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MONTE CARLO CODES, TOOLS AND ALGORITHMS

On the inner workings of Monte Carlo codes

David Dubbeldama, Ariana Torres-Knoopa and Krista S. Waltonb*

aVan’t Hoff Institute of Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands; bSchool
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332-0100, USA

(Received 5 April 2013; final version received 18 June 2013)

We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations)
and adsorption simulations in nanoporous materials such as zeolites and metal–organic frameworks. Conventional MC is
discussed and compared to advanced techniques such as reactive MC, configurational-bias Monte Carlo and continuous
fractional MC. The latter technique overcomes the problem of low insertion probabilities in open systems. Other modern
methods are (hyper-)parallel tempering, Wang–Landau sampling and nested sampling. Details on the techniques and
acceptance rules as well as to what systems these techniques can be applied are provided. We highlight consistency tests to
help validate and debug MC codes.

Keywords: Monte Carlo; implementation; configurational bias; continuous fractional; nested sampling

1. Introduction

To study thermodynamic properties at the molecular level,

one needs to collect information of the positions of the

atoms averaged over a long time. In molecular dynamics

(MD) simulations,[1–4] successive configurations of the

system are generated by integrating Newton’s laws of

motion, which then yields a trajectory that describes the

positions, velocities and accelerations of the particles as

they vary with time. MD is conceptually easy to

understand. The complexity of MD codes is in speed

optimisation such as parallelisation and in implementing

derivatives of the energy to get the forces. The derivatives

can be tedious to derive and implement, especially for

bend–torsion cross potentials and anisotropic sites.

Monte Carlo (MC) takes a similar approach, but

focuses on static properties. Therefore, there is no

requirement that the systems should evolve in time. In

MD, each state of the system depends on the previous state,

related in time as a trajectory. But in MC, there is no such

connection between ‘snapshots’ (states) of the system.

Similar to MD, average properties are computed as

averages over all the states of the system.[5] The method is

much more amenable to other ensembles than just the

canonical ensemble, as long as each state can be generated

with the proper weight. In principle, each molecular state

can be created from scratch. However, for efficiency, most

MC algorithms base a new snapshot on the modification of

the current snapshot by performing changes called

‘moves’. Common moves are to translate and/or rotate a

molecule. Such an attempt can be ‘accepted’ or ‘rejected’

by an ‘acceptance rule’, which means that the state has

changed or that the new state is simply equal to the old

state. All these snapshots form a chain, called a Markov

chain, and averages are computed as averages of this

Markov chain. Only static properties can be computed in

MC, because there is no time involved in an MC move.

This might seem non-physical or unnatural, but it is in fact

where the real power of MC lies. There are no constraints

on MC moves other than that they generate the appropriate

ensemble. This is guaranteed by the form of the acceptance

rules. Of course, the MC moves should ‘sample’ all the

relevant states of the system (‘ergodicity’). But, in addition

to the required moves, there is an enormous opportunity to

devise clever and efficient MC algorithms, sampling

techniques and MC moves. For example, MC moves that

change the composition or connectivity of the atoms can be

devised. The biggest limitation of MC methods is that they

are considerably harder to apply to chemically complex

molecules than MD. Therefore, MC used to be limited to

reasonably small molecules, but the range of systems sizes,

molecules, and algorithms is rapidly advancing. For more

details, Vitalis et al. published an overview of the state-of-

the-art MC methods designed for efficient sampling of

biomacromolecules.[6]

MC is all about generating and measuring probability

distributions, which provide great opportunities but make

MC codes notoriously difficult to debug and test. Errors in

algorithms, coding errors and/or sampling errors are difficult

to find and analyse. This is largely due to symmetry and

cancellation where errors are in many systems hidden in the
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noise, only to show up in certain systems or conditions.

Naively, onemight think that twodifferent (andboth correct)

algorithms should give the same result and in a perfect world

they would. But, in practice, each method has its own range

of applicability and efficiency. In this review, we therefore

provide details on many MC algorithms that have been

developed to study fluid properties and adsorption, and show

many validation tests aimed at checking the correctness of

the MC program implementation.

2. Molecular simulations

2.1 Force fields

The basic ideas behind molecular mechanics (MM) date

back to the 1930s and 1940s.[7–9] MM assumes that

matter consists of atoms and for every set of positions of

the atoms the potential energy surface (PES) can be

defined.[10] In 1950–1970, the advent of computers

caused MM methods to grow in popularity at a rapid rate,

and currently, MM is one of the standard methods of

structural chemistry. The classical molecular energy can

be described as a Taylor expansion in bonds, bends,

torsions, etc.[11,12]

U ¼
X
bonds

ubðrÞ þ
X
bends

uuðuÞ þ
X

torsions

ufðfÞ

þ
X

out-of-plane bends

uxðxÞ þ
X

non–bonded

unbðrÞ

þ
X

bond–bond

ubb0 ðr; r0Þ þ
X

bond–bend

ubu0 ðr; uÞ

þ
X

bend–bend

uuu0 ðu; u0Þ þ
X

bond–torsion

urfðr;f; r0Þ

þ
X

bend–torsion

uufðu;f; u0Þ þ . . .

ð1Þ

This expansion captures all familiar entities such as atoms,

bonds, angles and physical properties such as equilibrium

structures, vibrational spectra and so on. The cross terms

arise naturally from this expansion and are not ad hoc

functions. For example, bonds and bends interact, as the

bend angle becomes smaller the bond lengths tend to

increase. Their inclusion leads to two advantages: (1) they

increase the accuracy of the force field (especially the

vibrational frequencies) and (2) they increase the

transferability of the diagonal terms urðrÞ; uuðuÞ;
ufðfÞ; uxðxÞ. On top of the terms in Equation (1), one

can add ad hoc terms, such as hydrogen bonding, that are

not adequately accounted for otherwise.

Just because a model lacks certain key elements does

not mean that all results are wrong; similarly, a more

sophisticated force field does not necessarily give better

results. A well-calibrated simplistic model can often

produce better results than a generic, elaborate model. The

more parameters a model has to optimise, the harder it

becomes. Parameterisation is an art.[13] There have been a

number of approaches to parameterise a force field directly

from the quantum chemical calculations (see Ref. [14] and

references therein). As the true PES can be approximated

using quantum mechanical (QM) methods, a force field can

be directly fit to a calculated quantummechanical PES (QM

PES) by numerically matching the gradients or energy.

Although it is theoretically possible to include non-bonded

interactions in the fitting, it is more common to obtain

charges and van der Waals parameters separately and use

these as input. A common approach is to use genetic

algorithms (GA).[15] Tafipolsky et al. parameterised a

force field from first principles reference data by optimising

a novel objective function with a GA.[15] The GA are able

to efficiently parameterise the bonded terms, which

reproduce the density functional theory (DFT) results

(structure and vibrational modes) as close as possible.

It can be convenient to think of the optimisation

process as bottom-up (left-to-right in Equation (1))

. Bonds/angles/torsion: Parameters can be obtained

from gas-phase QM and spectroscopy.
. Point charges: Parameters can be obtained by

minimising the difference of the classical electro-

static potential and a QM electrostatic potential over

many grid points (ChelPG methods) [16–18];

REPEAT method [19,20]; partial equalisation of

orbital electronegativity (PEOE) or the Gasteiger

method [21] and charge equilibration methods.[22–

24]
. Polarisabilities: Parameters can be obtained from

gas-phase quantum or from experiment.
. van der Waals: Vapour–Liquid Equilibrium (VLE)

curves; inflections in isotherms [25,26]; small noble

gases such as argon from second virial coefficients;

in general, from comparison with experiments (e.g.

density, heat capacity and compressibility).

