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ABSTRACT: Many important industrial separation processes based on
adsorption operate close to saturation. In this regime, the underlying adsorption
processes are mostly driven by entropic forces. At equilibrium, the entropy of
adsorption is closely related to the enthalpy of adsorption. Thus, studying the
behavior of the enthalpy of adsorption as a function of loading is fundamental to
understanding separation processes. Unfortunately, close to saturation, the
enthalpy of adsorption is hard to measure experimentally and hard to compute
in simulations. In simulations, the enthalpy of adsorption is usually obtained
from energy/particle fluctuations in the grand-canonical ensemble, but this
methodology is hampered by vanishing insertions/deletions at high loading. To
investigate the fundamental behavior of the enthalpy and entropy of adsorption
at high loading, we develop a simplistic model of adsorption in a channel and
show that at saturation the enthalpy of adsorption diverges to large positive
values due to repulsive intermolecular interactions. However, there are many systems that can avoid repulsive intermolecular
interactions and hence do not show this drastic increase in enthalpy of adsorption close to saturation. We find that the
conventional grand-canonical Monte Carlo method is incapable of determining the enthalpy of adsorption from energy/particle
fluctuations at high loading. Here, we show that by using the continuous fractional component Monte Carlo, the enthalpy of
adsorption close to saturation conditions can be reliably obtained from the energy/particle fluctuations in the grand-canonical
ensemble. The best method to study properties at saturation is the NVT energy (local-) slope methodology.

■ INTRODUCTION

In the chemical and petrochemical industries, pressure swing
adsorption (PSA) and temperature swing adsorption (TSA) are
very important separation technologies based on adsorption in
nanoporous materials.1−6 In both of these processes, separation
is mostly based on the difference in the adsorption equilibrium
(determined by macroscopic state variables such as T and P) of
the mixture components7 and is achieved by passing the
mixture through a large column packed with adsorbent
material. Ideally, PSA and TSA are isothermal processes, but
in reality, they operate under almost adiabatic conditions.7

Adsorption is generally an exothermic process, and heat is
produced as the mixture components are adsorbed. The
differential enthalpy of adsorption Δh ̅, or heat of adsorption Q
= −Δh ̅ (note that the heat of adsorption is path-dependent,
whereas −Δh ̅ is not; therefore, a better name is “differential
enthalpy of desorption”8,9), is a quantitative measure of the
strength of the adsorbates binding to the adsorbent, and it is
therefore related to the temperature changes of the adsorbent
during adsorption (an exothermic process) and desorption (an
endothermic process). Many industrial separation processes
based on adsorption work close to saturation conditions to
operate cost efficiently.10−13 Because separations are driven by
entropic forces in this regime,14−17 it is important to
understand and study how entropy behaves in these systems

to design a new generation of nanoporous materials for
separations.18,19 Separations based on adsorption rely on the
equilibrium loading differences of the mixture components. At
equilibrium, the variation in the enthalpy of adsorption with
loading is directly related to changes in the entropy of the
system as adsorption occurs.20 Therefore, besides being an
important parameter in the design and operation of equipment,
the enthalpy of adsorption provides thermodynamic insight
into the separation process. However, little is known about the
behavior of the enthalpy of adsorption close to saturation
conditions. Most of the experimental and molecular simulation
studies have focused on the low loading regime,21−24 with the
main reason for this being the complexity associated with
studying systems close to saturation conditions.
The enthalpy of adsorption close to saturation is hard to

measure experimentally and hard to compute in simulations. In
experiments, the pressure range that can be explored for gas
adsorption (before the adsorbate turns into a liquid) is limited
by the vapor pressure, and in molecular simulations, the
computation is restricted by currently available simulation
methodologies. The most common ways to compute the
enthalpy of adsorption in simulations are (1) the isosteric
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method,25,26 (2) the NVT method,27 (3) energy/particle
fluctuations in the grand-canonical ensemble,28−30 (4) using
the derivative of the energy as a function of loading in the
grand-canonical ensemble,31 and (5) the energy slope method
in the NVT ensemble.20 However, close to saturation, using
any method in the grand-canonical ensemble (in particular the
energy/particle fluctuations) does not work efficiently with
conventional Monte Carlo methods.
In this work, we first develop a toy model to understand the

limiting behavior of the enthalpy of adsorption at saturation.
The theoretical model shows that repulsive interparticle
interactions drive the enthalpy of adsorption to higher and
higher (less favorable) values. Then, we show and explain why
the conventional Monte Carlo method fails close to saturation
conditions, and we present the Continuous Fractional
Component Monte Carlo (CFCMC) algorithm as an
alternative to obtain more reliable results for the enthalpy of
adsorption close to saturation. Since this methodology is
relatively new, before presenting our results we derive the
framework for the computation of the enthalpy of adsorption in
the CFCMC ensemble and the transformation of the measured
values to the usual Boltzmann ensemble. We proceed by
comparing both methods, conventional Monte Carlo and
CFCMC, to the energy (local-) method of Poursaeidesfahani et
al.32 and to a semianalytic approach using the n-site Langmuir−
Freundlich isotherm model. Before presenting our conclusions,
we discuss the findings in terms of the general behavior in
zeolites and MOFs, with particular emphasis on the behavior at
saturation and around inflections in isotherms because, as we
will show, these are strongly related.

