evaluations, its associated value, x∗

e , has been zero. We remove a constraint from the LP0 if during a number of
consecutive evaluations its slack has been higher than zero.

4.5 Primal Heuristics and Lower Bounds

We use two primal heuristics to obtain feasible solutions from a fractional solution (y∗, x∗). In the first heuristic, we ob-
tain a single solution, by using the x∗ values related to edges, inspired by the heuristic proposed in [Fischetti et al., 1998].
In the second heuristic, first, we build a population of cycles and then evolve it using the EA4OP metaheuristic, see
[Kobeaga et al., 2018]. The cycles in the population are constructed by selecting first the subset of vertices in each
cycle using the y∗ values.

Path Building primal heuristic (PB). The PB heuristic was presented in [Fischetti et al., 1998]. First, the edges e ∈ E∗

are sorted in decreasing order of x∗
e , and the ties are randomly broken. The procedure starts with an empty path T = ∅.

At each step we select an edge e ∈ E∗ whose x∗
e has the largest value from the set of edges which have not been

considered yet. If the inclusion of e in T does not lead to a vertex with a degree larger than 2, then T = T ∪ {e}
otherwise we exclude e and repeat the process. The path building heuristic finishes when the inclusion of e leads to T
being a cycle or when there are no edges left to check. If the depot vertex is not in one of the paths in T , it is included as
a single point path. If T consists of multiple paths, we extend it to a cycle by randomly connecting the extreme vertices
(in the original paper the paths were joined using the nearest neighbor heuristic). Since this primal heuristic is fast, it is
used in the separation loop.

Vertex Picking primal heuristic (VP) with the EA4OP metaheuristic. In the VP heuristic, we first select a collection
of vertices in V ∗ and then build a random cycle through the selected vertices. Each vertex v is selected according to
a Bernouilli distribution with parameter y∗v . By applying multiple times the VP strategy to obtain feasible solutions

12

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

OUTER LOOP

IN

Go to
Middle loop

MIDDLE LOOP

IN

Go to
Inner loop

INNER LOOP

IN

X

Price

PB Primal
Heuristic

Edge Cover

Vertex Cover

Path
inequalities

LP0 value
improved
≥ 1%

OUT

$

$

$

4

4

4

4

6

Price

EPG blossom

EPH blossom

SEC/CC

Cycle Cover

LP0 value
improved
≥ 1%

OUT

$

$

$

$

4

4

4

4

4

PB Primal
Heuristic

6

Connected
components

Logical

$ and
LB=bs·y∗c

LP0

improved

PB Primal
Heuristic

Price

CC added
or Edge
added

OUT

6

4

6

4

Price

6

4

Figure 3: Illustration of the separation loop. The symbol ✄ represents that some cuts have been added to the LP0.

from (y∗, x∗), we build a small population. Then, as explained below, we ensure that the solutions in the population
are feasible and improve when it is possible. Once we have a population with feasible solutions, it is evolved using
the EA4OP metaheuristic proposed in [Kobeaga et al., 2018]. The EA4OP with VP heuristic is used to find feasible
solutions after an edge is branched, as shown in Figure 1.

For solutions obtained by PB and VP heuristics, we improve the route lengths using the Lin-Kernighan heuristic for the
TSP, and then first check if it satisfies the constraint (2b). If it does not, we apply the drop operator which consists in

13

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

deleting vertices from the solution until the cycle satisfies the length constraint. Then we try to improve the solution by
the k-d tree based vertex inclusion procedure as explained in [Kobeaga et al., 2018].

4.6 Branching and Upper Bounds

The branching is carried out in a classical way following a depth-first-search, where the edges are branched first to 1
and then to 0. In order to select the edge variable to branch, we use the classical branching strategy: the edge e, with the
fractional value closest to 0.5 is selected, i.e., the edge that minimizes |x∗

e − 0.5|.
The global upper bound and branch node upper bound are calculated just before pruning a branch. The branch node
upper bound, UBN , is used to verify the pruning, i.e, that LB ≥ ⌊UBN⌋. The global upper bound is calculated with
two aims: firstly, to use it in Vertex Cover separation, and secondly, to compute the optimality gap when the algorithm
finishes due to time limitations.

The global upper bound, UBG of OP, is obtained using the dual solution π∗ of the solution (y∗, x∗) of the LP0:

UBG =

c∑
i=1

π∗
i bi + rc∗1 +

∑
v∈V−{1}
rc∗v>0

rc∗v +
∑
e∈E
rc∗e>0

rc∗e (23)

where the reduced costs rc∗v and rc∗e are calculated using the dual variables π∗ and c is the number of constraints.

The upper bound of a branch node, UBN , can be calculated by subtracting the contributions of the branched edges to
UBG. Let B0, B1 ⊂ E be the subset of edges branched to 0 and 1, respectively. Then, we obtain UBN by:

UBN =

c∑
i=1

π∗
i bi + rc∗1 +

∑
v∈V−{1}
rc∗v>0

rc∗v +
∑
e∈E
rc∗e>0

rc∗e −
∑
e∈B0

rc∗e>0

rc∗e +
∑
e∈B1

rc∗e<0

rc∗e (24)

5 Computational Experiments

In this section, we present the results of the computational experiments. Firstly, we evaluate the new designed
components for the revisited B&C algorithm (RB&C); and secondly, we compare the performance of RB&C with
state-of-the-art B&C and heuristic algorithms. The software used for the experiments is publicly available on github.
com/gkobeaga/op-solver.

The experiments are carried out using well-known instances in the literature. These instances, which are
based on the TSPLIB library, were first proposed in [Fischetti et al., 1998] and then extended to larger problems
in [Kobeaga et al., 2018]. The instances are split into two groups: medium-sized instances (up to 400 nodes) and
large-sized instances (up to 7397 nodes). In total, we consider 258 benchmark instances. They are also classified into
three generations (Gen1, Gen2 and Gen3) according to the definition of scores, see [Fischetti et al., 1998]. For all of
these three generations, the distance limitation is set as half of the TSP solution value. These instances are publicly
available at github.com/bcamath-ds/OPLib.

In order to measure the performance of the algorithms, we compare the quality of the returned best solutions (LB) and
the mean running time (in seconds) of the algorithms. In addition, in the case of the B&C algorithms, we also compare
the obtained upper bounds (UB). All the experiments for the compared algorithms have been carried out using a 5-hour
time limit.

In Table 1, we detail the values of the common parameters for all the simulations of the RB&C algorithm. They were
chosen inspired by the parameters used in [Applegate et al., 2007] and our preliminary experiments for the OP.

5.1 Evaluation of Components

In this section, we evaluate the designed components for the RB&C algorithm in Section 4. We have carried
out experiments with several alternative configurations of the components. To that aim, a subset of 15 OP in-
stances were selected: 5 TSP instances (pr76, att532, vm1084, rl1323 and vm1748, inspired by the subset selected
in [Goldberg and Tsioutsiouliklis, 2001]) with their respective score generations proposed in [Fischetti et al., 1998].
Then, for each instance and generation, we have executed the different B&C configurations 5 times.

14

github.com/gkobeaga/op-solver
github.com/gkobeaga/op-solver
github.com/bcamath-ds/OPLib

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

Table 1: Common parameters.

Parameter Value Description

ZERO 10−7 Sensibility of fractional numbers

ADD_CUT_BATCH 250 Maximum number of cuts added to the LP0 at once
ADD_MIN_VIOL 10−6 Minimum violation of a cut to include it in the LP0

SUBLOOP_IMPR 1% Minimum improvement to repeat the subloops
ADD_SEC_PER_SET 50 Amount of SECs considered for each subset
ADD_PATH_MAX 500 Maximum cuts for Path inequalities separation
ADD_EGH_EPSILON 0.3 Epsilon value for the EGH blossom heuristic

PRICE_MAX_ADD 200 Maximum number of variables added to the LP0

PRICE_RC_THRESH 10−5 Minimum penalty of a variable to add to the LP0

DEL_DUST_VAR 10−3 Minimum y value to consider an edge as active
DEL_DUST_CUT 10−3 Maximum slack value to consider a cut as active
DEL_MAX_AGE_CUT 5 Consecutive inactivity to delete a cut from the LP0

DEL_MAX_AGE_VAR 100 Consecutive inactivity to delete an edge from the LP0

XHEUR_GREEDY_XMIN 0.3 Use arcs larger than this value in PB primal heuristic
XHEUR_EA4OP_POP_SIZE 10 Population size for EA4OP
XHEUR_EA4OP_D2D 5 Iterations before checking feasibility in EA4OP
XHEUR_EA4OP_NPAR 3 Number of parents preselected in EA4OP

In order to evaluate our contributions, we have chosen a reference configuration, REFERENCE, that incorporates the
components proposed in Section 4 and compared it with its alternative configurations. The reference RB&C algorithm
considers the following components:

• SEC/CC separation algorithm (Section 4.2.1):
i) SRK=S1S3: Uses shrinking rules S1 and S3.

ii) CC STRATS: Uses strategies to find extra violated CCs.
• Blossom separation algorithms (Section 4.2.2):

i) EPH BLOSSOM: Uses Extended Padberg-Hong blossom heuristic.
ii) EGH BLOSSOM: Uses Extended Grötschel-Holland blossom heuristic.

• Separation algorithms from the literature:
i) CYCLE: Uses Cycle Cover inequalities.

ii) EDGE: Uses Edge Cover inequalities.
iii) PATH: Uses Path inequalities.

• Separation Loop strategy:
i) SEP=THREE SUBLOOPS: Uses the separation loop strategy presented in Section 4.4.

• Primal heuristics (Section 4.5):
i) BRANCH XHEUR=VP + EA4OP: Constructs a small population using VP heuristic and evolves it with

EA4OP.
ii) SEP XHEUR=PB: Constructs a single solution using PB in the separation loop.

The alternative configurations are obtained by modifying a single component in REFERENCE, while the rest of the
components remain untouched. These changes to REFERENCE are made by deleting a component(-), adding a new
component(+) or replacing a component (COMP=). The tested alternative strategies are the following:

• SEC/CC separation algorithm:
i) -SRK: Does not use any shrinking technique. As a consequence, CC STRATS are not used either.

ii) SRK=C1C2S3: The shrinking rule S1 is replaced with the rules C1C2.
iii) -CC STRATS: Does not use strategies to find extra violated CCs.