Equation (1) is historically referred to as a force field.

The name arose from the lowest order approximation

using only springs with force constants. Force fields have

matured, and many parameters exist for a wide range of

structures. These parameters are crucial and determine the

quality of the force field. A few examples of popular

generic force fields are AMBER,[27–31] OPLS,[32–35]

AMBER/OPLS,[36–39] CHARMM,[40–42] GROMOS,

[43–45] CVFF,[46] CFF,[47–49] MM2,[50–52] MM3,

[53,54] MM4,[55–60] MMFF94,[61–66] DREIDING,

[67] COMPASS,[68] PCFF [68] and UFF.[69]

A computationally very efficient model is the

transferable potentials for phase equilibria (TraPPE)

force field by Martin and Siepmann.[70,71] The force

field describes, e.g. linear alkanes, mono-branched and di-

branched alkanes. Despite the fact that the model lumps

CH3, CH2 and CH into single interaction centres, it
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reproduces the experimental phase diagram and critical

points very accurately. This united-atom approach allows

for much longer simulation times and larger systems

because each of the CHx groups is charge neutral and

charge–charge interaction can be omitted. The TraPPE

model has been extended over the years to include explicit

hydrogen description of benzene and five-membered and

six-membered heterocyclic aromatic compounds,[72]

thiols, sulphides, disulphides and thiophene,[73] ethers,

glycols, ketones and aldehydes,[74] primary, secondary

and tertiary amines, nitroalkanes and nitrobenzene,

nitriles, amides, pyridine and pyrimidine.[75]

The TraPPE models are calibrated hierarchically using

VLE data, e.g. CH4 using methane data, CH3 using ethane

data, CH2 using propane data, CH using isobutane and C

using neopentane. This then constitutes the ‘calibration

set’. With the final parameters in hand, the remaining

experimental data, e.g. for heptane or isopentane, can then

be used to validate the predictions of the model. If for this

‘validation set’ unsatisfactory results are obtained and the

experimental calibration data are not in doubt, then the

model needs to be refined. A more sophisticated model

could include explicit hydrogens [76] or anisotropic sites.

[77,78] However, the united-atom TraPPE model for

alkanes is able to accurately describe the properties of

alkanes over a wide range of chain lengths, densities,

pressures and temperatures.

Adjusting these force field parameters to VLE data is

currently a cumbersome and computationally expensive

task. For alkanes, a hierarchical optimisation (e.g. first CH3

from ethane, then CH2 from propane and so on) is possible

due to the simplistic nature of alkanes, but this is an

exception rather than the rule. A force field optimisation via

the VLE of CO2 involves optimising the van der Waals

interactions of the carbon and oxygen atom type

simultaneously, therefore requiring many time-consuming

iterations. An objective function can be defined as the

squared deviation between the computed and the exper-

imental data. Current fitting strategies involve lowering this

function below a defined threshold using Simplex- or

gradient-based methods. Each iteration point requires a full

molecular simulation run. Van Westen et al. developed a

method to overcome this limitation.[79] The actual

optimisation is performed in a faster, different framework

than molecular simulation, i.e. using the perturbed-chain

statistical associating fluid theory (PC-SAFT) equation of

state.[80] The PC-SAFT is able to sufficiently capture the

size and shape of molecules and the dispersion interactions

of fluids to reduce the amount of iterations to only 2 or 3.

2.2 Molecular simulation codes

A list of molecular codes that employ force fields for

classical molecular simulations is (by no means complete)

given in the following:

. DLPOLY: DLPOLY is an MD software for

macromolecules, polymers, ionic systems, solutions

and other molecular systems. It can also perform

MC simulations (DL MONTE) but only metropolis

sampling.[81]
. TINKER: The TINKER molecular modelling soft-

ware is a complete and general package for MM and

dynamics, with some special features for biopoly-

mers. The software by Jay Ponder performs energy

minimisations, molecular, stochastic and rigid body

dynamics with different periodic boundaries,

normal mode vibrational analysis, simulated anneal-

ing, free energy calculations and global optimisation

among other things. It can use a large array of

common force fields (e.g. Amber, CHARMM,

Allinger MM and OPLS).[82]
. DYNAMO: Library of modules developed for the

simulation of molecular systems using hybrid QM

and MM potentials. The library supports a range of

different types of molecular calculation including

geometry optimisations, reaction-path determi-

nations, MD and MC simulations.[83,84]
. GULP (the General Utility Lattice Program): It is a

powerful classical simulation code written by

Julian Gale for performing a wide range of

calculations on 3D periodic solids, 2D surfaces,

gas-phase clusters and isolated defects in a bulk

material.[85] In particular, the code has a large

number of material-specific force fields, such as

the shell model for simulating ionic materials.

It can also be used to fit and develop new force fields

with the wide range of potentials. GULP is

integrated in the Materials Studio package from

Accelrys.
. Materials Studio (forcite): It is an advanced classical

MM tool that allows fast energy calculations and

reliable geometry optimisation of molecules and

periodic systems. For crystal structures, geometry

optimisation with Forcite retains the crystal

symmetry. Forcite provides the user with great

flexibility, offering a range of force fields and

charging methods.[86,87]
. LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator): It is a classical MD

code with very good performance and scalability.

[88] LAMMPS has potentials for soft materials

(biomolecules and polymers) and solid-state

materials (metals and semi-conductors) and

coarse-grained or mesoscopic systems.
. GROMACS (GROningen MAchine for Chemical

Simulations): It is a MD package primarily designed

for simulations of proteins, lipids and nucleic acids.

[89,90]
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. BOSS (Biochemical and Organic Simulation

System): Bill Jorgensen’s general purpose molecular

modelling system that performs MM calculations,

MC statistical mechanics simulations and semi-

empirical AM1, PM3 and PDDG/PM3 QM calcu-

lations.[91] The MM calculations cover energy

minimisations, normal mode analysis and confor-

mational searching with the OPLS force field. The

MC simulations can be carried out for pure liquids,

solutions, clusters or gas-phase systems.
. MCPRO: Performs MC statistical mechanics simu-

lations of peptides, proteins and nucleic acids in

solution; it was derived from BOSS, but makes

extensive use of the concept of residues. The MC

simulations can be performed in a periodic solvent

box, in a solvent cluster or in a dielectric continuum

including the gas phase.[92]
. Etomica: Java-based MC package by David Kofke

and Andrew Schultz originally designed for use as a

teaching tool, but potentially powerful enough for

researchgrade application.Thecode is object oriented

and can be used independent of development

environment.[93]
. Towhee: An MC molecular simulation code orig-

inally developed in the group of J. Ilja Siepmann and

designed for the prediction of fluid-phase equilibria

using atom-based force fields and the Gibbs ensemble

with particular attention paid to algorithms addressing

molecule conformation sampling.[94] The code is

now mainly developed and maintained by Marcus

G. Martin and has subsequently been extended to

several ensembles, many different force fields and

solid (or at least porous) phases.
. MedeAw Gibbs: Gibbs ensemble MC package from

the group of Alain Fuchs to compute the thermo-

physical properties of single and multi-phase fluids as

well as adsorption isotherms of fluids on solids.[95]
. BIGMAC: General purpose configurational-bias

Monte Carlo (CBMC) code developed in the group

of Berend Smit for grand canonical and Gibbs

ensemble simulations of linear alkanes.[96,97]
. OPENMD: An open source MD engine, created

mostly by graduate students in the Gezelter group at

the University of Notre Dame, which is capable of

efficiently simulating liquids, proteins, nanoparticles,

interfaces and other complex systems. Proteins,

zeolites, lipids and transition metals (bulk, flat

interfaces and nanoparticles) have all been simulated

using force fields included with the code.
. Cassandra: an open source MC package being

developed in the Edward Maginn group at the

University of Notre Dame.[98] Cassandra is capable

of simulating any number of molecules composed of

rings, chains or both, such as small organicmolecules,

oligomers and ionic liquids. Cassandra can simulate

the following ensembles: canonical (NVT), isother-

mal–isobaric (NpT), grand (mVT), osmotic (mpT),

Gibbs (NVT and NpT versions) and reactive (RxMC).