■ ANALYZING THE LIMITING BEHAVIOR OF THE
ENTHALPY/ENTROPY OF ADSORPTION CLOSE TO
SATURATION

Enthalpy of Adsorption from Isotherms. The differ-
ential enthalpy of adsorption Δh ̅ is defined as the change in the
total enthalpy of the system (in the gas phase; host and guest
molecules) as a molecule is transferred from the gas phase to
the adsorbed phase at constant temperature9

Δ ̅ = ∂Δ
∂

=
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−
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where H is the total enthalpy, Hsys refers to the enthalpy of the
system (host and guest molecules), Hg refers to the enthalpy of
a reference gas phase, n is the amount adsorbed or “loading”, V
is the volume of the system, and T is the absolute temperature.
Assuming that the gas phase behaves as an ideal gas and the
adsorbent is rigid, it can be shown that the first term on the
right-hand side of eq 1 is the isosteric enthalpy of adsorption
Δhads and the second term is equal to RT, where R is the gas
constant (8.314464919 J mol−1 K−1).32 Thus, the differential
enthalpy of adsorption can be obtained from Δh ̅ = Δhads + RT,
where the isosteric enthalpy of adsorption is given by30,33
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with p being the total pressure of the system and p0 being the
pressure of the perfect gas reference state (commonly, p0 = 1
bar). Equation 2 is known as the Clausius−Clapeyron equation,

and it relates the enthalpy of adsorption to the place where an
adsorbed phase in equilibrium with a gas phase lies (at a given
loading) on the pressure−temperature plane. It is often used
experimentally to compute the enthalpy of adsorption from
isotherm measurements at different temperatures, but of course
it is also of use in simulations. The accuracy of the computed
enthalpy of adsorption strongly depends on the quality of the
measured/simulated isotherms.
The differential enthalpy of adsorption can also be obtained

from9
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On the basis of eq 3, Myers and Monson developed expressions
for the excess enthalpy of adsorption Δh ̅e and showed that this
quantity diverges at the location extremum,9 since in that case

∂
∂( )n

p T
is exactly zero at that point. In this work, we are

concerned with the absolute enthalpies of adsorption, and for

these, the term ∂
∂( )n

p T
approaches zero but never reaches it.

The Langmuir model and the more general Langmuir−
Freundlich isotherm description do not shed any light on the
behavior of the enthalpy of adsorption at high loading. The
Langmuir−Freundlich isotherm is given by

=
+
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−
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where n is the equilibrium loading, m is the saturation loading,
p is the pressure, and c and ν are the Langmuir−Freundlich
parameters for a given adsorbent−adsorbate and temperature.
The temperature dependence of the parameters is often
suggested to be9,34

ν

= + =

= +

−m T k k T c T p

T k k T

( ) , ( ) (1/ )e e ,

( ) /

A R B RT
1 2 0

/ /( )

3 4 (5)

The temperature-independent factor (1/p0) exp(A/R) is the
entropic factor,9 and ν is the heterogeneity factor that describes
the degree of heterogeneity. For ν = 1, the Langmuir−
Freundlich isotherm reduces to the Langmuir isotherm. In this
case, if we assume that m is temperature-independent, we can
use eqs 2 and 4 to show that the differential enthalpy of
adsorption is constant and given by parameter B. However, for
most cases, the temperature dependence of the parameters is
unclear a priori and no general behavior of the enthalpy of
adsorption can be concluded. In fact, we will later show that
parameters m and ν in the dual-site Langmuir model can
increase but also decrease with temperature.
In adsorption in nanoporous materials, Langmuir isotherms

are extremely rare (if not nonexistent), and the enthalpy of
adsorption is never constant over the full loading domain.
Assumptions of the Langmuir model include the following:35

(1) the adsorbent is structurally homogeneous, (2) monolayer
adsorption, (2) the adsorbent has a finite capacity m, (3) all
sites are identical and energetically equivalent, and (4) there is
no interaction between molecules adsorbed on neighboring
sites. The Langmuir−Freundlich model introduces hetero-
geneity into the model. Using the same procedure (eqs 2 and
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4) for the Langmuir−Freundlich isotherm, including the
temperature dependence of parameters m and ν (eq 4), we
find that the enthalpy of adsorption in general diverges near
saturation, but the limiting behavior at high loading/pressure
depends on the specific temperature form of the parameters.
Many models are proposed to alleviate these restrictions. For
example, the BET model allows for multilayer adsorption. The
Temkin−Pyzhev isotherm considers adsorbate interactions; it
has the same functional form as eq 4, but coefficients c are
assumed to be coverage-dependent, c = c(T,n). Because the
parameters in these models are often fitting parameters, albeit
with a physical underpinning, these models are of limited use to
explore the high pressure/loading regime. We will therefore
explore the high loading regime with explicit Monte Carlo
simulations.
A sharp increase in the enthalpy of adsorption has

experimentally already been reported for the adsorption of n-
heptane on silicalite.36 These authors found an almost constant
enthalpy of adsorption up to the point where the first saturation
plateau was reached. At this point, the enthalpy of adsorption
increased sharply. However, to the best of our knowledge, the
behavior of the enthalpy of adsorption near saturation has never
been explored theoretically or reported in simulations. To show
that in general the enthalpy of adsorption sharply increases at
saturation, we will develop a theoretical toy model. The analysis
will reveal that this effect is driven by repulsive interparticle
interactions and hence is very common. An analysis in zeolites
will show that this behavior is common in channel-type
structures with pores much larger than the dimension of the
adsorbates. Other systems, like cage-type structures with strong
local confinement, are able to avoid strongly repulsive
interactions and hence do not show such a sharp increase in
enthalpy of adsorption at saturation.
Theoretical Model. To study the enthalpy of adsorption

close to saturation, we first develop a simple and generic model
for the adsorption of Weeks−Chandler−Andersen-like (WCA)
particles in a rigid cylindrical pore. In this simple model, the
interaction of the particles with the pore is assumed to be
attractive and set to −1 (in dimensionless units), and the
interaction between particles is assumed to be repulsive and
modeled with a WCA-like potential.37 We define the total
potential for N molecules in the pore as