• Blossom separation algorithms:

15

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

i) -EPH BLOSSOM: Does not use the Extended Padberg-Hong blossom heuristic
ii) -EGH BLOSSOM: Does not use the Extended Grötschel-Holland blossom heuristic

iii) +FST BLOSSOM: Uses the blossom separation heuristic in [Fischetti et al., 1998]
• Separation algorithms from the literature:

i) -CYCLE COVER: Does not use Cycle Cover inequalities
ii) -EDGE COVER: Does not use Edge Cover inequalities

iii) +VERTEX COVER: Uses Vertex Cover inequalities
iv) -PATH: Does not use Path inequalities

• Separation Loop strategy:
i) SEP=TWO SUBLOOPS: The separations algorithms in the outer subloop are appended to the middle

subloop.
• Primal heuristic in the branch node:

i) BRANCH XHEUR=PB: Constructs a single solution using PB heuristic.
ii) BRANCH XHEUR=VP - EA4OP: Constructs a single solution using VP heuristic.

In Table 2 we summarize the mean relative difference to the best achieved LB and UB, as well as the mean relative
difference to the best performing configuration in terms of running time. The results grouped by instances are presented
in Appendix A.

Table 2: Results of the alternative configurations for RB&C. In bold, the values of the alternatives that are worse than
those obtained by the REFERENCE configuration.

Gap

Gen1 Gen2 Gen3

Strategy LB UB Time LB UB Time LB UB Time

REFERENCE 0.05 0.00 262.06 0.05 0.04 23.11 0.02 0.01 44.02

- SRK 0.13 0.00 532.37 0.10 0.04 25.86 0.02 0.02 134.74
SRK=C1C2S3 0.02 0.00 88.32 0.09 0.04 31.72 0.01 0.01 79.81
- CC STRATS 0.02 0.00 115.91 0.04 0.01 21.85 0.01 0.01 449.90

- EPH BLOSSOM 0.09 0.15 208.65 0.12 0.15 33.64 0.10 0.22 199.79
- EGH BLOSSOM 0.02 0.00 296.71 0.04 0.04 26.18 0.03 0.01 91.83
+ FST BLOSSOM 0.00 0.00 345.32 0.04 0.00 26.43 0.04 0.00 66.54

- EDGE COVER 0.11 0.00 137.73 0.13 0.04 30.04 0.05 0.01 35.50
- CYCLE COVER 0.06 0.00 124.79 0.02 0.04 25.60 0.03 0.01 48.18
- PATH 0.08 0.00 183.86 0.10 0.04 32.00 0.03 0.01 69.01
+ VERTEX COVER 0.05 0.00 61.10 0.03 0.04 22.33 0.03 0.01 104.82

SEP: TWO SUBLOOPS 0.05 0.00 315.34 0.06 0.04 17.05 0.03 0.01 164.44

BRANCH XHEUR=PB 0.08 0.00 179.14 0.12 0.01 2.37 0.04 0.01 62.74
BRANCH XHEUR=VP - EA4OP 0.02 0.00 222.46 0.07 0.04 7.17 0.01 0.01 168.63

The results show that the alternatives decrease the performance of the REFERENCE configuration for the RB&C
algorithm either in terms of solution quality, upper bound value, or running time. The experiments restate the importance
of the shrinking techniques for the SEC/CC separation algorithm, as can be seen in the results for -SRK. It is not only
worse not using the shrinking in terms of time, but indeed, the obtained LB values are also worse. In addition, the
results suggest that the S1 shrinking technique, which is considered in REFERENCE, might be preferable to the C1C2
technique. Regarding the CC STRATS, the results for Gen3 suggest that not considering the strategies to find extra
violated CCs might have a negative impact on the running time of the algorithm.

Next, looking at the separation algorithms for blossoms, the results show that the EPH heuristic is crucial in the RB&C,
particularly, if we focus on the obtained LB and UB values. From the table, we can also extract that the EGH heuristic
improves the running time of the B&C algorithm. Alternatively, although the FST blossom heuristic might improve the
quality of the solutions, it reports worse running times.

With respect to the rest of the separation algorithms proposed in the literature for the OP, we include in REFERECE all
but Vertex Cover inequalities. This way, the RB&C uses the same families of cuts as in [Fischetti et al., 1998], which
enables us to evaluate the contributions in this paper in a better way.

Finally, the experiments show that the VP primal heuristic plays an important role in obtaining better LB values,
particularly for large problems, as can be seen in the detailed results in Appendix A. However, solving the VP primal

16

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

heuristic in the branch node is more costly than PB primal heuristic, hence the running time of the RB&C is worsened
in the smallest instances. Similarly, by using the EA4OP to improve the results by VP heuristic, the obtained LB values
are improved in large problems at the expense of worsening the running time in the smallest instances.

5.2 Comparison with state-of-the-art Algorithms

The proposed reference RB&C has been compared with the state-of-the-art B&C algorithm in [Fischetti et al., 1998]
(FST) and two state-of-the-art heuristics, [Kobeaga et al., 2018] (EA4OP) and [Santini, 2019] (ALNS). The detailed
results can be found in Appendix B.

Three notes before moving on to the discussion. First, the FST code reports the running times using one trailing digit
while the rest of the algorithms report the times using two trailing digits. In order to make use of the reported times in
the literature of the FST, we round the obtained times by the RB&C to one trailing digit when we compare it with the
FST algorithm. Secondly, the FST returns a false optimum for pa561 in Gen1. We assume that this is a consequence of
the rounding sensibility and we accept as valid the rest of the reported optima by FST. Thirdly, eight instances (rat99,
rat195, tsp225, pa561, rat575, rat783, nrw1379, and fnl4461) of Gen3 have been excluded for the comparison of the
RB&C with the EA4OP and the ALNS, due to an issue in the generation of scores of the instances used by those
algorithms. Since the results of the current comparison are clear enough, we have discarded rerunning the experiments
with the updated scores.

First, we compare the RB&C algorithm with the B&C by [Fischetti et al., 1998]. The results of the FST algorithm were
updated using CPLEX12.5 in [Kobeaga et al., 2018], which is the same version of CPLEX used for the experiments of
RB&C. Moreover, the new experiments are run on the same machine with the same amount of reserved memory (4GB).
In Table 3 we summarize, by size and generation, the number of instances returning a feasible solution, #, the obtained
optimality certifications, OPT, the number of best-known solution (LB), and upper bound (UB) values.

Table 3: Comparison of the number of instances in which a feasible solution (#), an optimal (OPT), a best-known
solution (LB) or a best upper bound value (UB) were obtained.

OPT LB UB

Size Gen FST RB&C FST RB&C FST RB&C FST RB&C

Medium Gen1 45 45 45 44 45 45 45 44
Gen2 45 45 45 45 45 45 45 45
Gen3 45 45 45 45 45 45 45 45

Large Gen1 21 41 12 24 13 39 13 40
Gen2 22 41 9 10 9 36 13 38
Gen3 29 41 9 12 13 35 12 37

All 207 258 165 180 170 245 173 249

In Table 3 it can be seen that the RB&C algorithm is able to obtain the best-known solutions value in all the medium-
sized instances. Moving on to large-sized instances, the superiority of the RB&C algorithm compared to the FST
approach becomes evident. While the FST algorithm fails to output a solution in almost half of the instances (mainly
because of running out of memory), the RB&C algorithm returns a solution for every instance. Moreover, it obtains the
best-known solution in significantly more instances than FST (245 against 170) and UB (249 against 173) values. Even
more, it obtains more optimality certifications (180 against 165).

Table 4: Comparison of the number of obtained optimal solutions (OPT), number of best-known solutions (LB) and
number of best upper bounds (UB) in the instances that FST does return a solution.

OPT LB UB Time

FST RB&C FST RB&C FST RB&C FST RB&C

Gen1 66 1 4 0 6 2 8 15 40
Gen2 67 1 0 0 11 3 9 25 27
Gen3 74 1 3 1 14 4 17 23 33

All 207 3 7 1 31 9 34 63 100

17

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

In Table 4 we compare the quality of the solutions and running times, restricted to those instances in which FST actually
returns a solution. We particularly focus on the number of solutions (optimality certifications, best-known solutions
and upper bounds) that are new in the literature, i.e., values not obtained by the rest of the algorithms. Thus, for the
lower-bound values, we also take into account the results obtained by the EA4OP and ALNS heuristics. Additionally,
we show the number of instances in which the considered B&C algorithms are faster than the competitor. When we
restrict the considered instances to the instances where the FST obtains a feasible solution, the RB&C outperforms the
results of the FST. While the FST obtains 1 new best-known solution (not obtained by any other algorithm) and 9 new
UB values, the RB&C obtains 31 LB and 34 UB new values. In the same set of instances, the FST obtains 3 optimality
certifications that the RB&C is not able to obtain, while the RB&C obtains 7 optimality certifications that the FST is
unable to obtain. Moreover, it turns out that the RB&C is faster than the FST in 100 instances while the FST is faster
than the RB&C in 63 instances.

Next, we compare the RB&C algorithm against state-of-the-art algorithms in terms of solution quality, running time,
and Pareto efficiency. In Table 5 and Table 6 the algorithms are compared pairwise and instance-by-instance for
medium-sized and large-sized instances respectively. The aim is to measure the number of instances where an algorithm
is simultaneously as least as fast as the opponent and obtains a better quality solution.

Table 5: Comparison in medium-sized instances against state-of-the-art algorithms in terms of quality, time and Pareto
efficiency.

