25 research outputs found

    Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus

    Get PDF
    Introduction: Physical plasma is a promising new technology regarding its antimicrobial effects. This is especially accounting for treatment of bacterial infection of chronic wounds. Plasma can be generated with different carrier gases causing various biological effects. Screening of different carrier gases and plasma generation setups is therefore needed to find suitable compositions for highly effective antimicrobial plasma treatments and other applications

    XTT assay of ex vivo saliva biofilms to test antimicrobial influences

    Get PDF
    Objective: Many dental diseases are attributable to biofilms. The screening of antimicrobial substances, in particular, requires a high sample throughput and a realistic model, the evaluation must be as quick and as simple as possible. For this purpose, a colorimetric assay of the tetrazolium salt XTT (sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate) converted by saliva biofilms is recommended. Cleavage of XTT by dehydrogenase enzymes of metabolically active cells in biofilms yields a highly colored formazan product which is measured photometrically

    XTT assay of ex vivo saliva biofilms to test antimicrobial influences

    Get PDF
    Objective: Many dental diseases are attributable to biofilms. The screening of antimicrobial substances, in particular, requires a high sample throughput and a realistic model, the evaluation must be as quick and as simple as possible. For this purpose, a colorimetric assay of the tetrazolium salt XTT (sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate) converted by saliva biofilms is recommended. Cleavage of XTT by dehydrogenase enzymes of metabolically active cells in biofilms yields a highly colored formazan product which is measured photometrically

    Untersuchungen zu Atmosphärendruckplasmen als Therapieoption gegen Periimplantitis und Parodontitis in vitro

    No full text
    Die Zahl von Parodontitispatienten steigt jährlich an. Außerdem wurden vermehrt Implantate insertiert, die analog zur Parodontitis von Periimplantitis betroffen sind. Ursächlich für beide Erkrankungen sind Biofilme. Es gibt keine befriedigenden Methoden zur Biofilmentfernung, die außerdem eine wundheilungsfördernde Oberfläche erzeugen. Daher werden neue Behandlungsmethoden benötigt. In dieser Arbeit wurde drei Biofilmmodelle mit C. albicans, S. mutans und Speichelmikroorganismen mit drei verschiedenen Plasmaquellen (kINPen09, Hohlelektroden-DBD, Volumen-DBD) sowie zwei verschiedenen Gasmischungen (Argon und Argon+1% O2) jeweils 1, 2, 5 und 10 min mit Plasma behandelt. Als Positivkontrolle wurde Chlorhexidin mitgeführt. Außerdem wurden verschiedene Titanbearbeitungsformen (maschiniert, diamantbearbeitet, pulverbestrahlt sowie geätzt und gestrahlt) mit Argon+1%O2-Plasma mittels kINPen09 behandelt. Anschließend wurden die Elementzusammensetzung, der Kontaktwinkel sowie die Ausbreitung von osteoblastenartigen Zellen MG-63 auf diesen Oberflächen bestimmt. SLactive􀂓 wurde hierbei als Positivkontrolle verwendet. Um eine potentielle Anwendung in der Parodontologie zu prüfen, wurden diese Untersuchungen auch auf Dentin durchgeführt. Alle Plasmaquellen und –parameter wirkten antimikrobiell. Die Zerstörung der Zellen wurde im Rasterelektronenmikroskop deutlich. Hierbei reduzierte die Volumen-DBD die Koloniebildenden Einheiten um circa 5 log-Stufen und wies damit die höchste antimikrobielle Wirksamkeit auf. Sauerstoffzumischung führte nur bei der Hohlelektroden-DBD zu einer erhöhten antimikrobiellen Wirksamkeit. Die Plasmabehandlung reduzierte die Kontaktwinkel auf allen Oberflächen teilweise bis in den superhydrophilen Bereich. EDX-Analysen zeigten eine Reduktion der Masseprozent von Kohlenstoff sowie eine Erhöhung des Sauerstoffgehalts aller Oberflächen nach Plasmabehandlung. Die Ausbreitung der Osteoblasten war auf den plasmabehandelten Oberflächen signifikant höher als auf den unbehandelten Oberflächen und konnte sogar die Werte der hydrophilen SLactive􀂓-Oberfläche übersteigen. Diese Effekte konnten sowohl auf Titan als auch auf Dentin nachgewiesen werden. Da Plasma antimikrobiell wirkt und, wie in weiterführenden Versuchen gezeigt werden konnte, auch Biofilm entfernt, eignet es sich zur Therapie der Periimplantitis und Parodontitis. Außerdem wird die Oberfläche biokompatibler, wodurch die Wundheilung gefördert werden könnte. Da Plasma weitere wundheilungsstimulierende Faktoren beinhaltet, stellt es in Zukunft eine Erfolg versprechende Therapieoption für die Behandlung von Parodontitis und Periimplantits dar.The number of periodontitis patients is increasing yearly. The number of implants being inserted is increasing in parallel and many are accompanied by peri-implantitis. The cause of both diseases is biofilm formation. There are no satisfactory therapeutic approaches for biofilm removal that also generate a surface promoting wound healing. Therefore, new treatment options are needed. In this work, three biofilm models produced by C. albicans, S. mutans and salivary microorganisms were treated for 1, 2, 5 and 10 min with three different atmospheric pressure plasma sources (kINPen09, hollow electrode DBD, volume DBD). Furthermore, two different gas mixtures (argon and argon + 1% O2) were used as working gas. As a positive control, chlorhexidine was used. In addition, various treated titanium discs (machined, diamond-bur-treated, etched and sandblasted, powder treated) were treated with argon +1% O2 plasma using kINPen09. After that the elemental composition, contact angle and the spreading of osteoblast-like cells MG-63 were determined on these surfaces. SLactive was used as positive control. To examine a potential application in periodontology, these studies were also performed on dentin. All plasma sources had an antimicrobial effect. The destruction of bacteria was shown using SEM micrographs. The volume DBD reduced the colony forming units by about 5 log units, and showed the highest antimicrobial activity. The admixture of oxygen resulted in an increased antimicrobial efficacy using hollow electrode DBD. The plasma treatment partially reduced the contact angle on any surface close to 0°. EDX analysis showed a reduction of mass percent of carbon and an increased oxygen concentration of all surfaces after plasma treatment. The spreading of osteoblasts on plasma-treated surfaces was significantly higher compared to the untreated surfaces and even exceeded the values of the hydrophilic SLactive surface. These effects were detected both on titanium and on dentin. Since plasma has an antimicrobial effect and also removes biofilm effectively, it is suitable for the treatment of peri-implantitis and periodontitis. Furthermore, the surface is becoming more biocompatible which could promote wound healing. Since non thermal plasma seems to exhibit also other factors promoting wound healing, it could be a promising therapeutic treatment option for periodontitis and peri-implantits in future