ϕ =
− ≥

− + × × − + <− −⎪

⎪⎧⎨
⎩

r k T
N r

N N r r r
( )/

if 2

(4 ( ) 1) if 2
B

1/6

12 6 1/6

(6)

where r is taken as the distance between adsorbed particles and
is given by the pore length divided by the number of adsorbed
particles. For each number of molecules, only one system state
is considered in which the interparticle distance r is the same
for all neighboring particles. This corresponds to saturation
conditions and low temperatures. For each chemical potential,
the total loading is determined from the weighted average of all
possible configurations. The enthalpy of adsorption is
computed using the energy/particle fluctuations in the grand-
canonical ensemble.28−30 In Figure 1a, we show the isotherm
and differential enthalpy of adsorption for this system. At low
loading, the enthalpy of adsorption is mainly determined by the
interactions of the particles with the pore and is close to −1 (it
is slightly larger than −1 because there is a small contribution
from configurations where the particles just touch). As the
number of particles inside the pore increases, the average
distance between them decreases (Figure 1b). Since the WCA
potential is purely repulsive, this eventually leads to unfavorable
interactions between neighboring particles and a sharp increase
in the enthalpy of adsorption. It is important to note that, for a
repulsive sof t potential, there is no theoretical maximum
loading. If the chemical potential is sufficiently large, it is always
possible to squeeze in an extra particle (Figure 2). However,
this becomes increasingly difficult, as not only do the repulsive
interactions become larger but the number of particles that
simultaneously and collectively have to move also increases.
The inset of Figure 2 shows how, upon adsorbing a new
particle, all of the already adsorbed particles are equidistantly
redistributed in the pore to minimize the energy penalty from
overlapping. In this theoretical model, the collective motion is
achieved by adjusting the interparticle distance r to the number
of adsorbed particles, but in real systems, this can generate
ergodicity problems as not all algorithms can reproduce the
collective motion needed.
The previous analysis shows that, for this model, the

enthalpy of adsorption diverges close to saturation due to
repulsive interactions between the particles. In systems with
more molecular details, the interaction of the particles with the
adsorbent can also be repulsive (due to overlaps) and thus
contribute to the rapid increase of the enthalpy of adsorption.

Figure 1. (a) Adsorption isotherm and enthalpy of adsorption for a simple model of WCA particles adsorbing in a cylindrical pore and (b) average
distance between neighboring WCA particles in the pore as a function of the number of adsorbed particles. A pore length of 50 dimensionless units
was used.
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At saturation, the confinement becomes increasingly tighter and
the entropy of the system changes. In the next section, we
explore state-of-the-art methods to compute the enthalpy of
adsorption in simulations.

■ METHODOLOGY

Enthalpy of Adsorption in Simulations: Grand-Canon-
ical Monte Carlo. In simulations, detailed information on the
energetics of the system is available. The enthalpy of adsorption
can also be obtained (under the same assumptions as for the
Clausius−Clapeyron equation) as

Δ = ∂
∂

− ⟨ ⟩ − ⟨ ⟩ −⎜ ⎟⎛
⎝

⎞
⎠h

U
N

U U k T
V T

ads
,

g h B
(7)

where U refers to the total energy of the host and adsorbed
molecules, ⟨Ug⟩ is the average energy of a single molecule in
the gas phase, ⟨Uh⟩ is the average energy of the host system (in
this work, it is taken as zero because the frameworks are rigid),
and kB is Boltzmann’s constant. The first term on the right-
hand side of eq 7 can be approximated by the difference in the
energy of the system with N + 1 and N molecules in the NVT
ensemble or using the energy/particle fluctuations in the grand-
canonical ensemble.28−30 The NVT method is mostly used to
estimate the enthalpy of adsorption at zero loading, but at
higher loading, it becomes problematic because values U(N +
1) and U(N) can become significantly larger than their
difference. However, the noise can almost be eliminated by
using a continuous smooth fitting function through the energy-
loading curve. We denote this methodology as the “energy-
slope” method by Poursaeidesfahani et al.20 In that work, linear
functions were used in separate loading regions. Here, we use a
variant where the derivatives are determined by spline fitting
and hence the derivatives are locally determined (we denote
this the “energy local-slope method”). A similar approach has
already been used by Vuong and Monson,31 albeit in the grand-
canonical ensemble.

Using the energy/particle fluctuations in the grand-canonical
ensemble,8,28−30 the change in the potential energy upon
adsorption (eq 7) can be approximated by

∂
∂

=
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(8)

where ⟨···⟩μ refers to averages in the grand-canonical ensemble.
Therefore, the enthalpy of adsorption is given by

Δ =
⟨ × ⟩ − ⟨ ⟩ ⟨ ⟩

⟨ ⟩ − ⟨ ⟩ ⟨ ⟩
− ⟨ ⟩ −μ μ μ

μ μ μ
h
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N N N
U k Tads 2 g B

(9)

In the grand-canonical ensemble, the sampling of the phase
space close to saturation conditions is hampered by the low
acceptance probabilities of insertions and deletions of conven-
tional Monte Carlo techniques, especially at low temperatures.
To obtain reliable results of the enthalpy of adsorption close to
saturation conditions at all temperatures, a method able to
insert and delete particles under highly saturated conditions
and that allows the system to adapt to the presence of new
molecules (rearrangement of surrounding molecules) is
needed. Methods based on the extended ensemble approach, in
which the original ensemble is extended with intermediate
molecular states,38−41 are very suitable for these conditions.
Continuous fractional component Monte Carlo (CFCMC)42 is
one of these methods. This method does not rely on the
spontaneous formation of cavities, but it rather slowly creates
them while the surrounding molecules adapt to it (Figure 3). In
the next section, we will present, adapt, and test this method to
compute the enthalpy of adsorption close to saturation. We will
show that even for a simple system conventional Monte Carlo
fails to capture the expected increase in the enthalpy of
adsorption as we approach saturation. CFCMC is able to
capture this behavior thanks to the collective and simultaneous
rearrangement of molecules needed close to saturation
conditions.