Gen1 Gen2 Gen3

EA4OP tie RB&C EA4OP tie RB&C EA4OP tie RB&C

Quality 0 30 15 0 14 31 0 15 27
Time 15 0 30 37 0 8 39 0 3
Pareto 7 0 30 10 0 8 13 0 3

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 0 40 5 0 29 16 0 29 13
Time 1 0 44 4 0 41 8 0 34
Pareto 1 0 44 1 0 41 5 0 34

FST tie RB&C FST tie RB&C FST tie RB&C

Quality 0 45 0 0 45 0 0 45 0
Time 14 6 25 17 2 26 18 1 26
Pareto 14 6 25 17 2 26 18 1 26

Table 5 shows that the RB&C algorithm is competitive in medium-sized instances. Compared to the ALNS heuristic
and FST algorithm, it obtains better Pareto efficiency results in the three generations. Comparing it to EA4OP, the
Pareto efficiency is lower because the heuristic is a faster algorithm. Nevertheless, the RB&C obtains much better
quality solutions.

Table 6 shows that RB&C is the best performing algorithm in large-sized instances. Particularly, it behaves better than
the FST algorithm, obtaining the best quality and time solutions in most of the instances, hence obtaining better Pareto
results. The ALNS algorithm is able to return some solutions with better quality or running time, however, overall,
the RB&C performs better in large-sized instances. The EA4OP metaheuristic is faster than the B&C but, in general,
obtains worse quality solutions.

Finally, in Table 7, we summarize the new best-known results obtained in the experiments. The RB&C algorithm
obtains 18 new optimality certifications, 76 new best-known solution values and 85 new upper-bound values.

6 Conclusions and Future Work

We have presented a revisited version of the B&C algorithm for the OP that brings multiple contributions together.
We have proposed a joint separation algorithm for SECs and CCs, which efficiently uses the shrinking technique for
cycle problems by reducing the adverse effects of the shrinking for CCs. We have developed two blossom heuristics for
cycle problems which generalize the well-known approaches in the literature of the TSP. We have designed an efficient
variable pricing procedure for the OP which enables us to avoid repetitive calculations and to skip the exact calculation

18

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

Table 6: Comparison in large-sized instances against state-of-the-art algorithms in terms of quality, time and Pareto
efficiency.

Gen1 Gen2 Gen3

EA4OP tie RB&C EA4OP tie RB&C EA4OP tie RB&C

Quality 1 0 40 5 0 36 3 0 33
Time 39 0 2 40 1 0 35 1 0
Pareto 1 0 2 5 0 1 3 0 1

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C

Quality 2 2 37 4 1 36 4 0 32
Time 6 11 24 13 25 3 13 19 4
Pareto 4 0 34 5 0 24 4 0 20

FST tie RB&C FST tie RB&C FST tie RB&C

Quality 0 13 28 0 9 32 3 11 27
Time 1 5 35 8 13 20 5 17 19
Pareto 1 1 39 8 0 33 7 2 32

Table 7: New best-known optimum, lower bound and upper bound values.

OPT LB UB

Gen1 12 25 28
Gen2 2 27 28
Gen3 4 24 29

All 18 76 85

of the reduced cost of some variables. We have proposed a separation loop for the OP that takes into consideration the
different contributions and separation costs of the valid inequalities. We have used alternative primal heuristics, one of
which is based on a metaheuristic, and a mechanism to update the global upper bound during the branching phase to
tighten the lower and upper bounds for the cases when the algorithm finishes without an optimality certification.

The experiments have shown that the RB&C algorithm for OP is a more efficient approach than the state-of-the-art B&C
algorithm. The introduced algorithm has increased the number of solved problems, obtained better running times in
more instances, succeeded in returning new optimality certifications, new best known solutions, and new upper-bound
values for large problems. Additionally, it has been shown that the RB&C algorithm obtains better quality solutions
than the state-of-the-art heuristics for the OP within the 5-hour running time limit.

Nevertheless, there are many research lines that remain open after this work. One of the most demanding aspects to
improve in the presented approach is the implementation of advanced branching techniques. The use of more general
cuts, such as combs and clique trees, and the development of their respective separation algorithms for cycle problems
might help to improve the performance of the RB&C algorithm. All these future contributions might help to solve
the remaining instances until optimality, but we can anticipate it will not be an easy challenge. Implementing the
contributions in this paper to other cycle problems which are different from the OP will definitely help to comprehend
their importance in the context of cycle problems with a more general view.

Acknowledgements The first and second authors are partially supported by the project PID2019-104933GB-I00 (Spanish
Ministry of Science and Innovation). The first and third authors are partially supported by the projects BERC 2018-2021 (Basque
Government) and by SEV-2017-0718 (Spanish Ministry of Economy and Competitiveness). The first author is also supported by the
grant BES-2015-072036 (Spanish Ministry of Economy and Competitiveness) and project ELKARTEK (Basque Government). The
second author is supported by IT-1252-19 (Basque Government) and GIU17/011 (University of the Basque Country). The third
author is also supported by IT-1244-19 (Basque Government) and TIN2016-78365R (Spanish Ministry of Science and Innovation).
We gratefully acknowledge the authors of the TSP solver Concorde for making their code available to the public, since it has
been the working basis of our implementations. We also thank Prof. J.J. Salazar-Gonzalez who provided us with the codes used
in [Fischetti et al., 1998].

19

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

References

[Angelelli et al., 2017] Angelelli, E., Archetti, C., Filippi, C., and Vindigni, M. (2017). The probabilistic orienteering
problem. Computers & Operations Research, 81:269–281.

[Applegate et al., 2007] Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The Traveling Salesman
Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton,
NJ, USA.

[Archetti et al., 2016] Archetti, C., Corberán, A., Plana, I., Sanchis, J. M., and Speranza, M. G. (2016). A branch-and-
cut algorithm for the orienteering arc routing problem. Computers & Operations Research, 66:95 – 104.

[Archetti et al., 2014] Archetti, C., Speranza, M. G., Corberán, A., Sanchis, J. M., and Plana, I. (2014). The team
orienteering arc routing problem. Transportation Science, 48(3):442–457.

[Balas, 1975] Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming, 8(1):146–164.
[Bauer, 1997] Bauer, P. (1997). The circuit polytope: Facets. Mathematics of Operations Research, 22(1):110–145.
[Bianchessi et al., 2018] Bianchessi, N., Mansini, R., and Speranza, M. G. (2018). A branch-and-cut algorithm for the

team orienteering problem. International Transactions in Operational Research, 25(2):627–635.
[Boussier et al., 2007] Boussier, S., Feillet, D., and Gendreau, M. (2007). An exact algorithm for team orienteering

problems. 4OR quarterly journal of the Belgian, French and Italian Operations Research Societies, 5:211–230.
[Dang et al., 2013] Dang, D.-C., El-Hajj, R., and Moukrim, A. (2013). A branch-and-cut algorithm for solving the

team orienteering problem. In Gomes, C. and Sellmann, M., editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pages 332–339, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Fischetti et al., 1998] Fischetti, M., Salazar-González, J. J., and Toth, P. (1998). Solving the orienteering problem
through branch-and-cut. INFORMS Journal on Computing, 10:133–148.

[Gendreau et al., 1998] Gendreau, M., Laporte, G., and Semet, F. (1998). A branch-and-cut algorithm for the undirected
selective traveling salesman problem. Networks, 32:263–273.

[Goldberg and Tsioutsiouliklis, 2001] Goldberg, A. V. and Tsioutsiouliklis, K. (2001). Cut tree algorithms: An
experimental study. Journal of Algorithms, 38(1):51 – 83.

[Golden et al., 1987] Golden, B. L., Levy, L., and Vohra, R. (1987). The orienteering problem. Naval Research
Logistics, 34:307–318.

[Grötschel and Holland, 1991] Grötschel, M. and Holland, O. (1991). Solution of large-scale symmetric travelling
salesman problems. Mathematical Programming, 51(1):141–202.

[Keshtkaran et al., 2015] Keshtkaran, M., Ziarati, K., Bettinelli, A., and Vigo, D. (2015). Enhanced exact solution
methods for the team orienteering problem. International Journal of Production Research, ahead-of-print:1–11.

[Kobeaga et al., 2018] Kobeaga, G., Merino, M., and Lozano, J. A. (2018). An efficient evolutionary algorithm for the
orienteering problem. Computers & Operations Research, 90:42 – 59.

[Kobeaga et al., 2020] Kobeaga, G., Merino, M., and Lozano, J. A. (2020). On solving cycle problems with branch-
and-cut: Extending shrinking and exact subcycle elimination separation algorithms. arXiv:2004.14574.

[Laporte and Martello, 1990] Laporte, G. and Martello, S. (1990). The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2):193 – 207.

[Leifer and Rosenwein, 1994] Leifer, A. C. and Rosenwein, M. B. (1994). Strong linear programming relaxations for
the orienteering problem. European Journal of Operational Research, 73(3):517–523.

[Padberg and Hong, 1980] Padberg, M. and Hong, S. (1980). On the symmetric travelling salesman problem: A
computational study, pages 78–107. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Poggi et al., 2010] Poggi, M., Viana, H., and Uchoa, E. (2010). The Team Orienteering Problem: Formulations and
Branch-Cut and Price. In Erlebach, T. and Lübbecke, M., editors, 10th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS’10), volume 14 of OpenAccess Series in Informatics
(OASIcs), pages 142–155, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Ramesh et al., 1992] Ramesh, R., Yoon, Y.-S., and Karwan, M. H. (1992). An optimal algorithm for the orienteering
tour problem. ORSA Journal on Computing, 4(2):155–165.

[Riera-Ledesma and Salazar-González, 2017] Riera-Ledesma, J. and Salazar-González, J. J. (2017). Solving the team
orienteering arc routing problem with a column generation approach. European Journal of Operational Research,
262(1):14 – 27.

20

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

[Santini, 2019] Santini, A. (2019). An adaptive large neighbourhood search algorithm for the orienteering problem.
Expert Systems with Applications, 123:154 – 167.

[Tsiligirides, 1984] Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational
Research Society, 35:797–809.

[Vansteenwegen and Gunawan, 2019] Vansteenwegen, P. and Gunawan, A. (2019). State-of-the-Art Solution Tech-
niques for OP and TOP, pages 41–66. Springer International Publishing, Cham.