Cassandra is parallelised with openMP.

. MUSIC (Multipurpose Simulation Code): Object-

oriented code developed in the group of Randall Snurr

themajor application ofwhich is in the computation of

diffusion and adsorption in zeolites. It can also

perform liquid and gas simulations, aswell asGCMC,

NVT-MC, NpT-MC, Hybrid MC, MD and NEMD

simulations.[99,100]

. RASPA: Simulation package (MC, MD and optimis-

ation) developed in the group of Randall Snurr at

Northwestern University in collaboration with Uni-

versidad Pablo de Olavide with emphasis on adsorp-

tion and diffusion simulations in flexible nanoporous

materials. It includesCBMC,CFMC,Gibbs, for single

and multicomponents that can be flexible and/or rigid

and can handlemany ensembles.[101]All simulations

in this work are performed with this code.

Three main types of parallel molecular dynamics

simulations have been developed: the replicated data

decomposition, the spatial decomposition, and the force

decomposition.[102] Similar techniques can also be used to

parallelise MC simulations.[103] MC is more amenable to

parallelisation thanMD, becausemostMC algorithms have

at least some degree of inherent parallelism. Parallel

tempering runs multiple synchronised Markov chains

simultaneously. Only when random pairs of systems

exchange information is communication necessary. Con-

ventional MCmoves in the canonical ensemble do not lend

themselves to efficient parallelisation, but more advanced

moves are straightforward to parallelise (e.g. in biasing

moves ‘trial positions’ can be computed independently).

Such parallel algorithms are described in Refs [104–106].

The multiple first-bead method of Esselink et al. places

many first beads and chooses the most favourable.

[104,105] The method increases the probability of

successful insertions especially at higher densities.

The effort of parallel implementation is significant,

and there are two good reasons to do it: (1) memory

problems (i.e. the memory would not fit onto a single

processor) and (2) to get the final results faster. Both cases

can occur for very large systems. If these situations do not

apply, then MC is more amenable to a ‘task-farming

approach’. Each node and, therefore, each simulation runs

totally independently of all other nodes. Instead of running

a single serial code 10 times longer (e.g. to get more

accurate results), one can just run 10 independent serial

runs on different nodes and combine the results for these

10 runs. It is for this reason that parallel MC codes are

relatively scarce.
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3. Ensembles

To describe the microscopic state of a system, classically,

at some instant of time, we need 6N variables; for each of

the N atoms we have three positions and three velocities.

This state is a point in a 6N space, called phase space. The

state evolves through phase space according to the laws of

mechanics. The measurements of macroscopic variables

such as temperature T, volume V and pressure p involve

taking time averages over the phase-space curve of the

system. This is in fact the basis of the MD technique.

Around 1900, Gibbs introduced the concept of ‘ensem-

bles’, in which the time averaging is replaced by averaging

over a group of microstates with the same macroscopic

state (e.g. N, Vand T). The ergodic principle states that this

ensemble averaging and time averaging are equivalent

(when simulated infinitely long). The phase-space points G
are distributed according to a probability density rðGÞ. The
functional form depends on the chosen ensemble.

For single components, there is one fundamental

thermodynamic function

dUðV ; S; nÞ ¼ 2pdV þ TdSþ mdn ð2Þ
from which three others can be derived by a Legendre

transformation [107]

dHðp; S; nÞ ¼ Vdpþ TdSþ mdn ð3Þ
dAðV ; T; nÞ ¼ 2pdV 2 SdT þ mdn ð4Þ
dGðp; T ; nÞ ¼ Vdp2 SdT þ mdn; ð5Þ

where the entropy is denoted by S, the chemical potential

by m, n is the number of moles, U is the internal energy, H

is the enthalpy, A is the Helmholtz function and G is the

Gibbs function, respectively. A system where the number

of moles n varies is called an open system. Each of the four

characteristic functions can be changed by a Legendre

transformation of the chemical work term mdn to obtain

new ensembles.

(1) Transformation of the internal energy U

L ¼ U 2 mn ð6Þ
dL ¼ 2pdV þ TdS2 ndm; ð7Þ

where the function LðV ; S;mÞ is known as the Hill

energy.

(2) Transformation of the enthalpy H

R ¼ H 2 mn ð8Þ
dR ¼ Vdpþ TdS2 ndm; ð9Þ

where the function Rðp; S;mÞ is known as the Ray

energy.

(3) Transformation of the Helmholtz function A

J ¼ A2 mn ð10Þ
dJ ¼ 2pdV 2 SdT 2 ndm; ð11Þ

where the function JðT ;V;mÞ is known as the

grand function.

(4) Transformation of the Gibbs function G

Z ¼ G2 mn ¼ 0 ð12Þ
dZ ¼ Vdp2 SdT 2 ndm ¼ 0; ð13Þ

where the function Zðp; T ;mÞ is known as the

Guggenheim function.

All seven functions Hðp; S; nÞ, AðV; T ; nÞ, Gðp; T; nÞ,
LðV; S; nÞ, Rðp; S; nÞ, JðV; T ; nÞ and Zðp; T ; nÞ are derivable
from a Legendre transformation of the fundamental law of

the energy conservation expressed in the internal energy

function UðV ; S; nÞ (Equation (2)). Figure 1, taken from

Ref. [108], shows the ensemble and their connection to the

reservoirs. The reservoirs impose constant temperature,

tension and pressure and chemical potential. The

E(S,V,N)

H(S,p,N)

L(S,V, µ)

R(S,p, µ)

A(T,V,N)

G(T,p,N)

J(T,V, µ)

Z(T,p, µ)

T,p, µ
Reservoir

Walls

Pistons

Permeable
Walls

Permeable
Pistons

constant E constant T

Figure 1. (Colour online) Ensembles: Shown are the eight
ensembles for a single component system. The systems interact
through a combined temperature, pressure and chemical potential
reservoir. The ensembles on the left are adiabatically insulated
from the reservoir, whereas those on the right are in thermal
contact with the reservoir. Pistons and porous walls allow for
volume and particle exchange. Adiabatic walls are shown cross-
hatched, whereas dithermal walls are shown as solid lines.
Ensembles on the same height are related by Laplace and inverse
Laplace transformations. The pressure stands for the pressure and
the tension. Picture taken from Ref. [108].
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ensembles in the left-hand column in Figure 1 are constant

energy ensembles, whereas the ensembles in the right-

hand column have constant temperature.

All eight ensembles (for a single component system)

may be simulated using either MD or MC simulations. The

probability distributions are exponentials for the isother-

mal ensembles and power laws for the adiabatic

ensembles.[109] For example, for the NVT ensemble the

probability density has the Boltzmann form PðrÞ ¼
Ce2bUðrÞ with U(r) the potential energy and C a constant.

For the (Ht and pN) ensemble, the trial MC moves involve

particle moves and simulation cell shape/size moves.[110]

For the (Rt and pm) ensemble, MC moves involve particle

moves, shape/size moves and insertion and deletion of

particles.[111] For MC simulations of these ensembles,

one uses the probability density directly in the simulation,

whereas for MD simulations, ordinary differential

equations of motion are solved for equations arising

from Hamilton’s equations.