CFCMC. In CFCMC,42−47 the insertion and deletion of
molecules are facilitated by expanding the system with an
additional molecule, from now on referred to as a f ractional
molecule. The interactions of the fractional molecule with the
surroundings (Lennard-Jones and charge interactions) are
scaled using a parameter λ

λ
λ
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− +
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=
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r
( )

1
4

i j
Coul

5
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where ϵ0 is the dielectric constant in vacuum, r is the
interatomic distance, q is the atomic charge, ϵ is the LJ strength
parameter, and σ is the LJ size parameter. The modified
potential used in this work to scale the intermolecular
interactions (eq 11) was adopted from the original work on
CFCMC by Shi and Maginn42 but is just one of many

Figure 2. Adsorption isotherm of WCA particles in a cylindrical pore.
Inset: schematic representation of adsorbed states. A pore length of 50
dimensionless units was used. It is always possible to adsorb a new
particle if the chemical potential is high enough. This is visible as the
“staircase” effect, where the “steps” become longer and longer, i.e., it
takes progressively more pressure to push another particle in. Every
time a new particle is adsorbed, the already adsorbed particles have to
redistribute equidistantly to reduce the repulsive interactions. This
requires the simultaneous collective motion of all adsorbed particles.
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possibilities. Different forms can be used as long as the
modified potential (1) remains finite when r → 0 for λ ≠ 1 and
(2) has the correct behavior at the limits of λ = 0 and λ = 1, i.e.,
for λ = 0, there are no interactions, and for λ = 1, the
conventional LJ and Coulombic interactions are recovered.
Molecules are inserted and deleted by performing a random
walk in λ space using λn = λo + Δλ, where λn is the value of λ in
the new configuration, λo is the value of λ in the old
configuration, and Δλ is chosen randomly between −Δλmax and
Δλmax. Δλmax is adjusted to achieve roughly 50% acceptance.
When λn ≥ 1, molecules are inserted, and when λn ≤ 0,
molecules are deleted. Because λ space can be erratic, a biasing
potential η(λ) is normally used to avoid getting trapped in local
minima.42 In this work, the biasing potential is iteratively
determined using the Wang−Landau method.48 When using a
biasing potential, the average of a property x in the correct
Boltzmann ensemble is

⟨ ⟩ =
⟨ ⟩
⟨ ⟩

η
λ

η
λ

−

−x
xe
eBoltzmann

(12)

The procedure for insertion/deletion attempts using grand-
canonical CFCMC method is

• insertion, λn ≥ 1

(1) A new fractional molecule with λ = λn − 1 is
randomly inserted

(2) Acceptance rule:

β
β

η λ η λ

=
+

− Δ

− −
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f V
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n o

• deletion, λn ≤ 0
(1) The existing fractional molecule is deleted, and an

existing molecule is randomly selected and
converted into the fractional molecule with
λ = 1 + λn

(2) Acceptance rule:

β
β

η λ η λ

= − Δ

+ −

⎛
⎝⎜

⎞
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P
N

f V
Umin 1, exp[ ]

exp[ ( 1) ( )]
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where β = 1/(kBT), N is the current number of adsorbed
molecules, ΔU is the difference in the energy between the old
and new configurations,42 and f is the fugacity of the system.
The fugacity is related to the chemical potential by μ = μIG

0 +

ln(βf), where μ =
β
Λ

IG
0 ln( )3

is the chemical potential of the

reference state (ideal gas).
Derivation of the Enthalpy of Adsorption in CFCMC.

As pointed out by Poursaeidesfahani et al.,32 it is not obvious
how to deal with the fractional molecule when computing
ensemble average properties. In ref 32, Poursaeidesfahani et al.
showed that to compute the energy of a particle transfer in the
Gibbs ensemble, the energy of the fractional molecule should
not be taken into account and the total number of molecules
should consider only integer molecules. Here, we will follow a
similar derivation for the enthalpy of adsorption computed in
the grand-canonical ensemble. The grand-canonical CFCMC
partition function is given by49

∫ ∫∑ λ
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Λ !

βμ
η λ β
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+ − +
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s
e

d e d e
N

N N
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0

1

3 3
( ) 1 ( )N

total
1

(13)

where Utotal is the total energy of the system and is the sum of
the energy of the integer molecules plus the energy of the
fractional molecule (Utotal = Uint + Ufrac), N + 1 is the total
number molecules in the system (N = Nint), V is the volume, Λ
is the thermal de Broglie wavelength, and the factor eη(λ)

accounts for the biasing in λ space. In the grand-canonical
CFCMC ensemble, the change in the potential energy upon
adsorption (eq 8) can be approximated by
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where UCFCMC and NCFCMC refer to the total energy and
number of molecules obtained using the CFCMC algorithm
and ⟨···⟩CFCMC refers to the ensemble average in the grand-
canonical CFCMC ensemble.
In the most general case, UCFCMC and NCFCMC have the form

Figure 3. Schematic representation of the CFCMC algorithm. (a)
System close to saturation (the host structure is represented in gray,
and the adsorbed molecules are in blue). (b) Close to saturation, most
attempts to insert a new molecule in a single step (dashed red circles)
will result in an overlap with other molecules or with the host
structure. (c) In CFCMC, insertions are facilitated by using a molecule
with scaled interactions (a fractional molecule). Attempts to insert a
fractional molecule have a higher probability of being accepted because
the energy penalty due to overlaps is smaller. Once the fractional
molecule is inserted, the surrounding molecules rearrange (black
arrows) to minimize the repulsive interactions in the system. (d) For
the fractional molecule to become a integer molecule, enough space
has to be created. The configuration with N + 1 adsorbed molecules
(dark blue) can be very different from the configuration with N
adsorbed molecules (light blue). Close to saturation, inserting a
molecule requires the collective motion of surrounding molecules.
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where f(λ,sN+1) and g(λ) are arbitrary functions related to the
interaction energy and the “size” or degree of presence of the
fractional molecule, respectively. Thus
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In the same way, one can show that
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It is convenient to set the functions f and g such that the
computed enthalpy of adsorption is identical to the enthalpy of
adsorption in the conventional grand-canonical ensemble
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At the thermodynamic limit, the average of any property should
be independent of the ensemble. This means that ⟨···⟩CFCMC ∼
⟨···⟩μ for sufficiently large systems. The ensemble averages are
equal only if f = 0 and g = 0. Therefore, the most trivial choice
to guarantee the ensemble averages are equal is
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Therefore, when computing the enthalpy of adsorption from
the energy/particle fluctuations in the grand-canonical CFCMC
ensemble, the energy of the fractional molecule should not be
considered and the total number of molecules should be equal
to the number of integer molecules. A similar derivation can be
done for mixtures. In this case, the adsorption energy of
component i in a mixture of j components is given by8
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Converting Measured CFCMC Properties to the
Normal Boltzmann Ensemble. To compute properties in
the correct Boltzmann ensemble, the observable X should be
computed using25
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We can show that
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Following the same procedure as above, for any property X
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Dividing eqs 27 and 24
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we notice that
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Equation 29 shows that to convert averages measure in