21

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

Appendices

A Configuration of Components: Detailed Results

In this section, we show the detailed results of the alternative RB&C configurations by instances and generations. Each
configuration has been executed five times with a 5-hour execution time limit. We show the obtained results of the
configuration in terms of lower-bound values, LB, upper-bound values, UB, and time (in seconds) performance, Time.
For the LB and UB, the obtained best value for each configuration (the maximum for LB and the minimum for the UB)
is presented in the Best column. Regarding the Time, the Mean column shows the meantime of the five executions. The
Gap column represents the relative distance to best-known value (higher Best value in the case of LB, and lower Best in
the case of UB and Mean in the case of Time, respectively).

22

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Gen

Gen1 Gen2 Gen3

LB UB Time LB UB Time LB UB Time

Strategy Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap

REFERENCE 49 0 49 0 0.04 123.66 2708 0 2708 0 1.13 90.94 2430 0 2430 0 1.03 39.55

- SRK 49 0 49 0 0.04 119.35 2708 0 2708 0 1.21 104.70 2430 0 2430 0 1.06 42.60
SRK=C1C2S3 49 0 49 0 0.04 111.83 2708 0 2708 0 1.38 133.98 2430 0 2430 0 0.90 21.84
- CC STRATS 49 0 49 0 0.04 124.73 2708 0 2708 0 1.13 90.57 2430 0 2430 0 1.04 39.74

- EPH BLOSSOM 49 0 49 0 0.03 64.52 2708 0 2708 0 1.44 143.58 2430 0 2430 0 0.74 0.00
- EGH BLOSSOM 49 0 49 0 0.02 0.00 2708 0 2708 0 1.22 106.29 2430 0 2430 0 0.97 30.56
+ FST BLOSSOM 49 0 49 0 0.09 398.92 2708 0 2708 0 1.32 123.29 2430 0 2430 0 0.85 14.47

- EDGE COVER 49 0 49 0 0.03 83.87 2708 0 2708 0 1.33 125.56 2430 0 2430 0 1.76 136.91
- CYCLE COVER 49 0 49 0 0.05 174.19 2708 0 2708 0 1.20 103.38 2430 0 2430 0 0.97 30.70
- PATH 49 0 49 0 0.04 116.13 2708 0 2708 0 1.39 135.40 2430 0 2430 0 0.79 7.02
+ VERTEX COVER 49 0 49 0 0.04 104.30 2708 0 2708 0 1.11 87.02 2430 0 2430 0 0.98 31.94

SEP: TWO SUBLOOPS 49 0 49 0 0.07 266.67 2708 0 2708 0 0.95 60.62 2430 0 2430 0 1.00 34.99

BRANCH HEUR=PB 49 0 49 0 0.05 175.27 2708 0 2708 0 0.59 0.00 2430 0 2430 0 1.41 90.47
BRANCH HEUR=VP - EA4OP 49 0 49 0 0.04 119.35 2708 0 2708 0 0.66 11.22 2430 0 2430 0 0.96 29.35

Table 8: pr76.

Gen

Gen1 Gen2 Gen3

LB UB Time LB UB Time LB UB Time

Strategy Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap

REFERENCE 363 0.00 363 0.00 359.51 1031.58 19633 0.06 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 166.80 29.99

- SRK 363 0.00 363 0.00 643.50 1925.50 19635 0.05 19800 0.01 18000.00 0.00 15498 0.00 15498 0.00 219.86 71.34
SRK=C1C2S3 363 0.00 363 0.00 120.89 280.53 19634 0.05 19800 0.01 18000.00 0.00 15498 0.00 15498 0.00 284.01 121.34
- CC STRATS 363 0.00 363 0.00 118.09 271.70 19633 0.06 19802 0.02 18000.00 0.00 15498 0.00 15498 0.00 2696.49 2001.40

- EPH BLOSSOM 363 0.00 363 0.00 31.77 0.00 19643 0.01 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 316.47 146.63
- EGH BLOSSOM 363 0.00 363 0.00 420.83 1224.61 19634 0.05 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 252.53 96.80
+ FST BLOSSOM 363 0.00 363 0.00 423.05 1231.61 19644 0.00 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 210.91 64.36

- EDGE COVER 363 0.00 363 0.00 176.79 456.47 19636 0.04 19800 0.01 18000.00 0.00 15498 0.00 15498 0.00 180.40 40.59
- CYCLE COVER 363 0.00 363 0.00 110.11 246.59 19642 0.01 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 221.88 72.91
- PATH 363 0.00 363 0.00 252.18 693.77 19629 0.08 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 212.04 65.25
+ VERTEX COVER 363 0.00 363 0.00 81.69 157.14 19637 0.04 19799 0.00 18000.00 0.00 15498 0.00 15498 0.00 305.62 138.18

SEP: TWO SUBLOOPS 363 0.00 363 0.00 300.17 844.81 19631 0.07 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 146.51 14.18

BRANCH HEUR=PB 363 0.00 363 0.00 190.93 500.97 19611 0.17 19800 0.01 18000.00 0.00 15498 0.00 15498 0.00 194.63 51.68
BRANCH HEUR=VP - EA4OP 363 0.00 363 0.00 270.75 752.20 19619 0.13 19801 0.01 18000.00 0.00 15498 0.00 15498 0.00 1000.74 679.89

Table 9: att532.

23

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Gen

Gen1 Gen2 Gen3

LB UB Time LB UB Time LB UB Time

Strategy Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap

REFERENCE 777 0.00 777 0.00 5378.5 144.79 40770 0.02 40954 0.02 18000.0 0.00 37669 0.00 37669 0.00 4735.9 150.57

- SRK 777 0.00 777 0.00 9969.9 353.75 40777 0.00 40952 0.01 18000.0 0.00 37669 0.00 37669 0.00 12469.7 559.74
SRK=C1C2S3 777 0.00 777 0.00 2731.9 24.34 40765 0.03 40953 0.02 18000.0 0.00 37669 0.00 37669 0.00 6725.9 255.85
- CC STRATS 777 0.00 777 0.00 4937.8 124.73 40772 0.01 40953 0.02 18000.0 0.00 37669 0.00 37669 0.00 5828.3 208.36

- EPH BLOSSOM 777 0.00 777 0.00 13669.6 522.14 40777 0.00 41006 0.15 18000.0 0.00 37665 0.01 37758 0.24 18000.0 852.33
- EGH BLOSSOM 777 0.00 777 0.00 7073.6 221.94 40773 0.01 40948 0.00 18000.0 0.00 37669 0.00 37669 0.00 8161.1 331.78
+ FST BLOSSOM 777 0.00 777 0.00 2197.2 0.00 40775 0.00 40946 0.00 18000.0 0.00 37669 0.00 37669 0.00 6688.2 253.86

- EDGE COVER 777 0.00 777 0.00 3303.3 50.34 40773 0.01 40954 0.02 18000.0 0.00 37669 0.00 37669 0.00 1890.1 0.00
- CYCLE COVER 777 0.00 777 0.00 4072.0 85.33 40775 0.00 40950 0.01 18000.0 0.00 37669 0.00 37669 0.00 4485.4 137.31
- PATH 777 0.00 777 0.00 4103.7 86.77 40775 0.00 40952 0.01 18000.0 0.00 37669 0.00 37669 0.00 7045.8 272.77
+ VERTEX COVER 777 0.00 777 0.00 3165.5 44.07 40777 0.00 40953 0.02 18000.0 0.00 37669 0.00 37669 0.00 8580.9 353.99

SEP: TWO SUBLOOPS 777 0.00 777 0.00 5145.1 134.17 40773 0.01 40950 0.01 18000.0 0.00 37669 0.00 37669 0.00 16501.5 773.05

BRANCH HEUR=PB 777 0.00 777 0.00 2596.3 18.16 40767 0.02 40955 0.02 18000.0 0.00 37669 0.00 37669 0.00 5133.0 171.57
BRANCH HEUR=VP - EA4OP 777 0.00 777 0.00 3767.8 71.48 40763 0.03 40956 0.02 18000.0 0.00 37669 0.00 37669 0.00 4421.5 133.93

Table 10: vm1084.

Gen

Gen1 Gen2 Gen3

LB UB Time LB UB Time LB UB Time

Strategy Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap

REFERENCE 814 0.00 814 0.00 3565.7 10.26 43377 0.00 43454 0.18 18000.0 24.62 47162 0.11 47373 0.00 18000.0 0.00

- SRK 814 0.00 814 0.00 11747.3 263.25 43378 0.00 43452 0.17 18000.0 24.62 47195 0.04 47408 0.08 18000.0 0.00
SRK=C1C2S3 814 0.00 814 0.00 4039.8 24.92 43378 0.00 43457 0.18 18000.0 24.62 47212 0.01 47382 0.02 18000.0 0.00
- CC STRATS 814 0.00 814 0.00 5121.9 58.38 43378 0.00 43378 0.00 17145.6 18.71 47213 0.00 47386 0.03 18000.0 0.00

- EPH BLOSSOM 814 0.00 819 0.61 18000.0 456.60 43371 0.02 43543 0.38 18000.0 24.62 47075 0.30 47698 0.69 18000.0 0.00
- EGH BLOSSOM 814 0.00 814 0.00 4431.3 37.02 43377 0.00 43455 0.18 18000.0 24.62 47190 0.05 47394 0.05 18000.0 0.00
+ FST BLOSSOM 814 0.00 814 0.00 6341.4 96.09 43378 0.00 43378 0.00 15722.3 8.85 47200 0.03 47371 0.00 18000.0 0.00

- EDGE COVER 814 0.00 814 0.00 6401.6 97.95 43273 0.24 43456 0.18 18000.0 24.62 47109 0.22 47381 0.02 18000.0 0.00
- CYCLE COVER 814 0.00 814 0.00 7045.5 117.86 43378 0.00 43449 0.16 18000.0 24.62 47193 0.05 47385 0.03 18000.0 0.00
- PATH 814 0.00 814 0.00 3965.2 22.61 43378 0.00 43446 0.16 18000.0 24.62 47201 0.03 47379 0.02 18000.0 0.00
+ VERTEX COVER 814 0.00 814 0.00 3233.9 0.00 43377 0.00 43450 0.17 18000.0 24.62 47171 0.09 47379 0.02 18000.0 0.00

SEP: TWO SUBLOOPS 814 0.00 814 0.00 13939.5 331.04 43373 0.01 43451 0.17 18000.0 24.62 47196 0.04 47378 0.01 18000.0 0.00

BRANCH HEUR=PB 814 0.00 814 0.00 9743.9 201.30 43378 0.00 43378 0.00 16153.4 11.84 47215 0.00 47387 0.03 18000.0 0.00
BRANCH HEUR=VP - EA4OP 814 0.00 814 0.00 8707.5 169.25 43378 0.00 43449 0.16 18000.0 24.62 47195 0.04 47376 0.01 18000.0 0.00

Table 11: rl1323.