4. System set-up

4.1 The simulation cell and boundary conditions

Computer simulations are limited to a number of

molecules that can be efficiently stored in memory.

Although simulations of hundreds of thousands of atoms

have been reported and will likely increase by orders of

magnitude in the future, this number is still far removed

from the thermodynamic limit. To be able to extrapolate

the results for a finite system to macroscopic bulk values

one usually employs periodic boundary conditions.[1]

Periodic boundary conditions are commonly applied to

overcome the problems of surface effects. The original

simulation box, including all the atoms within it, is

replicated throughout the space.[112] When a molecule in

the original box moves, its periodic images in each of the

surrounding boxes moves in exactly the same way. If a

molecule leaves the central box, one of its images will

enter the box through the opposite face. It is not necessary

to store the coordinates and momenta of all the images,

only those in the central box are needed, because the

images can be obtained from translation operators.

Usually, one imposes the minimum image convention:

the distance between two particles is taken to be the

shortest distance between their periodic images. The

boundary of the periodic box does not have any physical

significance, only the shape and orientation.[3] The use of

periodic boundary conditions inhibits the occurrence of

long-wavelength fluctuations. It is, for example, not

possible to simulate a liquid close to the glass-liquid

critical point where the range of critical fluctuations is

macroscopic.[3]

In general, the unit cell is defined by the cell lengths a,

b, c and angles a, b, g and by the fractional coordinates s

of the atoms within the unit cell. These coordinates form

an orthonormal dimensionless space. The transformation

from fractional space to Cartesian space can be carried out

by the matrix h:

h ¼
a b cos ðgÞ c cos ðbÞ
0 b sin ðgÞ cz

0 0 c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cos2b2 z2

p
0
B@

1
CA ð14Þ

with

z ¼ cosa2 cos g cosb

sin g
: ð15Þ

This aligns the a cell vector along the x-axis, b in the xy-

plane. Conversely, h21 transforms Cartesian coordinates r

to fractional coordinates s. With the chosen h the scaled

box has a length of 1. Potential force fields are defined in

Cartesian space; therefore, it is convenient to store position

in Cartesian space, transform them to fractional space,

apply periodic boundary conditions in s space and

transform back to Cartesian space to compute distances

within the simulation box

s ¼ h21r; s0 ¼ s2 rintðsÞ; r0 ¼ hs0;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 xÞ2 þ ðr0 yÞ2 þ ðr0 zÞ2

q
;

ð16Þ

where the ‘rint’ function returns the rounded integer value

of its argument. The smallest perpendicular width of the

unit cell has to be larger than twice the spherical cut-off in

Cartesian space to be consistent with the minimum image

convention.

In general, it is prudent to use a sufficiently large

simulation cell (and a large amount of particles) to avoid

‘finite size’ effects. The error of thermodynamic properties

in periodic systems with only a few hundred particles can

be quite large,[113] especially in the vicinity of critical

points. It is advisable to study the system properties as a

function of system size to estimate the finite size effects.

Also, sometimes theoretical corrections can be applied to

the simulation results.[114–116]

4.2 Initialisation, equilibration and production runs

To prepare the system at the desired temperature in an

equilibrium configuration for MD, we initialise the system

by the following procedure:

. N molecules are inserted into the simulation box at

random positions as long as no overlaps occur with a

framework and/or other particles, and as long as the

positions are accessible from the main cages and

channels (when a framework solid is present).

Inaccessible pockets need to be blocked.[117]
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One can use a list of volume shape/sizes that are

automatically considered an overlap, either com-

puted in advance or on-the-fly.[118]
. During the initialisation period, we perform an NVT

MC simulation to rapidly achieve an equilibrium

molecular arrangement.
. After the initialisation step, we assign all the

velocities of atoms from the Maxwell–Boltzmann

distribution at the desired average temperature. The

total momentum of the system is set to zero (to avoid

centre-of-mass drift of the system). Next, we

equilibrate the system further by performing an

NVT MD simulation using a thermostat.
. The equilibration is completed and during the

production run we collect statistics using either the

NVE or NVT ensemble. Following this equilibration

procedure, the average temperature using NVE over

the entire production period is usually within a few

Kelvin of the desired average temperature, while

NVT would give the exact desired average

temperature if simulated sufficiently long.

The ability to insert molecule efficiently is important for

an (almost) effortless initialisation process. An alternative

method is to place molecules at regular intervals (‘on a

grid’) but is only applicable at lower densities and is in

general more cumbersome. Therefore, even with only MD

in mind, the use of MC might make the initialisation more

robust and efficient. This also applies to the equilibration

of the positions. In MC, particles can be randomly moved

around in the system (this does not have to follow a

trajectory based on Newton’s equation of motions like in

MD). This is an advantage for systems with diffusional

bottlenecks such as cage-type zeolites. With MC the

particles can be distributed appropriately without physi-

cally having to go through the bottlenecks.

After these steps, the procedure for MC and MD

differs. For MD, the next step is to equilibrate the

velocities. Atoms are assigned velocities from a

Maxwell–Boltzmann distribution, and the integration of

the equations of motion is started. Due to previous

equilibration of positions, the actual time to properly

equilibrate the velocities (and also again the positions) is

significantly reduced. The final step for MD is to start the

actual ‘production run’ where properties of interest are

measured. For MC, the production run can immediately be

started after the equilibration of the positions.

MD is counted in MD steps, i.e. single integration

steps, from which the total simulations time in ps or ns can

be deduced. For MC, the duration of the simulation is

measured in ‘MC steps’ or ‘MC cycles’. AnMC step is one

performed MC move, either accepted or rejected. The MC

moves are chosen in random order with a preset

probability. An MC cycle takes the number of particles

into account, and in each cycle on average one MC move

has been attempted per particle. The reason behind this is

that one needs to sample longer if there are more

molecules in the system. Therefore, the number of cycles

is less dependent on the system size. To avoid poor

sampling at low densities, the number of steps per cycle

can have a set of lower limit of 20. A cycle is then, for

example, defined as [96]

Ncycles ¼ maxð20;NÞNsteps: ð17Þ

5. Long-range interactions

5.1 van der Waals

The most common repulsion/dispersion functional form

for the van der Waals interaction is the Lennard-Jones

potential (see Figure 2)

uVDWðrÞ ¼ 4e
s

r

� �12
2

s

r

� �6� �
ð18Þ

and the Hill or Buckingham potential function

uVDWðrÞ ¼ a expð2brÞ2 c

r

� �6
: ð19Þ

The Hill potential, having three adjustable parameters

versus two adjustable parameters for Lennard-Jones (the

‘strength’ parameter e and the ‘size’ parameter s), might

be slightly more accurate. However, the Lennard-Jones

potential is most commonly used for convenience. The

parameters for generic force fields are usually self-

parameters, and a ‘mixing rule’ is needed to compute the

interaction between different types of atoms. Common

mixing rules are as follows:

Arithmetic ðalso called Lorentz2BerthelotÞ
e ij ¼ ffiffiffiffiffiffiffiffi

e ie j
p

sij ¼ si þ sj

2
;

ð20Þ

Geometric ðalso called JorgensenÞ
e ij ¼ ffiffiffiffiffiffiffiffi

e ie j
p

sij ¼ ffiffiffiffiffiffiffiffiffi
sisj

p
;

ð21Þ

Sixth2 power ðalso calledWaldman2HaglerÞ

e ij ¼
2s3

i s
3
j

s6
i þ s6

j

ffiffiffiffiffiffiffiffi
e ie j

p
sij ¼

s6
i þ s6

j

2

 !1=6

:
ð22Þ

See Ref. [119] for many more mixing rules. A downside

of the Hill potential is divergence to large negative

energies at r ! 0. In MD, assuming that all atoms

initially do not overlap, the repulsive part of the potential

avoids this issue. However, in MC, a move may choose a

new random position on top of another particle’s position.