grand-canonical CFCMC ensemble to averages in the grand-

canonical ensemble properties should be measured at states

where λ is small (ideally zero). This does not also imply that λ

should be changed discretely, simply that the measurement

should be done when λ = 0 to be 100% correct. However, the

error of sampling at all λ values is small, and in practice, one can

sample when λ is between 0 and a sufficiently small fractional

number.

■ RESULTS

Cylinder System. In the Theoretical Model section, we
showed that the increasing confinement of the particles in a
pore causes the enthalpy of adsorption to sharply increase. In
this section, we will use the same model to show that in
adsorption simulations, sufficient sampling is very important to
predict the correct behavior of the enthalpy of adsorption close
to saturation. In contrast to the Theoretical Model section,
where the rearrangement of particles in the pore was done
automatically by adjusting the interparticle distance, here we
take a more realistic approach and simulate the adsorption
process by performing Monte Carlo simulations in the grand-
canonical ensemble. The chemical potential is imposed, and the
number of particles in the pore is allowed to fluctuate until
equilibrium is reached. Simulations were performed using (1)
conventional grand-canonical Monte Carlo (GC) and (2)
CFCMC. The Monte Carlo moves employed to reach
equilibrium were (1) displacing the particles in the pore and
(2) swapping particles in and out of the pore. Each of these
moves had a 0.5 attempt probability. For the displacement,
Δxmax = 0.2 was used. For the CFCMC method, the swapping
of molecules was done by performing Monte Carlo moves in λ
space with Δλmax = 0.2.
In Figure 4a, the isotherms obtained with both methods after

2 × 106 cycles are presented. Each Monte Carlo cycle consists
of N = max(1000,Nads) Monte Carlo moves, where Nads is the
amount of adsorbed particles in the system. The isotherms are
identical up to a chemical potential of ∼20 kBT. After this point,
CFCMC reaches states with more adsorbed particles than
conventional GC. It is in principle always possible to push more
particles inside the pore (the WCA potential is soft); however,

Figure 4. Grand-canonical simulations of WCA particles in a cylindrical pore. The pore length was set to 50 dimensionless units, and Δxmax = 0.2.
For the CFCMC method, Δλmax = 0.2. Simulations (a) and (b) were run for 2 × 106 cycles, whereas (c) and (d) were run 5 times longer. After a
chemical potential of around 20 kBT, the loading in conventional GC simulations reaches a plateau, whereas CFCMC simulations are able to place
more particles in the pore. The enthalpy of adsorption was computed using the energy/particle fluctuations in the grand-canonical ensemble.
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with conventional GC, adsorbing more particles becomes
increasingly difficult as it relies on the spontaneous formation
of cavities for successful insertions. Insertions are done in a
single step. With CFCMC, the stepwise insertions induce
particle rearrangements in the pore, which reduce the energy
penalty of insertion and thus enhance the probability of
adsorbing a new particle.
In Figure 4b, the enthalpy of adsorption for both methods is

shown. Again, the results are in good agreement for low loading
but differ close to saturation. With conventional GC, the
enthalpy of adsorption reaches a plateau around 15 kBT,
whereas the enthalpy of adsorption in the system simulated
with CFCMC continues to go up as expected.
In Figure 4, panels c and d are the same as panels a and b,

except that they have been run 5 times longer. The results for
conventional GC improve a little, but it is clear that the
conventional GC method has significant ergodicity problems at
high loading. This problems seem to be of little importance in
the isotherm (the saturation loading is underestimated only by
∼5%), but they have a profound effect on the behavior of the
enthalpy of adsorption and thus on the design of new
separation technologies. Small deviations in the isotherms’
saturation loading also have important repercussions when
computing the enthalpy of adsorption using the Clausius−
Clapeyron equation (eq 2).
A closer analysis of the probability of accepting swap moves

(Figure 5) shows that CFCMC is capable of performing more

swaps trial moves successfully and therefore of sampling phase
space more efficiently. For CFCMC, an accepted swap is
defined as an accepted move in λ space that results in a particle
swap (i.e., accepted λ moves such that λn ≤ 0 or λn ≥ 1). For
conventional GC, the probability of swapping particles has a
maximum around a chemical potential of −10 kBT, after which
it decreases very fast to almost zero. For CFCMC, the
acceptance ratios are sufficiently high to ensure proper
sampling at all chemical potentials.
In contrast to the model in the Theoretical Model section,

here the increase in the enthalpy of adsorption has many
different plateaus. In Figure 4, panels c (inset) and d, the same
chemical potential intervals are highlited in blue. For every
plateau in the isotherm, there is a corresponding “jump” in the
enthalpy of adsorption. For isotherms, plateaus are caused by

multilayer adsorption or saturation of different types of sites.
The chemical potential at which the adsorption of different sites
occurs depends on how repulsive the interactions of the sites
are.50 Thus, the width of the plateaus is related to the difference
in the amount of force required to insert particles in two
energetically contiguous sites.51 This is also reflected in
increasingly larger jumps in the values of the enthalpy of
adsorption. In Figure 4d, for the last plateau in the isotherm
(Figure 4c) there is no jump in the enthalpy of adsorption. This
is because we have not reached the chemical potential for
another particle insertion.
In this system, the repulsive sites arise from the overlap of