24

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Gen

Gen1 Gen2 Gen3

LB UB Time LB UB Time LB UB Time

Strategy Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap

REFERENCE 1276 0.23 1282 0.00 18000 0 68013 0.16 68305 0.01 18000 0 71903 0.01 72018 0.02 18000 0

- SRK 1271 0.63 1282 0.00 18000 0 67812 0.45 68306 0.01 18000 0 71853 0.08 72012 0.01 18000 0
SRK=C1C2S3 1278 0.08 1282 0.00 18000 0 67863 0.38 68306 0.01 18000 0 71887 0.03 72010 0.01 18000 0
- CC STRATS 1278 0.08 1282 0.00 18000 0 68016 0.15 68304 0.01 18000 0 71894 0.02 72012 0.01 18000 0

- EPH BLOSSOM 1273 0.47 1284 0.16 18000 0 67735 0.57 68460 0.23 18000 0 71755 0.21 72118 0.16 18000 0
- EGH BLOSSOM 1278 0.08 1282 0.00 18000 0 68029 0.14 68311 0.02 18000 0 71854 0.08 72016 0.02 18000 0
+ FST BLOSSOM 1279 0.00 1282 0.00 18000 0 67986 0.20 68300 0.00 18000 0 71773 0.19 72003 0.00 18000 0

- EDGE COVER 1272 0.55 1282 0.00 18000 0 67877 0.36 68306 0.01 18000 0 71873 0.05 72017 0.02 18000 0
- CYCLE COVER 1275 0.31 1282 0.00 18000 0 68055 0.10 68302 0.00 18000 0 71845 0.09 72014 0.02 18000 0
- PATH 1274 0.39 1282 0.00 18000 0 67831 0.43 68309 0.01 18000 0 71808 0.14 72013 0.01 18000 0
+ VERTEX COVER 1276 0.23 1282 0.00 18000 0 68032 0.13 68300 0.00 18000 0 71883 0.04 72016 0.02 18000 0

SEP: TWO SUBLOOPS 1276 0.23 1282 0.00 18000 0 67967 0.23 68314 0.02 18000 0 71830 0.11 72017 0.02 18000 0

BRANCH HEUR=PB 1274 0.39 1282 0.00 18000 0 67830 0.43 68300 0.00 18000 0 71779 0.18 72017 0.02 18000 0
BRANCH HEUR=VP - EA4OP 1278 0.08 1282 0.00 18000 0 67981 0.21 68307 0.01 18000 0 71890 0.03 72016 0.02 18000 0

Table 12: vm1748.

25

A revisited branch-and-cut algorithm for large-scale orienteering problems A PREPRINT

B Comparison with state-of-the-art Algorithms: Detailed Results

In this appendix, we detail the experimental results for the four algorithms (FST B&C, EA4OP, ALNS and RB&C).
Table 13 shows the results for medium-sized instances of generation 1, Table 14 for large-sized instances of generation
1, Table 15 for medium-sized instances of generation 2, Table 16 for large-sized instances of generation 2, Table 17 for
medium-sized instances of generation 3 and Table 18 for large-sized instances of generation 3.

In the Best column, we show the global best-known lower and upper-bound values. For each algorithm, we detail
the best LB, the goodness gap GGap, the best UB, and the meantime (in seconds). The GGap represents the relative
distance between the algorithm’s best LB and the global best-known LB. For the RB&C algorithm we also detail the
optimality gap OGap which represents the relative distance between the obtained LB and UB by RB&C.

For each algorithm, generation and size, we have calculated the average gap and running time over the instances where
a feasible solution was obtained by the algorithm. In those instances where the time limit was reached, a running time
of 5 hours has been used. These averages are shown in the last row of the tables. The symbols in the tables mean the
following:

∗ : best-known solution achieved
− : not comparable result

. : the code finished unexpectedly

26

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 13: Generation 1, n ≤ 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

att48 31 31 31 * 31 0.00 31 * 0.25 31 * 6.77 31 * 31 * 0.03
gr48 31 31 31 * 31 0.00 31 * 0.13 31 * 9.99 31 * 31 * 0.02
hk48 30 30 30 * 30 0.00 30 * 0.24 30 * 7.20 30 * 30 * 0.01
eil51 29 29 29 * 29 0.00 29 * 0.24 29 * 9.51 29 * 29 * 0.01

berlin52 37 37 37 * 37 0.00 37 * 0.30 37 * 9.42 37 * 37 * 0.02
brazil58 46 46 46 * 46 0.00 46 * 1.00 46 * 9.13 46 * 46 * 0.07

st70 43 43 43 * 43 0.10 43 * 0.32 43 * 15.99 43 * 43 * 0.05
eil76 47 47 47 * 47 0.10 46 2.13 0.33 47 * 20.51 47 * 47 * 0.04
pr76 49 49 49 * 49 0.10 49 * 0.61 49 * 18.64 49 * 49 * 0.06
gr96 64 64 64 * 64 0.10 64 * 1.44 64 * 20.31 64 * 64 * 0.08
rat99 52 52 52 * 52 0.40 52 * 0.66 52 * 27.75 52 * 52 * 0.47

kroA100 56 56 56 * 56 0.40 55 1.79 0.34 56 * 34.75 56 * 56 * 0.41
kroB100 58 58 58 * 58 95.40 57 1.72 0.63 58 * 43.06 58 * 58 * 0.27
kroC100 56 56 56 * 56 0.40 56 * 0.48 56 * 34.32 56 * 56 * 0.25
kroD100 59 59 59 * 59 0.10 58 1.69 0.65 59 * 34.61 59 * 59 * 0.09
kroE100 57 57 57 * 57 159.20 57 * 0.50 57 * 32.26 57 * 57 * 5.53

rd100 61 61 61 * 61 0.20 61 * 0.74 61 * 29.49 61 * 61 * 0.12
eil101 64 64 64 * 64 0.10 64 * 0.79 64 * 31.73 64 * 64 * 0.06
lin105 66 66 66 * 66 0.30 66 * 1.42 66 * 32.11 66 * 66 * 0.48
pr107 54 54 54 * 54 0.30 54 * 0.93 54 * 78.46 54 * 54 * 0.08
gr120 75 75 75 * 75 0.10 74 1.33 1.20 75 * 29.58 75 * 75 * 0.28
pr124 75 75 75 * 75 0.30 75 * 1.11 75 * 49.64 75 * 75 * 0.35

bier127 103 103 103 * 103 0.30 103 * 1.18 103 * 40.84 103 * 103 * 0.38
pr136 71 71 71 * 71 1.40 71 * 0.96 71 * 29.97 71 * 71 * 1.75
gr137 81 81 81 * 81 1.50 78 3.70 3.44 81 * 59.21 81 * 81 * 0.24
pr144 77 77 77 * 77 1.30 77 * 2.61 77 * 87.82 77 * 77 * 1.46

kroA150 86 86 86 * 86 175.40 86 * 1.17 86 * 82.79 86 * 86 * 33.87
kroB150 87 87 87 * 87 1.20 86 1.15 1.00 87 * 61.64 87 * 87 * 2.21

pr152 77 77 77 * 77 1.40 77 * 3.64 77 * 91.38 77 * 77 * 1.29
u159 93 93 93 * 93 3.40 92 1.08 1.11 93 * 99.63 93 * 93 * 1.82

rat195 102 102 102 * 102 2.60 99 2.94 1.78 102 * 195.57 102 * 102 * 3.71
d198 123 123 123 * 123 3.20 123 * 6.68 123 * 65.57 123 * 123 * 5.28

kroA200 117 117 117 * 117 1.20 117 * 1.74 117 * 114.75 117 * 117 * 2.50
kroB200 119 119 119 * 119 14.10 119 * 1.67 119 * 86.58 119 * 119 * 9.91

gr202 145 145 145 * 145 12.70 145 * 6.89 145 * 187.56 145 * 145 * 2.71
ts225 124 124 124 * 124 10216.30 124 * 1.28 124 * 279.52 124 * 126 1.59 18000.00

tsp225 129 129 129 * 129 94.40 127 1.55 2.29 128 0.78 198.47 129 * 129 * 4.31
pr226 126 126 126 * 126 166.20 126 * 6.61 126 * 181.94 126 * 126 * 107.69
gr229 176 176 176 * 176 0.90 176 * 8.81 173 1.70 108.27 176 * 176 * 0.32
gil262 158 158 158 * 158 0.90 156 1.27 2.83 158 * 240.02 158 * 158 * 0.35
pr264 132 132 132 * 132 21.20 132 * 5.62 132 * 314.29 132 * 132 * 3.92
a280 147 147 147 * 147 13.60 143 2.72 3.00 144 2.04 239.06 147 * 147 * 40.65

pr299 162 162 162 * 162 111.50 160 1.23 3.12 162 * 410.90 162 * 162 * 48.85
lin318 205 205 205 * 205 22.40 202 1.46 7.15 203 0.98 294.23 205 * 205 * 5.49
rd400 239 239 239 * 239 37.40 234 2.09 6.59 237 0.84 422.56 239 * 239 * 36.71

average * 248.05 0.62 2.12 0.14 99.51 * 0.04 407.20

27

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 14: Generation 1, n > 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

fl417 228 230 228 * 230 18000.00 224 1.75 11.84 228 * 1056.07 228 * 231 1.30 18000.00
gr431 350 350 350 * 350 139.90 349 0.29 32.84 347 0.86 533.55 350 * 350 * 29.05
pr439 313 313 313 * 313 833.30 310 0.96 9.92 307 1.92 1263.74 313 * 313 * 414.00