Therefore, the potential needs to be ‘blocked’ (such a
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move would be explicitly considered an overlap and

rejected) or changed to a polynomial repulsion (e.g.

MM2) at short distances.

To make the simulations tractable, the van der Waals

potentials are truncated at a certain distance where the

interactions are considered sufficiently small. In MC, the

truncated potential can be used, and the energy correction

due to this truncation, called the ‘tail correction’, can be

approximated (see Figure 2). The truncation distance and

whether to use tail correction or not should be considered

as part of the force field. For MD, the truncation in the

energy leads to a divergence in the forces. Common

approaches include to shift the van der Waals potential to

zero at the cut-off and the use of a switching function

where the energy is forced to smoothly go to zero [120–

122]

uðrijÞ ¼
uðrijÞ rij , ron

uðrijÞ £ r2
off
2r 2ð Þ r2

off
þ2r 223ronð Þ

r2
off
2r2

offð Þ3 ron # rij # roff

0 rij . roff

8><
>:

ð23Þ

The cut-off is usually chosen as the distance where the

radial distribution function (RDF) approaches unity. The

requirement that the smallest perpendicular distance of the

simulation cell has to be larger than twice the cut-off

distance rc determines the minimum amount of crystal-

lographic unit cells to be used in adsorption simulations. If

we assume the RDF gðrÞ ¼ 1 for r . rc we can write

U <
X
i,j

uVDWðrijÞ þ Nr

2

ð1
rc

4pr 2uVDWðrÞ dr; ð24Þ

where N is the number of particles and r ¼ N=V is the

average number density. The last term in Equation (24) is a

tail correction, i.e. the systematic contribution to the

energy due to truncation of the potential. Similar

expressions have been derived for the pressure and

chemical potential.[1] Note that this is only possible for

potentials decaying faster than 1=r 3, like the van der Waals

potentials. Another point worth mentioning is that for

molecules adsorbed in a porous material the RDF does not

approach unity, not even at long distances, because it is no

longer a homogeneous system (see Figure 2). Analytical

tail corrections therefore do not apply in nanoporous

materials,[123] and they are usually just omitted.

5.2 Coulombic interactions

The Coulombic potential decays as r 21 and the tail

correction diverges. The total electrostatic potential energy

of interaction between point charges qi at the positions ri is

given by

U ¼ 1

4pe0

X
i,j

qiqj

jri 2 rjj ¼
1

8pe0

X
i–j

qiqj

jri 2 rjj ; ð25Þ

where e0 is the electric permittivity of free space

(8.8541878176 £ 10212 F/m). In this expression, the first

form explicitly counts all pairs, whereas the second form

counts all interactions and divides by 2 to compensate for

double counting. For a finite system of charges, this

expression can be evaluated directly.However, for a large or

infinite system, the expression does not converge and

numerical tricksmust be used to evaluate the energy. In fact,

for the infinite system, one has an infinite amount of charge

r

E
(a) (b)

tail-correction

21/6  0
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4
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4
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4
–CH

4
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y 
(–

)

Figure 2. (Colour online) The Lennard-Jones potential has two parameters: the ‘strength’ parameter 1 and the ‘size’ parameter s.
Energy and force evaluations only take place within the cut-off distance. It is possible to estimate the neglected energy (called the ‘tail’
correction, green area in the picture). For MD, it is customary to use ‘smoothing’ which makes the potential smoothly go to zero at the cut-
off (red line). Alternatively, the whole potential can be ‘shifted’ to be zero at the cut-off. The latter leads to continuous forces but remains
divergent for higher derivatives. The tail correction calculation assumes that the RDF is approximately unity after the cut-off. The right
figure shows that for methane–methane interactions, an arbitrary methane sees an ideal gas of other methane molecule at distances greater
than about 12–14 Å for this system. The RDF/tail correction formulation breaks down inside nanoporous materials (here methane in ERI-
type zeolites) where the particles are located at adsorption sites in a heterogeneous environment. The RDFs of methane in the fluid and in
the pores of ERI are computed at the same density (102 kg/m3).
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and the energy of interaction is undefined. If the system is

neutral, it is possible to define a meaningful interaction

energy by use of an Ewald transformation.[124–126]

The basic idea of the Ewald approach is as follows. The

error function erf(x) and its complement are defined as:

erfðxÞ ¼ 2ffiffiffiffi
p

p
ðx
0

e2t 2 dt ð26Þ

erfcðxÞ ¼ 12 erfðxÞ ¼ 2ffiffiffiffi
p

p
ð1
x

e2t 2 dt: ð27Þ

Ewald noted that

1

r
¼ erfðarÞ

r
þ erfcðarÞ

r
: ð28Þ

In this expression, the first term goes to a constant

2a=
ffiffiffiffi
p

p� �
as r ! 0, but has a long tail as r !1. The

second term has a singular behaviour as r ! 0, but

vanishes exponentially as r !1. Ewald’s idea as to

replace a single divergent summation with two convergent

summations. The first summation has a convergent

summation in the form of its Fourier transform, and the

second summation has a convergent direct summation. A

sum over lattice translation n may be transformed into an

equivalent sum over reciprocal lattice translations k

according to the identity:

X
n

d3ðt2 nÞ ¼ 1

V

X
k

eık�r; ð29Þ

where V denotes the unit cell volume.

The vectors ha, which need not be orthogonal, form

the edges of the unit cell. The conjugate reciprocal vectors

h*a are defined by the relations

h*a�hb ¼ dab a;b ¼ fx; y; z}: ð30Þ
Let h be the 3 £ 3 matrix having the lattice vectors ha as

columns. Note that the volume Vof the unit cell is given by

the determinant of h. Furthermore, h21 is the 3 £ 3 matrix

having the reciprocal lattice vectors h*a as rows. We define

the reciprocal lattice vectors k by k ¼ 2pðh21ÞTðlmnÞ with
l;m; n integers not all zero. We define the structure factor

SðkÞ by

SðkÞ ¼
XN
j¼1

qj expðık�rjÞ ð31Þ

SðkÞ ¼
XN
j¼1

qj exp½2pıðls1j þ ms2j þ ns3jÞ�: ð32Þ

The structure factor SðkÞ can be viewed as a discrete

Fourier transform of a set of charges placed irregularly

within the unit cell.

The Ewald expression for the Coulombic energy in a

truly periodic system reads

U

V
¼ 1

2Ve0

X
k–0

e2ðk 2=4aÞ

k 2
SðkÞSð2kÞ2

X
i

2affiffiffiffi
p

p q2i

þ 1

2

X
i;j

X0

n

qiqj erfcðajrij þ njÞ
jrij þ nj ; ð33Þ

where the 0 in the summation over the lattice translations n

indicates that all self-interaction terms should be omitted.

Ewald expressions for energy, forces, stresses, electric

fields and electric field gradients have been derived for the

interaction between charges, dipoles and quadrupoles.

[127,128]

For a net-charged system, the fully periodic Coulom-

bic energy diverges. This does not happen with the Ewald

method, as the divergence catastrophe is avoided by a

‘neutralising plasma’ – a uniform distribution of charge

equal and opposite to the net charge of the system – which

is usually said to be added to the system. The neutralising

plasma is effectively represented in Ewald summations by

the omission of the k ¼ 0 term in the reciprocal space sum.

Systems with a net charge possess a finite non-zero energy

and pressure that may lead to artefacts in such systems.