the particles in the pore. In the Theoretical Model section, the
particles were equidistantly placed in the pore. Thus, by
definition, we can place up to 45 particles in the pore without
any energy penalty (the WCA particles diameter is 21/6 ≈ 1.12).
In Monte Carlo simulation, however, the distribution of
particles in the pore is much more disordered, and overlaps
are very likely to be present at lower chemical potentials.
To investigate the influence of inflections in the isotherms,

we changed the model system to include a second adsorption
site by modifying the interaction of the particles with the pore
in half of the pore. As defined in eq 6, the original interaction of
the particle with the pore was set to −1. In Figure 6, we present
the results of modifying the interaction potential of the particles
with half of the pore to the following values: 2.5, 5.0, 7.5, and
10.0. By doing this, we effectively create a second (repulsive)
adsorption site and induce an inflection in the isotherms. For
adsorption to occur in the second repulsive site, force has to be
applied (a higher chemical potential is required). In Figure 6a,
this is reflected in a more pronounced inflection of the isotherm
with increasing repulsive interactions. Figure 6b shows that
increasing the repulsive interaction of the particles with the
pore results in a steeper increase of the enthalpy of adsorption.
Additionally, the increase in the difference of chemical
potentials needed to fill up the sites is reflected in the
appearance and widening of a plateau in the enthalpy of
adsorption values. There is a close relationship between
inflections and “pore saturation”. In both states, a lattice of
adsorption sites is filled up. Note that adsorption sites are
determined not only by the adsorbent (they are not just a
location near the wall) but also by the other molecules. At
higher loading, molecules can be “locked” in by other particles
into their “sites”. As shown in Figure 6, for an inflection
additional force is required to open up the accessibility of
another lattice of sites (with less favorable interactions). At
saturation, however, everything is basically filled up and the
amount of force require to create new adsorption sites is
unphysical. Here, particles are soft spheres, and it is always
possible to force in another particle and induce structural
rearrangement.
In all of the simulations, the pore was considered a rigid

structure. Close to saturation, no large conformational changes
are expected, but some structures can still have swelling. We
expect swelling to be an important mechanism for the
relaxation of some of the highly repulsive particle−particle
interactions; thus, we expect that including flexibility could have
a “washing-out” effect on the plateaus of the enthalpy of
adsorption (Figures 4d and 6b). However, no conclusion on
the effect of flexibility can be made in this study as we do not
address this issue.

Zeolite Systems. To validate the obtained expressions for
the enthalpy of adsorption in the CFCMC method, we

Figure 5. Grand-canonical simulations of WCA particles in a
cylindrical pore. Simulations were run for 10 × 106 cycles, the pore
size was set to 50, and Δxmax = 0.2. For the CFCMC simulations,
Δλmax = 0.2.
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computed and compared the enthalpy of adsorption of
mixtures of CO2 and CH4 in a MFI-type zeolite at three
different pressures and with different molarities using the
Configurational Bias Monte Carlo52 (CBMC) and CFCMC
methods at 300 K (Figure 7). The MFI-type zeolite (from now

on referred to simply as MFI) was modeled as rigid with
crystallographic positions taken from ref 53 and force field
parameters taken from ref 54. Although at lower loadings the
flexibility of the adsorbent could have some important effects
on the enthalpy of adsorption, a rigid structure is a reasonable
choice for this study as close to saturation most materials are in
their open state and do not undergo any phase transition.
Keeping the structure rigid has also the advantage of allowing
different effects to be studied independently, in this case, the
effect of particle interactions on the enthalpy of adsorption
(which, by keeping the framework fixed, is not convoluted by
small structural changes of the framework due to flexibility).
The distribution of charges in the adsorbent was assumed to be
uniform per type, i.e., all oxygen atoms have the same charge,
and all silicon atoms have the same charge. An alternative
newer approach would be to use the REPEAT55 method to
obtain individual charges. The adsorbates were modeled using
the TraPPE56,57 force field. In Figure 7, we show that there is
excellent agreement between the methods in the obtained

enthalpies of adsorption for the three pressures and all the
mixture molarities.
Next, we explore the enthalpy of adsorption in a well-studied

system: dibranched alkanes in MFI. The isotherm for
dibranched alkanes in MFI can be nicely described by a dual-
Langmuir isotherm15

=
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n
m c p

c p
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c p1 1
1 1

1

2 2
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The difference in the Gibbs free energy between the fluid phase
and the adsorbed phase is given by ΔG = ΔH − TΔS. When
equilibrium is reached (where an equal amount of adsorbates
move from the fluid phase into the framework as from the
framework into the fluid phase), ΔG = 0 and ΔH = TΔS.
Following Myers and Monson,9 adsorption may be

decomposed into a two-step process: (1) isothermal, isobaric
immersion of clean adsorbent in the compressed gas and (2)
isothermal compression of the gas. The enthalpy and entropy
differences can then be written as

Δ = Δ + ΔH H Himm comp (31)

Δ = Δ + ΔS S Simm comp (32)

where ΔHimm and ΔSimm are the enthalpy and entropy changes
associated with isothermal immersion of the adsorbent from its
clean state in vacuo (unadsorbed) to the equilibrium pressure
of the bulk fluid, and ΔHcomp and ΔScomp are the enthalpy and
entropy changes associated with isothermal compression of the
outside gas from its perfect gas reference state to the
equilibrium pressure of the bulk fluid.9

The grand potential Ω is the free energy change associated
with the isothermal immersion of the clean adsorbent into the
bulk phase. In the solution thermodynamics approach, the
grand potential, also known as surface potential, is defined as Ω
= μ − μs,

9,30 where μ is the chemical potential of the solid
adsorbent in the bulk phase and μs the chemical potential of the
adsorbent in its clean state, which physically represents the
minimum isothermal work necessary to clean (empty) the
adsorbent. Using the following relationship9,30

∑ μΩ = − −S T n dd d i i (33)

where S is the entropy, dT is the change in temperature, ni is
the adsorbed amount of component i, and dμi is the change in

Figure 6. Heat of adsorption of WCA particles in a pore with two different “adsorption sites”. For the first adsorption site, the interaction energy of
the WCA particle with the pore is −1; for the second site, the interaction energy of the WCA particles with the pore is repulsive and either 2.5, 5.0,
7.5, or 10.0. The results correspond to simulations done using CFCMC. For conventional GC, the results look very similar, albeit with much larger
fluctuations in the enthalpy of adsorption at high chemical potentials.