    Synergistic Effects of Nonthermal Plasma and Disinfecting Agents against Dental Biofilms In Vitro

    Get PDF
    Aim. Dental biofilms play a major role in the pathogenesis of many dental diseases. In this study, we evaluated the synergistic effect of atmospheric pressure plasma and different agents in dentistry on the reduction of biofilms. Methods and Results. We used monospecies (S. mutans) and multispecies dental biofilm models grown on titanium discs in vitro. After treatment with one of the agents, the biofilms were treated with plasma. Efficacy of treatment was determined by the number of colony forming units (CFU) and by live-dead staining. For S. mutans biofilms no colonies could be detected after treatment with NaOCl or H2O2. For multispecies biofilms the combination with plasma achieved a higher CFU reduction than each agent alone. We found an additive antimicrobial effect between argon plasma and agents irrespective of the treatment order with cultivation technique. For EDTA and octenidine, antimicrobial efficacy assessed by live-dead staining differed significantly between the two treatment orders (P < 0.05). Conclusions. The effective treatment of dental biofilms on titanium discs with atmospheric pressure plasma could be increased by adding agents in vitro

    In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models

    Get PDF
    [english] Dental plaque critically affects the etiology of caries, periodontitis and periimplantitis. The mechanical removal of plaque can only be performed partially due to limited accessibility. Therefore, plaque still represents one of the major therapeutic challenges. Even though antiseptic mouth rinses reduce the extent of biofilm temporarily, plaque removal remains incomplete and continuous usage can even result in side effects. Here we tested argon plasma produced by kinpen09 as one option to inactivate microorganisms and to eliminate plaque. biofilms cultivated in either the European Biofilm Reactor (EUREBI) or in 24 well plates were treated with argon plasma. In both test systems a homogeneous, good analyzable and stable biofilm was produced on the surface of titan plates within 72 h (>6,9 log CFU/ml). Despite the significantly more powerful biofilm production in EUREBI, the difference of 0.4 log CFU/ml between EUREBI and the 24 well plates was practically not relevant. For that reason both test models were equally qualified for the analysis of efficacy of cold atmospheric pressure plasma. We demonstrate a significant reduction of the biofilm compared to the control in both test models. After plasma application of 180 s the biofilm produced in EUREBI or in 24 well plates was decreased by 0.6 log CFU/ml or 0.5 log CFU/ml, respectively. In comparison to recently published studies analyzing the efficacy of kinpen09, produces a hardly removable biofilm. Future investigations using reduced distances between plasma source and biofilm, various compositions of plasma and alternative plasma sources will contribute to further optimization of the efficacy against biofilms

    Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms.

    Get PDF
    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds

    Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.

    Get PDF
    INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy
    corecore