pcb442 251 251 251 * 251 14.90 244 2.79 6.94 249 0.80 1328.72 251 * 251 * 7.21
d493 320 320 320 * 320 347.30 315 1.56 19.10 317 0.94 1291.93 320 * 320 * 13.37

att532 363 363 363 * 363 593.00 347 4.41 23.14 359 1.10 1380.54 363 * 363 * 312.50
ali535 425 426 424 0.24 73.03 422 0.71 1846.10 425 * 426 0.23 18000.00
pa561 357 357 356 0.28 - 2103.60 348 2.52 23.18 346 3.08 1605.42 357 * 357 * 245.42
u574 354 354 354 * 354 61.40 344 2.82 17.93 347 1.98 1204.18 354 * 354 * 24.00

rat575 322 322 322 * 322 59.50 309 4.04 13.76 317 1.55 3109.65 322 * 322 * 42.82
p654 343 396 327 4.66 553 18000.00 336 2.04 28.89 343 * 10866.70 342 0.29 396 13.64 18000.00
d657 386 386 386 * 386 715.70 377 2.33 23.24 380 1.55 3152.17 386 * 386 * 92.48

gr666 503 503 503 * 503 634.20 497 1.19 109.54 486 3.38 660.30 503 * 503 * 400.56
u724 439 439 439 * 439 1077.10 429 2.28 27.77 434 1.14 4157.30 439 * 439 * 188.61

rat783 438 438 438 * 438 594.30 422 3.65 34.59 428 2.28 2962.52 438 * 438 * 514.68
dsj1000 656 656 632 3.66 81.20 630 3.96 17284.30 656 * 656 * 3828.50
pr1002 606 606 604 0.33 608 18000.00 572 5.61 45.92 581 4.13 18000.00 606 * 606 * 4483.81
u1060 660 660 627 5.00 90.04 644 2.42 18000.00 660 * 660 * 16716.01

vm1084 777 777 777 * 777 4927.40 770 0.90 56.29 765 1.54 18000.00 777 * 777 * 5012.60
pcb1173 675 675 633 6.22 60.65 652 3.41 18000.00 675 * 675 * 6819.83

d1291 715 715 646 9.65 434.87 699 2.24 18000.00 715 * 715 * 7916.85
rl1304 802 802 766 4.49 102.45 788 1.75 18000.00 802 * 802 * 6269.39
rl1323 814 814 811 0.37 846 18000.00 782 3.93 89.68 785 3.56 14585.10 814 * 814 * 7740.17

nrw1379 815 817 771 5.40 106.97 790 3.07 18000.00 815 * 817 0.24 18000.00
fl1400 1048 1084 909 13.26 1230 18000.00 1043 0.48 518.25 1048 * 18000.00 1003 4.29 1084 7.47 18000.00
u1432 754 764 738 2.12 121.46 749 0.66 14573.50 754 * 764 1.31 18000.00
fl1577 897 900 880 1.90 286.47 748 16.61 18000.00 897 * 900 0.33 18000.00
d1655 922 924 846 8.24 757.70 890 3.47 18000.00 922 * 924 0.22 18000.00

vm1748 1276 1282 873 31.58 . 18000.00 1246 2.35 178.50 1252 1.88 16959.80 1276 * 1282 0.47 18000.00
u1817 983 983 879 10.58 975.58 947 3.66 18000.00 983 * 983 * 11226.88
rl1889 1226 1226 890 27.41 1296 18000.00 1167 4.81 269.81 1156 5.71 18000.00 1226 * 1226 * 17010.43
d2103 1200 1200 1069 10.92 951.27 1171 2.42 18000.00 1200 * 1200 * 15855.62
u2152 1151 1151 1048 8.95 1350.23 1111 3.48 18000.00 1151 * 1151 * 14703.25
u2319 1170 1171 1167 0.26 423.26 1170 * 6088.42 1170 * 1171 0.09 18000.00

pr2392 1316 1415 1140 13.37 . 18000.00 1292 1.82 402.29 1294 1.67 18000.00 1316 * 1415 7.00 18000.00
pcb3038 1727 1730 1572 8.98 681.94 1626 5.85 18000.00 1727 * 1730 0.17 18000.00

fl3795 1965 2249 1815 7.63 2994.90 1818 7.48 18000.00 1965 * 2249 12.63 18000.00
fnl4461 2541 2570 2350 7.52 2462.65 2342 7.83 18000.00 2541 * 2570 1.13 18000.00

rl5915 3593 3786 3358 6.54 5361.54 3328 7.38 18000.00 3593 * 3786 5.10 18000.00
rl5934 3632 3752 3145 13.41 5382.25 3276 9.80 18000.00 3632 * 3752 3.20 18000.00

pla7397 5289 5657 5141 2.80 15981.78 5140 2.82 18000.00 5289 * 5657 6.51 18000.00

average 4.35 7433.41 4.32 990.82 3.12 11802.68 0.11 1.49 10387.02

28

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 15: Generation 2, n ≤ 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

att48 1717 1717 1717 * 1717 0.00 1717 * 0.32 1717 * 6.77 1717 * 1717 * 0.04
gr48 1761 1761 1761 * 1761 0.20 1749 0.68 0.20 1761 * 7.87 1761 * 1761 * 1.32
hk48 1614 1614 1614 * 1614 0.10 1614 * 0.15 1614 * 7.19 1614 * 1614 * 0.10
eil51 1674 1674 1674 * 1674 0.40 1668 0.36 0.18 1674 * 10.13 1674 * 1674 * 0.96

berlin52 1897 1897 1897 * 1897 93.40 1897 * 0.35 1897 * 10.74 1897 * 1897 * 3.23
brazil58 2220 2220 2220 * 2220 0.10 2218 0.09 1.52 2220 * 12.32 2220 * 2220 * 0.46

st70 2286 2286 2286 * 2286 19.40 2285 0.04 0.31 2286 * 21.65 2286 * 2286 * 1.77
eil76 2550 2550 2550 * 2550 0.10 2550 * 0.43 2550 * 16.06 2550 * 2550 * 0.62
pr76 2708 2708 2708 * 2708 0.40 2708 * 0.48 2708 * 19.48 2708 * 2708 * 1.46
gr96 3396 3396 3396 * 3396 1.70 3394 0.06 1.44 3394 0.06 31.98 3396 * 3396 * 9.50
rat99 2944 2944 2944 * 2944 0.90 2944 * 0.49 2944 * 32.08 2944 * 2944 * 3.25

kroA100 3212 3212 3212 * 3212 0.90 3212 * 0.57 3212 * 32.85 3212 * 3212 * 0.70
kroB100 3241 3241 3241 * 3241 6.70 3238 0.09 0.52 3239 0.06 48.39 3241 * 3241 * 13.28
kroC100 2947 2947 2947 * 2947 85.60 2931 0.54 0.60 2947 * 39.27 2947 * 2947 * 2.22
kroD100 3307 3307 3307 * 3307 45.00 3307 * 0.65 3307 * 30.52 3307 * 3307 * 3.62
kroE100 3090 3090 3090 * 3090 230.10 3082 0.26 0.50 3090 * 39.57 3090 * 3090 * 11.31

rd100 3359 3359 3359 * 3359 0.20 3359 * 0.50 3359 * 30.80 3359 * 3359 * 0.36
eil101 3655 3655 3655 * 3655 153.00 3655 * 0.82 3655 * 26.19 3655 * 3655 * 4.15
lin105 3544 3544 3544 * 3544 67.30 3530 0.40 1.10 3544 * 36.22 3544 * 3544 * 2.51
pr107 2667 2667 2667 * 2667 0.60 2667 * 1.05 2667 * 69.67 2667 * 2667 * 0.20
gr120 4371 4371 4371 * 4371 35.80 4356 0.34 1.37 4371 * 40.41 4371 * 4371 * 6.57
pr124 3917 3917 3917 * 3917 0.50 3899 0.46 1.34 3917 * 55.25 3917 * 3917 * 1.07

bier127 5383 5383 5383 * 5383 58.80 5381 0.04 1.71 5366 0.32 23.01 5383 * 5383 * 0.96
pr136 4309 4309 4309 * 4309 2.10 4309 * 1.15 4309 * 35.63 4309 * 4309 * 1.25
gr137 4286 4286 4286 * 4286 196.90 4099 4.36 3.09 4286 * 639.80 4286 * 4286 * 10.65
pr144 4003 4003 4003 * 4003 90.40 3965 0.95 3.02 3969 0.85 100.20 4003 * 4003 * 32.23

kroA150 4918 4918 4918 * 4918 241.40 4902 0.33 1.26 4918 * 80.06 4918 * 4918 * 60.43
kroB150 4869 4869 4869 * 4869 24.80 4869 * 1.19 4869 * 61.96 4869 * 4869 * 16.94

pr152 4279 4279 4279 * 4279 2.20 4245 0.79 3.47 4279 * 67.41 4279 * 4279 * 1.85
u159 4960 4960 4960 * 4960 192.20 4941 0.38 1.44 4950 0.20 109.59 4960 * 4960 * 14.96

rat195 5791 5791 5791 * 5791 128.80 5703 1.52 1.55 5782 0.16 263.23 5791 * 5791 * 46.09
d198 6670 6670 6670 * 6670 74.20 6660 0.15 7.33 6661 0.13 88.47 6670 * 6670 * 298.24

kroA200 6547 6547 6547 * 6547 68.70 6534 0.20 1.71 6547 * 116.11 6547 * 6547 * 16.18
kroB200 6419 6419 6419 * 6419 34.70 6278 2.20 1.97 6413 0.09 189.98 6419 * 6419 * 20.62

gr202 7789 7789 7789 * 7789 85.70 7789 * 8.77 7719 0.90 188.27 7789 * 7789 * 139.90
ts225 6834 6834 6834 * 6834 6.60 6819 0.22 1.47 6782 0.76 394.00 6834 * 6834 * 95.22