Bogusz et al. have derived corrections to the Ewald

expressions to remove pressure and free energy artefacts in

charged periodic systems.[129] The net-charge correction

term can be logically broken into five terms: a reciprocal

space term, a real space term, a self term, a surface dipole

term and a system-dependent correction, such as a Born or

Poisson–Boltzmann term (which corrects for missing

long-range polarisation):

UNet2charge correction ¼ 2UReciprocal SP 2 UReal SP

2 USelf SP 2 USurface SP

þ UBorn; ð34Þ

where SP refers to a single particle calculation. For

example, the reciprocal space term is simply the reciprocal

space energy of the Ewald sum for a single particle located

at the origin:

UReciprocal SP ¼ 4pq2total
V

X
k–0

1

k 2
eð2k 2=4a 2Þ; ð35Þ

which has to be computed only once for a given cell

shape and size. The pressure artefacts can be removed by

placing the net charge at the centre of charge of the

system (and therefore has to be recomputed at every

step).

The Ewald method can be implemented very

efficiently for MC methods as only the change for moving
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atoms needs to be computed.[130] The real part RðxðkÞÞ
and the imaginary part I ðxðkÞÞ of the structure factor can

be expressed as a summation over all particles in the

system. It is convenient to store RðxðkÞÞ and IðxðkÞÞ in the

memory of the computer (one complex number for each

k). For particle displacements, rotations, regrows, (test)

insertions, deletions and identity changes, one can easily

calculate the new values for RðxðkÞÞ and IðxðkÞÞ by

subtracting the contributions of the old configuration and

by adding the contributions of the new configuration. This

has to be done only for atoms that have a different position

in the old and new configuration.

The Ewald summation is superior to the recently

proposed Wolf method [131] and other direct summation

methods, both in accuracy and in speed.[130] It is well

known that a direct r 21 summation only converges for

very large values of the cut-off radius,[3] for example more

than 40 Å for neutral molecules. Damping the Coulombic

potential reduces this range, although still a cut-off of at

least 25 Å seems to be the minimum requirement,[130] but

at the cost of uncertainty in the damping constant a.
Different values for a are recommended in the literature

implying that this damping is system specific and possibly

dependent on the molecule type, framework topology,

temperature, etc. The Ewald summation is able to compute

the electrostatic energy exactly (to within any specified

numerical precision) for a system of charges in an

infinitely periodic structure at a cost less than quadratic

with the number of particles (N 3/2 for Ewald). The energy

and forces computed with the Ewald summation are well

defined and unique. They do not depend on a judicious

choice of damping parameters and cut-off values, and

Ewald type methods are at the same level of accuracy

significantly cheaper.

The MM2 and MM3 force fields calculate the

electrostatic interaction in non-charged polar molecules

by using bond dipoles. The electrostatic interaction

potential is then given by

u ¼ mimj

er3ij
ðcos x2 3 cosai cosajÞ; ð36Þ

where x is the angle between the two dipoles and ai and aj

are the angles between the dipoles and the vector

connecting them. There is little difference if properly

parameterised. However, almost all force fields prefer the

charge model because it is easier to parameterise.

5.3 Units

An excellent discussion of the handling of units is given in

the manual of DLPOLY.[81] A small set of internal units

needs to be chosen. A convenient set that is chosen in

DLPOLY, RASPA and many other codes is given in the

following:

(1) The unit of length l0 is chosen as Å, i.e.

l0 ¼ 10210m.

(2) The unit of time t0 is chosen as picoseconds, i.e.

t0 ¼ 10212 s.

(3) The unit of mass m0 is chosen as atomic mass

units, i.e. m0 ¼ 1:660540210227 kg.

(4) The unit of charge q0 is chosen as units of proton

charge, i.e. m0 ¼ 1:6021773310219 C/particle.

All other units follow from this decision, for example:

. The unit of energy E0 ¼ m0ðl0=t0Þ2 is 10 J mol21.

The Boltzmann factor kB is 0.831451115 E0K
21.

This means that the Coulombic conversion factor

g0 ¼ 1

4pe0
¼ 1

E0

q0

4pe0l0

¼ 138935:4835 in internal energy units: ð37Þ

. The unit of pressure p0 ¼ E0l
23
0 is 1.6605402

£ 107 Pa.
. The unit of diffusion D0 ¼ l20=t0 is 10

28m2 s21. The

slope of the mean square displacement versus time

will be in units of 1028m2 s21.

At the start of the simulation, the input is read and

converted to internal units. At output, the internal values

are converted back to physical units. That is, one is still free

to input, e.g. pressure in either bar, atmosphere or psi, as

long as the values are converted properly to internal units.

The documentation of the code should clearly list what

units are expected for the input (as well as describe the

units of the output). There is hardly any need to have unit

conversion elsewhere in the code with a few exceptions.

For example, because the electric permittivity of free space

e0 enters into the Coulombic potential, every time the

charge–charge interaction is computed the value needs to

be multiplied by g0 to be consistent with internal units.

6. Methodology

6.1 Monte Carlo

Statistical mechanics formulate the following postulates

[4,132]:

(1) Postulate of ensemble averaging.

The average behaviour of a macroscopic

system in equilibrium is given by the average

taken over a suitable ensemble consisting of an

infinite number of randomised mental copies of

the system of interest.

(2) Postulate of equal a priori probabilities.

In a state of macroscopic equilibrium, all

stationary quantum states of equal energy have

equal a priori probability (in the micro-canonical

ensemble).
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(3) Postulate of equilibrium state.

Equilibrium state is the one that occupies the

maximum volume in the phase space.

The implications are as follows:

(1) The method of calculation is statistical in nature.

(2) The predictions are regarded as true on average

rather than precisely expected for any particular

system.

(3) The probability of finding a system in a given state

being proportional to the phase-space volume

associated with it, the most probable state would

be one that occupies the maximum volume in the

phase space. It follows that the equilibrium state is

the state of maximum probability.

In its simplest form, the MC method is nothing more

than a computer-based exploitation of the law of large

numbers to estimate a certain probability or expectation. At

the heart of the algorithm lies the ‘random numbers

generator’, and therefore, it is advisable to use a high-

quality generator such as the ‘Mersenne Twister’.[133,134]

The Markov Chain Monte Carlo (MCMC) method is an

important tool to estimate the average properties of systems

with a very large number of accessible states.[135,136] The

system evolves from state to state (possibly the same state),

and averages of a property are computed as the average over

the elements of the Markov chain. For an infinite Markov

chain the expression is exact. The scheme makes use of the

fact that only the relative probability of visiting points in

configuration space is needed, not the absolute probability.

To visit points with the correct frequency, the MCMC

algorithm generates random trial moves from the current

(‘old’) state (o) to a new state (n). To show that an arbitrary

initial distribution eventually relaxes to the equilibrium

distribution, it is often convenient to apply the condition of

detailed balance (as is used in the original Metropolis

scheme). IfPeqðoÞ andPeqðnÞ denote the probability of finding
the system in states (o) and (n), respectively, and aðo! nÞ
and aðn! oÞ denote the conditional probability to perform
a trial move from o! n and n! o, respectively, then the

condition called ‘detailed balance’ can be written as

PeqðoÞaðo! nÞPaccðo! nÞ ¼ PeqðnÞaðn! oÞPaccðn! oÞ: ð38Þ

In equilibrium, the flow from the old state o to any other

state n is exactly equal to the reverse flow. In theMetropolis,

algorithm a is chosen as a symmetric matrix

aðo! nÞ ¼ aðn! oÞ: ð39Þ

For a symmetric transition matrix

PeqðoÞPaccðo! nÞ ¼ PeqðnÞPaccðn! oÞ ð40Þ

which leads to

Paccðo! nÞ
Paccðn! oÞ ¼

PeqðnÞ
PeqðoÞ

: ð41Þ

Metropolis et al. choose the following acceptance rule

[135]

Paccðo! nÞ ¼ min 1;
PeqðnÞ
PeqðoÞ

	 

: ð42Þ

Let us recall for example the canonical partition

function [137]

QðN;V ; TÞ ¼ 1

h3N!