Figure 7. Enthalpy of adsorption for a mixture of CO2 and CH4 in
MFI at different molarities at several pressures. The results obtained
with CBMC and CFCMC are in excellent agreement.
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the chemical potential of component i, and assuming and
isothermal process (dT = 0), Ω can be obtained by integrating
from the clean state at zero pressure, where μ = μs and Ω = 0

∫Ω = −RT
n
p

p Td (constant )
p

0 (34)

Thus, for a dual-Langmuir behavior (eq 30)

Ω = − + − +m RT c p m RT c pln(1 ) ln(1 )1 1 2 2 (35)

where m1 and m2 are temperature-independent and c1 and c2
have the same temperature dependence as in eq 5
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Therefore, the immersion functions for the dual-Langmuir
model are given by
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and

Δ = Δ + Δ Δ = Δ + ΔS S S H H H,imm comp imm comp

(45)

Δ = Δ + Δ Δ = Δ + ΔF F F G G G,imm comp imm comp (46)

In contrast to the single-Langmuir model, a dual model
cannot be analytically inverted from a function p = f(n) to n =
g(p). We want to plot the differential values, i.e.,

Figure 8. Enthalpy, entropy, and Gibbs free energy of adsorption of 2-methylbutane in MFI at 433 K as a function of loading: (a) isotherm with
dual-Langmuir fit, (b) immersion values, (c) differential immersions, and (d) immersion + compression. The reference state is the adsorbent in
vacuo, and the adsorbate is at its perfect gas reference pressure p0 = 1 bar. We should have Δg ̅ = Δh ̅ − TΔs ̅= RT ln(p/p0) and Δg ̅ = 0 at 1 bar, which
is indeed the case. The overline notation denotes a differential property with units of Joules per mole.
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Δ ̅ = ∂Δ
∂( )h H

n T
, where the differentiation is with respect to the

total loading n. We resort to numerical differentiation and plot
the differential enthalpy, entropy, and Gibbs free energy for 2-
methylbutane in MFI in Figure 8. MFI possesses a 3D channel
network consisting of two types of channels: a “linear type”
channel and a “zig-zig” channel, and the channels cross at
“intersections”. Enthalpies B1 and B2 (eq 38) have been chosen

to match the values obtained from the local-slope Monte Carlo
simulations (Figure 8b). As can be seen in Figure 8c, the
constant enthalpy of adsorption matches very well with the
values obtained using the energy/particle fluctuations up to 5
molec uc−1 and is in reasonable agreement (considering the
large fluctuations) for higher loading. This system is one of the
only cases that can be truly described as Langmuir behavior.
The dibranched molecules first fill the intersections, and the

Figure 9. Adsorption of CH4 in CHA-type zeolite at 300 K: (a) total, framework−adsorbate, and adsorbate−adsorbate energies as a function of
loading obtained from NVT MC simulations (inset: isotherm, loading in molecules per unit cell as a function of fugacity in Pa) and (b) enthalpy of
adsorption computed from the fluctuation formula using grand-canonical MC simulations and derivatives of the energies of (a) with respect to
loading. Using this energy decomposition, the enthalpy can be decomposed in the contribution from the framework−adsorbate and adsorbate−
adsorbate interactions.

Figure 10. Adsorption of CH4 in MFI-type zeolite at 300 K: (a) dual-Langmuir−Freundlich isotherm fitted to grand-canonical MC simulation data
and the two individual contributions of the sites, (b) enthalpy of adsorption from the (local-) energy slope method, showing the framework−
adsorbate and adsorbate−adsorbate separately, (c) total enthalpy of adsorption and the individual contributions per site for the dual-Langmuir−
Freundlich model using explicit simulation to obtain the temperature dependence of the model parameters, and (d) similar to (c) but showing the
enthalpy, entropy, and Gibbs free energy as a function of loading.
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molecules are adsorbing independently from each other. When
the intersections of the MFI are filled, the molecules start to
occupy the channels (the linear and zigzag channels) that
connect the intersections. In the channels, multiple molecules
will fit, and due to adsorbate−adsorbate interactions, the
Langmuir assumptions break down. The adsorption at the
channels is energetically less favorable, but molecules are
pushed using force (i.e., high pressure is required). The
channels are about 18−19 kJ/mol less favorable than the
intersections. The switch between filling the intersection to
filling the channels leads to a large “inflection” in the isotherm
since additional force is required to push the adsorbates into
the channels. Entropically, adsorbates are confined more and
more as a function of loading. Molecules have more
translational and rotational freedom in the intersections than
in the channels. Close to filling up a site type, the differential
immersion entropy shoots up to large positive values (which
happens at 4 molecules per unit cell for the intersections and
then at the saturation loading of 9 molecules per unit cell for all
of MFI). Something special happens at the inflection: before
the inflection, the adsorption lattice consisted of 4 sites per unit
cell. After the inflection, an additional 5 sites per unit cell
become available. As can be seen in Figure 8b,c, this has a large
effect on the entropy term TΔS and the differential immersion
entropy term TΔsi̅mm.
When the molecules are adsorbing into their well-defined