tsp225 6987 6987 6987 * 6987 174.50 6936 0.73 1.87 6980 0.10 299.73 6987 * 6987 * 54.09
pr226 6662 6662 6662 * 6662 74.10 6658 0.06 7.29 6662 * 201.68 6662 * 6662 * 2894.81
gr229 9177 9177 9177 * 9177 182.60 9174 0.03 13.19 9177 * 1379.35 9177 * 9177 * 16.67
gil262 8321 8321 8321 * 8321 89.60 8175 1.75 3.47 8269 0.62 487.41 8321 * 8321 * 64.63
pr264 6654 6654 6654 * 6654 23.00 6173 7.23 5.94 6654 * 314.27 6654 * 6654 * 13.33
a280 8428 8428 8428 * 8428 103.80 8304 1.47 2.85 8404 0.28 215.31 8428 * 8428 * 519.95

pr299 9182 9182 9182 * 9182 426.50 9112 0.76 3.23 9147 0.38 393.12 9182 * 9182 * 623.34
lin318 10923 10923 10923 * 10923 862.40 10866 0.52 8.29 10801 1.12 370.64 10923 * 10923 * 367.53
rd400 13652 13652 13652 * 13652 293.50 13442 1.54 6.80 13562 0.66 1174.91 13652 * 13652 * 769.66

average * 92.89 0.63 2.38 0.15 173.77 * * 136.63

29

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 16: Generation 2, n > 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

fl417 11933 12294 11894 0.33 12294 18000.00 11787 1.22 16.73 11923 0.08 2144.94 11933 * 12387 3.67 18000.00
gr431 18318 18318 18318 * 18318 969.50 18287 0.17 51.38 18318 * 2740.82 18318 * 18318 * 2809.41
pr439 16171 16171 16171 * 16171 1298.30 16085 0.53 11.77 16128 0.27 629.44 16171 * 16171 * 3765.86

pcb442 14484 14484 14484 * 14484 6259.10 14273 1.46 6.83 14411 0.50 4410.74 14484 * 14484 * 13760.94
d493 16995 17007 16729 1.57 17.15 16820 1.03 6231.42 16995 * 17007 0.07 18000.00

att532 19635 19800 19598 0.19 19800 18000.00 19265 1.88 23.43 19465 0.87 1564.89 19635 * 19800 0.83 18000.00
ali535 21954 21954 21954 * 21954 2099.70 21910 0.20 95.05 21761 0.88 1537.87 21954 * 21973 0.09 18000.00
pa561 19576 19576 19576 * 19576 1487.10 18894 3.48 23.45 19092 2.47 790.31 19576 * 19576 * 1961.95
u574 19351 19351 19351 * 19351 612.50 18966 1.99 16.33 19028 1.67 5389.10 19351 * 19351 * 1026.82

rat575 18251 18251 18251 * 18251 931.10 17705 2.99 14.97 17984 1.46 2089.02 18251 * 18251 * 9616.70
p654 17900 21566 17160 4.13 21566 18000.00 17821 0.44 42.82 17900 * 18000.00 17753 0.82 22248 20.20 18000.00
d657 21503 21503 21503 * 21503 2682.40 21162 1.59 22.90 21231 1.26 4161.44 21503 * 21503 * 554.67

gr666 26514 26569 26336 0.67 136.48 25971 2.05 1024.22 26514 * 26569 0.21 18000.00
u724 24223 24223 24223 * 24223 5830.50 23793 1.78 28.71 23878 1.42 5755.06 24223 * 24223 * 9829.42

rat783 25474 25474 24861 2.41 32.36 24987 1.91 6622.62 25474 * 25474 * 12246.90
dsj1000 35835 35915 35772 0.18 35917 18000.00 34463 3.83 83.34 34641 3.33 18000.00 35835 * 35915 0.22 18000.00
pr1002 33030 33092 27066 18.06 . 18000.00 31746 3.89 46.19 32120 2.76 18000.00 33030 * 33092 0.19 18000.00
u1060 36151 36291 35110 2.88 77.78 35284 2.40 18000.00 36151 * 36291 0.39 18000.00

vm1084 40777 40952 40687 0.22 40954 18000.00 40308 1.15 55.67 40240 1.32 18000.00 40777 * 40952 0.43 18000.00
pcb1173 37035 37100 35826 3.26 69.94 35946 2.94 18000.00 37035 * 37100 0.18 18000.00

d1291 37778 37854 35153 6.95 289.25 36815 2.55 18000.00 37778 * 37854 0.20 18000.00
rl1304 42275 42359 40561 4.05 97.68 40893 3.27 12853.40 42275 * 42359 0.20 18000.00
rl1323 43377 43450 43347 0.07 43450 18000.00 41459 4.42 89.78 41210 5.00 18000.00 43377 * 43450 0.17 18000.00

nrw1379 46676 46787 45602 2.30 117.51 45576 2.36 18000.00 46676 * 46787 0.24 18000.00
fl1400 56692 64298 53222 6.12 64726 18000.00 56258 0.77 794.15 56692 * 18000.00 54124 4.53 64298 15.82 18000.00
u1432 46946 47018 44810 4.55 100.91 44982 4.18 18000.00 46946 * 47018 0.15 18000.00
fl1577 45505 50154 45505 * 334.28 41148 9.57 18000.00 45326 0.39 50154 9.63 18000.00
d1655 49319 53083 47211 4.27 683.17 49319 * 18000.00 46158 6.41 53083 13.05 18000.00

vm1748 68042 68303 66685 1.99 195.85 66636 2.07 18000.00 68042 * 68303 0.38 18000.00
u1817 54245 54554 50366 7.15 734.39 51676 4.74 18000.00 54245 * 54554 0.57 18000.00
rl1889 63308 64425 52047 17.79 . 18000.00 60084 5.09 286.07 60928 3.76 18000.00 63308 * 64425 1.73 18000.00
d2103 63426 63426 57202 9.81 682.28 61636 2.82 18000.00 63426 * 63426 * 16593.51
u2152 64649 64775 53976 16.51 . 18000.00 60211 6.86 1164.38 61052 5.56 18000.00 64649 * 64775 0.19 18000.00
u2319 80914 81139 72790 10.04 . 18000.00 78102 3.48 447.06 77610 4.08 18000.00 80914 * 81139 0.28 18000.00

pr2392 72843 78237 64577 11.35 . 18000.00 71018 2.51 440.57 71851 1.36 18000.00 72843 * 78237 6.89 18000.00
pcb3038 97902 97995 83951 14.25 . 18000.00 91842 6.19 820.37 91457 6.58 18000.00 97902 * 97995 0.09 18000.00

fl3795 103397 142895 103397 * 4788.96 102642 0.73 18000.00 98998 4.25 142895 30.72 18000.00
fnl4461 147109 150189 140424 4.54 2618.15 135515 7.88 18000.00 147109 * 150189 2.05 18000.00

rl5915 184424 197729 176678 4.20 5512.40 173500 5.92 18000.00 184424 * 197729 6.73 18000.00
rl5934 187034 196805 171649 8.23 5757.80 166368 11.05 18000.00 187034 * 196805 4.96 18000.00

pla7397 281977 297246 272452 3.38 18000.00 266038 5.65 18000.00 281977 * 297246 5.14 18000.00

average 4.51 11644.10 3.13 1093.37 2.87 12827.93 0.40 3.06 15369.91

30

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 17: Generation 3, n ≤ 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

att48 1049 1049 1049 * 1049 38.50 1049 * 0.259 1049 * 7.18 1049 * 1049 * 1.17
gr48 1480 1480 1480 * 1480 0.20 1480 * 0.13 1480 * 8.87 1480 * 1480 * 0.72
hk48 1764 1764 1764 * 1764 0.00 1764 * 0.215 1764 * 8.51 1764 * 1764 * 0.06
eil51 1399 1399 1399 * 1399 0.20 1398 0.07 0.222 1399 * 6.87 1399 * 1399 * 1.46

berlin52 1036 1036 1036 * 1036 124.70 1034 0.19 0.637 1036 * 12.84 1036 * 1036 * 4.61
brazil58 1702 1702 1702 * 1702 0.00 1702 * 0.711 1702 * 11.09 1702 * 1702 * 0.02

st70 2108 2108 2108 * 2108 0.40 2108 * 0.308 2108 * 9.65 2108 * 2108 * 0.49
eil76 2467 2467 2467 * 2467 0.40 2467 * 0.362 2467 * 20.48 2467 * 2467 * 2.96
pr76 2430 2430 2430 * 2430 0.20 2430 * 0.568 2430 * 20.43 2430 * 2430 * 1.07
gr96 3170 3170 3170 * 3170 61.50 3166 0.13 1.408 3166 0.13 15.22 3170 * 3170 * 5.66
rat99 2908 2908 2908 * 2908 4.90 - - - - - - 2908 * 2908 * 3.01

kroA100 3211 3211 3211 * 3211 63.30 3180 0.97 0.379 3211 * 32.31 3211 * 3211 * 1.81
kroB100 2804 2804 2804 * 2804 0.60 2785 0.68 0.51 2804 * 35.83 2804 * 2804 * 0.35
kroC100 3155 3155 3155 * 3155 1.50 3155 * 0.439 3155 * 34.67 3155 * 3155 * 1.82
kroD100 3167 3167 3167 * 3167 10.70 3141 0.82 0.58 3167 * 31.08 3167 * 3167 * 0.70
kroE100 3049 3049 3049 * 3049 1.50 3049 * 0.471 3049 * 31.96 3049 * 3049 * 1.36

rd100 2926 2926 2926 * 2926 113.20 2923 0.10 0.482 2926 * 16.35 2926 * 2926 * 23.20
eil101 3345 3345 3345 * 3345 29.80 3345 * 0.564 3345 * 28.61 3345 * 3345 * 1.37
lin105 2986 2986 2986 * 2986 51.90 2973 0.44 2.094 2986 * 38.24 2986 * 2986 * 16.02
pr107 1877 1877 1877 * 1877 660.90 1802 4.00 0.816 1877 * 65.16 1877 * 1877 * 3297.37
gr120 3779 3779 3779 * 3779 1.50 3748 0.82 1.358 3777 0.05 37.94 3779 * 3779 * 2.65
pr124 3557 3557 3557 * 3557 1021.50 3455 2.87 0.882 3557 * 99.87 3557 * 3557 * 4507.38