ðð
e2bHðpN ;rN ÞdNpdNr; ð43Þ

where the Hamiltonian H ¼Pi ð1=2Þðp2i =miÞ þ UðrNÞ, p
the linear momentum and m the mass of the particle. The

factor h 3 is the phase-space volume, and 1=N! arises

because classically particles within a single species are

indistinguishable.

In MC, only the positions are used. The momenta can

be integrated analytically by making use of
Ð1
21e

2x 2

dx ¼ffiffiffiffi
p

p

ð
e
2b

�P
i
ðp2i =2miÞ

�
dp ¼

ð
e2bðp 2=2mÞ dp

	 
3N

¼ 2pm

b

	 
ð3=2ÞN
: ð44Þ

The de Broglie wavelength L is the wavelength of a

gas particle with momentum determined by the average

thermal kinetic energy per degree of freedom kBT . If we

use the de Broglie relation px ¼ h=L, then from

ð1=2Þp2x=m ¼ ð1=2ÞkBT we have L ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=ðmkBTÞ

p
. The condition for the applicability of

classical or Boltzmann statistics is equivalent to the

condition L3=V ! 1, where L represents the critical

length scale at which interactions are neglected. Closely

related to h divided by the momentum, the de Broglie

wavelength is defined as

L ;
h2b

2pm

	 
1=2

; ð45Þ

we see that the differences between the partition functions

with and without explicit momentum integration are

h$ L and HðpN ; rNÞ $ UðrNÞ
1

h3N!

ðð
e2bHðp;rÞdNpdNr ¼ 1

L3N!

ð
e2bUðrÞdNr: ð46Þ

For ensembles where the simulation cell is allowed to

change, it is more convenient to redefine the positions in
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fractional coordinates using s ¼ h21r.[138] In fractional

coordinates, it is easier to describe a volume change while

leaving the particle positions the same. The partition

function in fractional coordinates is related to the

Cartesian version by a factor V N

1

L3N!

ð
e2bUðr N ÞdNr ¼ 1

L3N!

ð
V Ne2bUðsN ;hÞdNs; ð47Þ

where UðsN ; hÞ means that the Hamiltonian depends

on the Cartesian positions,[138] i.e. potentials are

usually defined in Cartesian space as opposed to

fractional space.

Some of the most commonly used ensembles are the

canonical ensemble, the isothermal–isobaric ensemble,

the grand canonical ensemble, the Gibbs ensemble and the

m1N2pT ensemble.

6.1.1 Canonical MC

In the canonical ensemble, the number of particles N, the

temperature T and the volume Vare constant. The partition

function Q is [137,139–141]

QðN;V ; TÞ ¼ 1

L3NN!

ð
e2bUðrN ÞdNr; ð48Þ

where UðrNÞ is the total energy of the system with N

particles at positions rN. The probability of finding

configuration rN is given by

N ðrNÞ / e2bUðrN Þ: ð49Þ
The average of the variable AðrNÞ in the NVT ensemble is

given by

kAðrNÞl ¼
Ð
AðrNÞ e2bUðrN ÞdNrÐ

e2bUðrN ÞdNr
: ð50Þ

In MC, the quantity of interest is not the configurational

part of the partition function itself, but averages of the type

of Equation (50).

The particle moves such as translation and rigid

rotation have the following acceptance rule:

accðo! nÞ ¼ min 1; e2b½UnðrN Þ2UoðrN Þ�
� �

: ð51Þ

6.1.2 NpT ensemble

The MC extension to the NpT ensemble is by Woods

[142,143] and samples the phase space of a constant N,

constant p, constant T ensemble with the appropriate

phase-space probability. In addition to the particle moves

performed at constant T, changes in the volume are

attempted and accepted/rejected according to an evalu-

ation of the enthalpy change. The NpT ensemble has

volume trial moves V ! V 0 ¼ V þ DV which implies

implicit particle scaling using a factor f ¼ V 0=V
� �1=3

. The

DV is a random number uniformly distributed over the

interval ½2DVmin;DVmax�. The isothermal– isobaric

ensemble partition function, introduced by Guggenhei-

mer,[144] is given in fractional positions by [138,145]

DðN; p; TÞ ¼ C
L3NN!

ð
V Ne2bpV

ð
e2bUðsN ;hÞdNs

	 

dV:

ð52Þ

The factor C is included to make the partition function

dimensionless.[146–148] The volume scale C cannot be

defined in general.[149] Common choices, corresponding

to particular cases, include C ¼ bp and C ¼ N=V . The
differences become important when the volume of the

system is small, but vanish in the thermodynamic limit.

However, the choice is not of importance in simulations

because of cancellation of the prefactors. A property A is

averaged as

kAlNpT ¼ 1

DðN; p; TÞ
ð
e2bpVV N

ð
AðsNÞe2bUðsN ;hÞdNsdV :

ð53Þ

The change in enthalpy for a volume change V n ¼
V o þ DV

DH ¼ DU þ pDV 2
N

b
ln

V n

V o

	 

: ð54Þ

The acceptance rule can be derived as

accðo! nÞ
accðn! oÞ ¼

VN
n e

2bpVne2bUnðsN ;hÞ

VN
o e

2bpVoe2bU0ðsN ;hÞ

¼ Vn

Vo

	 
N

e2bpðVn2VoÞ e2b Un sN ;hð Þ2U0 sN ;hð Þð Þ

ð55Þ

and the new volume is accepted/rejected according to

accðVo ! VnÞ ¼ minð1; e2bDHÞ: ð56Þ

However, often an alternative move is used, where the

volume is changed not in V but in lnðVÞ. The partition

function is

DðN; p; TÞ ¼ bp

L3NN!

ð
V Nþ1e2bpV

ð
e2bUðsN ;hÞdNs

	 

dV;

ð57Þ
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and the probability of finding the volume is

PðsN ;VÞ / V Nþ1 e2bpV e2bUðsN ;hÞ: ð58Þ
The change in enthalpy for a volume change Vn ¼

elnðVoÞþDV

DH ¼ DU þ pDV 2
N þ 1

b
ln

Vn

Vo

	 

ð59Þ

leading to a slightly different acceptance rule (note the

N þ 1 in Equation (40) compared with N in Equation

(54)).

accðVo ! VnÞ ¼ minð1; e2bDHÞ: ð60Þ
The particle moves have the same acceptance rules in

the NpT ensemble as in the NVT ensemble

accðo! nÞ
accðn! oÞ ¼

VN
n e2bpVn e2bUnðsN ;hÞ

VN
o e2bpVo e2bUoðsN ;hÞ ¼

e2bUnðsN ;hÞ

e2bUoðsN ;hÞ

¼ e2b UnðsN ;hÞ2UoðsN ;hÞ½ � ð61Þ

6.1.3 Gibbs ensemble

The Gibbs ensemble MC simulation technique allows direct

simulation of VLE curves of fluids.[150,151] In some sense,

it combines the NVT, the mVT and the NpT ensembles and

therefore provides a generic theoretical framework. Gibbs

ensemble simulations are performed in two separate

microscopic regions, each within periodic boundary

conditions (Figure 3(a)). An n-component system at

constant temperature T, total volume V and total number

of particles N is divided into two regions, with volumes V I

and V II ¼ V 2 V I and number of particles NI and

NII ¼ N 2 NI. The partition function is given by

QGibbs
NVT ;

1

L3NN!

