1,492 research outputs found

    Parallel ion strings in linear multipole traps

    Full text link
    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off

    Isolated lymphoid follicles are dynamic reservoirs for the induction of intestinal IgA

    Get PDF
    IgA is one of the most important molecules in the regulation of intestinal homeostasis. Peyer’s patches have been traditionally recognized as sites for the induction of intestinal IgA responses, however more recent studies demonstrate that isolated lymphoid follicles (ILFs) can perform this function as well. ILF development is dynamic, changing in response to the luminal microbial burden, suggesting that ILFs play an important role providing an expandable reservoir of compensatory IgA inductive sites. However, in situations of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in intestinal immunity

    Faster Algorithms for Weighted Recursive State Machines

    Full text link
    Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the best-known complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project

    A modern Fizeau experiment for education and outreach purposes

    Full text link
    On the occasion of the laser's 50th anniversary, we performed a modern Fizeau experiment, measuring the speed of light with a laser beam passing over the city centre of Marseille. For a round trip distance of almost five kilometers, the measurement has reached an uncertainty of about 104^{-4}, mainly due to atmospheric fluctuations. We present the experimental and pedagogical challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201

    On the inner workings of Monte Carlo codes

    Get PDF
    We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal-organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC, configurational-bias Monte Carlo and continuous fractional MC. The latter technique overcomes the problem of low insertion probabilities in open systems. Other modern methods are (hyper-)parallel tempering, Wang-Landau sampling and nested sampling. Details on the techniques and acceptance rules as well as to what systems these techniques can be applied are provided. We highlight consistency tests to help validate and debug MC codes

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements

    Full text link
    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet 4^4He and 87^{87}Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+174+1a_{4+87}=+17^{+1}_{-4} a0a_0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.
    corecore