adsorption sites up to saturation loading, then the assumptions
of Langmuir-like models are satisfied and no divergence for the
enthalpy is observed. There are many other systems that are
also able to avoid repulsive adsorbate−adsorbate interactions.
An example is the class of cage-like nanoporous materials where
the cages are separated by “windows” that form free-energy
barriers to diffusion. The inset in Figure 9a shows the isotherm
of methane in CHA-type zeolite at 300 K. It reaches a
saturation loading of 6 molecules per unit cell (which contains
one cage) after a fugacity of 1010 Pa and remains flat up to at
least 1016 Pa. In principle, the molecules in simulations are soft
spheres, and one can always press in another molecule, but this
would require an increase in pressure of many, many orders. In
experiments, the saturation is limited by the highest pressure
that is achievable by the apparatus and also by the stability of
the material. In the energy local-slope methodology, the
average energies as a function of loading in NVT simulations
are computed, which has the advantage that no insertion/
deletion of particles are required. The differential enthalpy can
then be obtained by numerical differentiation, and as can be
seen in the figure, the result is in excellent agreement with the
fluctuation formula for the differential enthalpy using grand-
canonical simulations. For both methods, we observe no
divergence of the enthalpy close to or even at saturation. The
energy slope methodology also has the advantage that the
enthalpy can be easily decomposed into the framework−
adsorbate and adsorbate−adsorbate contributions. We see that
up to and including saturation strongly repulsive interactions
can be avoided. In this picture, an integer amount of molecules
fit in the cage and they all fit snugly without extensive repulsion.
There is not really room for another molecule as this would
require an increase of at least 6 orders in pressure (actually,
much, much more than that).
If the molecule is small in comparison to the channel, or

when the cavities are large (e.g., MOFs), the adsorbates first
adsorb at the surface. However, as the loading increases, a
disordered fluid is formed in the pores. Molecules experience

attractive interactions from the framework and also from other
adsorbates. Pushing more molecules in inevitably leads to
repulsive interactions and higher values for the enthalpy of
adsorption. As an example, Figure 10 shows the results for
adsorption of methane in a MFI-type zeolite at 300 K. The
isotherm up to a fugacity of 1012 Pa can be decomposed using a
dual-Langmuir−Freundlich model. The first contribution is
close to being Langmuir (ν ≈ 1), but the second contribution
captures the heterogeneous behavior. Both the energy-slope
method and the dual-Langmuir−Freundlich are able to capture
the behavior of the enthalpy of adsorption. The energy-slope
method shows a slight downward trend at low loading, which is
caused by attractive adsorbate−adsorbate interactions. How-
ever, at higher loading, the behavior becomes more and more
repulsive and the enthalpy drastically increases in value. Using
the dual-Langmuir−Freundlich model, we can analyze the
contribution from the two different types of sites and also
investigate the entropy and Gibbs free energy. We obtained the
temperature dependence of the dual-Langmuir−Freundlich
model by a Taylor expansion of the parameters around 300 K
and fitting the first order to simulations of 285, 290, 295, 300,
305, 310, and 315 K. Using eqs 37−40 applied to the dual-
Langmuir−Freundlich model, the expressions becomes too
unwieldy to list, but we present here the numerical results. The
c1 and c2 parameters for both sites have similar qualitative
behavior as a function of temperature (decrease with increasing
temperature), but m1 and m2 have opposite behavior as a
function temperature (m1 decreases with temperature, but m1
increases with temperature), and so do ν1 and ν2. This is
because of entropy. If two sites differ in energy, then, at low
temperatures, the lowest site is filled up before the second site.
However, at higher temperatures, the second site becomes
accessible even before the “first” site is completely filled.
Therefore, the temperature dependence of the n-site
Langmuir−Freundlich model needs to be explicitly computed
using simulation, as it would be difficult to theoretically derive
it a priori. Another downside of the isotherm models is that n-
site models cannot properly describe the low loading limit. For
example, the parameter in the single-site Langmuir reduces to
the Henry coefficient at low loading, but this is no longer true
for multisite models. Perhaps the biggest objection to the
Langmuir−Freundlich model is that, although it fits many
isotherms in zeolites and MOFs well, the parameters have little
physical basis as they lump the adsorbate−adsorbate inter-
actions implicitly into the heterogeneity factor. Still, it is very
useful to have analytical expressions for the isotherms.

■ CONCLUSIONS
Knowledge and understanding of variations in the enthalpy and
entropy of adsorption as a function of loading can provide
important information for the design of industrial separation
processes. In simulations, the most common way to obtain the
enthalpy of adsorption is from energy/particle fluctuations in
the grand-canonical ensemble. With conventional Monte Carlo
methods, this approach breaks down because of the difficulty of
inserting and deleting molecules close to saturation conditions
and also due to ergodicity problems. Here, we showed that by
using the CFCMC algorithms the energy/particle fluctuations
in the grand-canonical ensemble can be used to compute the
enthalpy of adsorption close to saturation. The method
dramatically enhances the probability of molecule insertions
and deletions close to saturation. In terms of the accuracy and
ease of use of the methodologies, we have the following order:
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NVT energy slope method > CFCMC fluctuation formula >
GCMC fluctuation formula > isotherm models.
We find, in general, for the enthalpy of adsorption as a

function of loading, that (1) if the added particle has only
interactions with the framework, but not with other particles,
then the differential enthalpy is constant as a function of
loading; (2) if the added particle has favorable interactions with
the framework and with other particles, then the differential
enthalpy goes down; and (3) if the added particle has repulsive
interactions with the framework and other particles, then the
enthalpy goes up. Case (3) represents the limit of infinite
pressure or loading. Case (1) over the full loading range is rare
and corresponds to systems where there is a one-to-one
correspondence between the adsorbate and an adsorption site
and where the sites are far enough from each other to avoid
repulsive interactions. Of course, with soft spheres one can
always push in another particle, but this would require an
increase in pressure of many, many orders of magnitude.
Therefore, in practice, these system do not diverge to large
positive enthalpy values at high loading. All other systems have
less well-defined sites and more fluid-like behavior in the pores.
Here, at high loading/pressure, the repulsive interactions causes
the enthalpy to steeply increase close to saturation. At inflection
points, we find a sudden change in entropy corresponding to
opening up a new “lattice” of adsorption sites that was not
accessible before the inflection.
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