bier127 2365 2365 2365 * 2365 79.90 2361 0.17 2.619 2361 0.17 49.9 2365 * 2365 * 40.07
pr136 4390 4390 4390 * 4390 86.70 4390 * 1.126 4390 * 61.84 4390 * 4390 * 30.50
gr137 3954 3954 3954 * 3954 8.60 3954 * 1.884 3954 * 637.09 3954 * 3954 * 14.01
pr144 3745 3745 3745 * 3745 112.60 3700 1.20 2.411 3744 0.03 112.92 3745 * 3745 * 116.68

kroA150 5039 5039 5039 * 5039 330.70 5019 0.40 1.07 5037 0.04 104.23 5039 * 5039 * 46.43
kroB150 5314 5314 5314 * 5314 107.60 5314 * 1.044 5314 * 63.05 5314 * 5314 * 28.53

pr152 3905 3905 3905 * 3905 1122.40 3902 0.08 3.625 3539 9.37 184.38 3905 * 3905 * 83.51
u159 5272 5272 5272 * 5272 52.20 5272 * 0.945 5272 * 94.27 5272 * 5272 * 8.59

rat195 6195 6195 6195 * 6195 49.90 - - - - - - 6195 * 6195 * 33.56
d198 6320 6320 6320 * 6320 286.10 6290 0.47 7.145 6320 * 105.7 6320 * 6320 * 461.18

kroA200 6123 6123 6123 * 6123 122.30 6114 0.15 1.717 6118 0.08 232.2 6123 * 6123 * 92.41
kroB200 6266 6266 6266 * 6266 40.10 6213 0.85 1.775 6266 * 188.77 6266 * 6266 * 3.87

gr202 8616 8616 8616 * 8616 224.80 8605 0.13 10.452 8564 0.60 57.88 8616 * 8616 * 315.26
ts225 7575 7575 7575 * 7575 171.20 7575 * 1.136 7575 * 450.25 7575 * 7575 * 6.62

tsp225 7740 7740 7740 * 7740 150.30 - - - - - - 7740 * 7740 * 38.61
pr226 6993 6993 6993 * 6993 32.60 6908 1.22 8.013 6993 * 177.59 6993 * 6993 * 1170.00
gr229 6328 6328 6328 * 6328 10.20 6297 0.49 11.655 6328 * 1298.8 6328 * 6328 * 42.63
gil262 9246 9246 9246 * 9246 133.40 9094 1.64 3.937 9210 0.39 649.54 9246 * 9246 * 83.29
pr264 8137 8137 8137 * 8137 20.70 8068 0.85 3.625 8137 * 357.8 8137 * 8137 * 186.59
a280 9774 9774 9774 * 9774 213.30 8684 11.15 3.22 8789 10.08 378.8 9774 * 9774 * 126.80

pr299 10343 10343 10343 * 10343 363.60 9959 3.71 3.952 10233 1.06 549.11 10343 * 10343 * 913.13
lin318 10368 10368 10368 * 10368 534.80 10273 0.92 6.327 10337 0.30 528.2 10368 * 10368 * 327.58
rd400 13223 13223 13223 * 13223 293.20 13088 1.02 7.738 13122 0.76 727.58 13223 * 13223 * 214.40

average * 149.66 0.85 2.35 0.55 180.55 * * 272.43

31

A
revisited

branch-and-cutalgorithm
forlarge-scale

orienteering
problem

s
A

P
R

E
P

R
IN

T

Table 18: Generation 3, n > 400

Best FST EA4OP ALNS RB&C

Instance LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time

fl417 14220 14220 14220 * 14220 6227.60 14186 0.24 12.449 14220 * 1131.05 14219 0.01 14387 1.17 18000.00
gr431 10911 10911 10911 * 10911 1046.90 10817 0.86 54.504 10907 0.04 2411.45 10911 * 10911 * 7814.17
pr439 15176 15296 15160 0.11 15296 18000.00 15097 0.52 10.96 15080 0.63 1328.74 15176 * 15331 1.01 18000.00

pcb442 14819 14819 14819 * 14839 18000.00 14522 2.00 6.578 14695 0.84 1192.19 14819 * 14819 * 11574.76
d493 25167 25188 25167 * 25188 18000.00 24981 0.74 19.182 24849 1.26 3829.32 25167 * 25195 0.11 18000.00

att532 15498 15498 15498 * 15498 933.20 15342 1.01 22.747 15335 1.05 4533.36 15498 * 15498 * 318.44
ali535 9414 9472 9328 0.91 94.089 9308 1.13 13313.5 9414 * 9472 0.61 18000.00
pa561 14482 14482 14482 * 14482 10543.80 - - - - - - 14482 * 14482 * 2539.41
u574 20064 20064 20064 * 20064 1409.30 19691 1.86 19.766 19841 1.11 1671.01 20064 * 20064 * 2693.59

rat575 20109 20109 20109 * 20109 1426.50 - - - - - - 20109 * 20109 * 929.99
p654 24492 24518 24492 * 31914 18000.00 24130 1.48 18.541 24427 0.27 7543.02 24492 * 24518 0.11 18000.00
d657 24562 24562 24562 * 24562 4053.30 23772 3.22 21.887 23829 2.98 4600.87 24562 * 24562 * 8777.39

gr666 17023 17048 17020 0.02 17048 18000.00 16902 0.71 143.868 16709 1.84 2734.75 17023 * 17060 0.22 18000.00
u724 28348 28348 28348 * 28348 5870.60 27932 1.47 29.263 28033 1.11 12058.6 28348 * 28348 * 10332.54

rat783 27566 27566 27566 * 27566 7232.30 - - - - - - 27566 * 27566 * 3812.98
dsj1000 31434 31454 30943 1.56 79.179 31040 1.25 15962 31434 * 31454 0.06 18000.00
pr1002 39526 39526 39449 0.19 39545 18000.00 38762 1.93 47.303 38502 2.59 18000 39526 * 39526 * 13955.69
u1060 37492 37569 36570 2.46 75.876 36598 2.38 18000 37492 * 37569 0.20 18000.00

vm1084 37669 37669 37653 0.04 37694 18000.00 37508 0.43 54.207 37178 1.30 3286.89 37669 * 37669 * 8710.50
pcb1173 41257 41257 40069 2.88 66.158 40513 1.80 18000 41257 * 41257 * 15133.74

d1291 41509 42153 30106 27.47 . 18000.00 38132 8.14 299.865 39919 3.83 18000 41509 * 42153 1.53 18000.00
rl1304 41881 42075 40478 3.35 . 18000.00 41214 1.59 81.109 41679 0.48 18000 41881 * 42075 0.46 18000.00
rl1323 47213 47384 44458 5.84 . 18000.00 46641 1.21 93.526 45500 3.63 8544.44 47213 * 47384 0.36 18000.00

nrw1379 42920 42975 - - - - - - 42920 * 42975 0.13 18000.00
fl1400 57470 59491 54792 4.66 67053 18000.00 57226 0.42 599.811 57470 * 18000 54661 4.89 59491 8.12 18000.00
u1432 47778 47895 46657 2.35 138.016 47242 1.12 18000 47778 * 47895 0.24 18000.00
fl1577 45935 48809 45692 0.53 295.615 45935 * 18000 45768 0.36 48809 6.23 18000.00
d1655 62048 62945 51168 17.53 . 18000.00 58728 5.35 674.247 60956 1.76 18000 62048 * 62945 1.43 18000.00

vm1748 71885 72010 68979 4.04 . 18000.00 70958 1.29 225.29 71244 0.89 18000 71885 * 72010 0.17 18000.00
u1817 63639 67670 52186 18.00 . 18000.00 63639 * 1302.347 63016 0.98 18000 63618 0.03 67670 5.99 18000.00
rl1889 70065 71106 43374 38.09 . 18000.00 68422 2.34 244.973 68096 2.81 18000 70065 * 71106 1.46 18000.00
d2103 82787 82973 76035 8.16 . 18000.00 77333 6.59 1168.899 81081 2.06 18000 82787 * 82973 0.22 18000.00
u2152 74007 78066 52091 29.61 . 18000.00 73400 0.82 1619.609 72733 1.72 18000 74007 * 78066 5.20 18000.00
u2319 79351 81050 79351 * 81619 18000.00 78113 1.56 569.758 79130 0.28 18000 79343 0.01 81050 2.11 18000.00

pr2392 85409 90261 60225 29.49 . 18000.00 84094 1.54 422.734 85084 0.38 18000 85409 * 90261 5.38 18000.00
pcb3038 106928 112006 96356 9.89 . 18000.00 104667 2.11 917.386 105337 1.49 18000 106928 * 112006 4.53 18000.00

fl3795 97707 116792 97707 * 3158.887 95580 2.18 18000 89218 8.69 116792 23.61 18000.00
fnl4461 146995 152562 - - - - - - 146995 * 152562 3.65 18000.00
rl5915 203695 217366 199336 2.14 5593.23 201814 0.92 18000 203695 * 217366 6.29 18000.00
rl5934 212021 229405 207385 2.19 5881.87 203667 3.94 18000 212021 * 229405 7.58 18000.00

pla7397 322285 334885 320744 0.48 18000 312645 2.99 18000 322285 * 334885 3.76 18000.00

average 6.78 13749.78 1.80 1168.44 1.47 12837.26 0.34 2.24 14843.74

32

	Introduction
	OP Modelling and Polyhedral Considerations
	Valid Inequalities
	Connectivity Constraints
	Comb Inequalities
	Edge Cover Inequalities
	Cycle Cover Inequalities
	Vertex Cover Inequalities
	Path Inequalities

	Branch-and-Cut Algorithm
	Initialization
	Separation Algorithms
	SECs and CCs
	Comb Inequalities (blossoms)

	Column Generation
	Separation Loop
	Primal Heuristics and Lower Bounds
	Branching and Upper Bounds

	Computational Experiments
	Evaluation of Components
	Comparison with state-of-the-art Algorithms

	Conclusions and Future Work
	Configuration of Components: Detailed Results
	Comparison with state-of-the-art Algorithms: Detailed Results