XN
N I¼0

N

NI

 !
ðV
0

ðV IÞNI ðV IIÞNII

ð
e2bUðsNII ;hÞdNIIsII

ð
e2bUðsNI

I
;hÞdNIsI

	 

dV I:

ð62Þ

Theprobability of finding a configurationwithNI particles in

box I with volume V I and positions s
NI

I and sNII

II is given by

N NI;V I; s
NI

I ; sNII

II

� �
/ ðV IÞNI ðV IIÞNII

NI!NII!
e2b UðsNI

I
;hÞþUðsNII

II
;hÞ

� �
: ð63Þ

In the Gibbs scheme, we consider the following trial moves:

. displacement of a randomly selected particle.

The acceptance rule is identical to that used in a

conventional NVT ensemble simulation

Figure 3. (Colour online) Gibbs, adsorption using Gibbs, the osmotic and the grand canonical ensemble, (a) in the Gibbs ensemble the
total volume and the total number of molecules are fixed. The volume move makes one box bigger and the other box smaller which leads
to pressure equilibration. The exchange of particles between the boxes leads to equal chemical potential and in both boxes the same
temperature is imposed. (b) Adsorption isotherms can be computed in the Gibbs ensemble where the fluid phase is explicitly simulated.
(c) The osmotic ensemble replaces the explicit fluid phase by an imaginary reservoir. (d) The grand canonical ensemble also uses the
imaginary reservoir but in addition keeps the volume fixed.

Molecular Simulation 1265

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
5:

11
 0

2 
Ju

ne
 2

01
4 



. change in box volumes while keeping the total

volume constant.

The acceptance rule for a random walk in

lnðV I=V IIÞ is
accðo!nÞ¼minð1; V IðnÞ

V IðoÞ
	 
NIþ1

V IIðnÞ
V IIðoÞ
	 
NIIþ1

e2bDðUðsN Þ:

ð64Þ
. transfer of a randomly selected particle from one

box to the other.

We can generate a new configuration n from configuration

o (NI particles in box I) by removing a particle from box I

and by inserting this in box II. At random, it is selected to

transfer a particle from box I to box II or vice versa. Out of

the n components, one of the components j is selected at

random. A particle that obeys the first two choices is

selected at random and transferred to a random position in

the other box. The acceptance rule is given by

accðo! nÞ ¼ min 1;
NI;jV II

ðNII;j þ 1ÞV I

e2b UðsNn Þ2UðsNo Þð Þ
	 


:

ð65Þ
Alternatively, one can first select a particle at random from

all N particles and then try to move this particle to the other

simulation box. The acceptance rule is

accðo! nÞ ¼ min 1;
V II

V I
e2b UðsNn Þ2UðsNo Þð Þ

	 

: ð66Þ

For pure component systems, the phase rule requires

that only one intensive variable (the temperature) can be

independently specified when two phases coexist. The

vapour pressure is obtained from the simulation. By

contrast, for multicomponent systems pressure can be

specified in advance, with the total system being

considered at constant NpT. The only change necessary

is that the volume changes in the two regions are now

independent. The acceptance rule for a random walk in

lnV I of region I, while the V II volume remains unchanged

which is given by

accðo! nÞ ¼min 1; e2bDUI2bpðV IðnÞ2V IðoÞÞþðNIþ1ÞlnðV IðnÞ=V IðoÞÞ
� �

:

ð67Þ

6.1.4 Adsorption simulation

In adsorption studies, one would like to know the amount of

materials adsorbed as a function of pressure and temperature

of the reservoir with which the adsorbent is in contact.

Adsorption simulations can be performed in the Gibbs

ensemble (adsorption equilibriumbetween a bulkfluid phase

and the interior of an adsorbingmaterial).[152] The reservoir

is explicitly simulated from which the pressure can be

obtained (see Figure 3(b)). Conversion using an equation of

state is not necessary between pressure and fugacity, albeit

that the fugacity coefficient is one of the models (but

hopefully close to the experimental fugacity coefficient if the

fluid model is sufficiently accurate). Two other ensembles

for computing adsorption are the m1N2PT (Figure 3(c)) and

grand canonical ensemble (Figure 3(d)). Gibbs ensemble

simulations of adsorption are almost identical to grand

canonical simulations. The only difference is that the total

composition of the system is imposed, rather than the

chemical potentials in the exterior of the pore.

6.1.5 Grand canonical ensemble

The most common ensemble for adsorption is the grand

canonical ensemble or mVT ensemble.[153] In this

ensemble, the chemical potential m, the volume V and

the temperature T are fixed. MC simulations can be

performed in the grand canonical ensemble by a direct

generalisation of the NVT ensemble.[154,155] The

partition function is given by

Jðm;V; TÞ ¼
X1
N¼0

V NebmN

L3NN!

ð
e2bUðsN ;hÞdNs: ð68Þ

The probability of a particular configuration is

PðsN ;VÞ / V NebmN

L3NN!
e2bUðsN ;hÞ: ð69Þ

The acceptance rule can be derived

Particle move

accðo! nÞ
accðn! oÞ ¼

ðV NebmNÞ=ðL3NN!Þ e2bUnðsN ;hÞ

ðV NebmNÞ=ðL3NN!Þ e2bUoðsN ;hÞ

¼ e2b Un sN ;hð Þ2Uo sN ;hð Þ½ �

ð70Þ

Insertion

accðo! nÞ
accðn! oÞ ¼

ðV ðNþ1ÞebmðNþ1ÞÞ=ðL3ðNþ1ÞðN þ 1Þ!Þ e2bUnðsNþ1;hÞ

ðV NebmNÞ=ðL3NN!Þ e2bUoðsN ;hÞ

¼ Vebm

L3ðN þ 1Þ e
2b UnðsNþ1;hÞ2UoðsN ;hÞ½ �

ð71Þ
Deletion

accðo! nÞ
accðn! oÞ ¼

ðV ðN21ÞebmðN21ÞÞ=ðL3ðN21ÞðN 2 1Þ!Þ e2bUnðsN21;hÞ

ðV NebmNÞ=ðL3NN!Þ e2bUoðsN ;hÞ

¼ L3N

Vebm
e2b UnðsN21;hÞ2UoðsN ;hÞ½ �

ð72Þ
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The particle moves again have the same acceptance rules

as in the NVT ensemble.

The pressure p in the reservoir is related to the

chemical potential

bm ¼ bm0
IG þ lnðbf Þ; ð73Þ

where f ¼ fp is the fugacity and m0
IG is the chemical

potential of the reference state (ideal gas)

m0
IG ;

lnðL3Þ
b

: ð74Þ

The fugacity is not the same as the pressure but it is closely

related to it. Fugacity is the activity of a gas and has the

same units as pressure. The fugacity coefficient f is the

exponential of the difference of the Gibbs free energy

gðT; pÞ and the ideal gas Gibbs free energy g IGðT; pÞ at the
system ðT ; pÞ divided by RT [156]

f ¼ f

p
¼ exp

gðT; pÞ2 g IGðT; pÞ
RT

� �

¼ exp
1

RT

ðp
0

z2 1

p

	 

T

dp

� �
; ð75Þ

where z is the compressibility. In simulations, the

chemical potential m is imposed which is closely related

to the fugacity (see Equation (73)). For an ideal gas f ¼ p

and for p! 0 every gas becomes an ideal gas. The

conversion between pressure and fugacity can be

performed using an appropriate equation of state.

Fugacities and fugacity coefficients for components of

mixtures can be estimated by the Lewis–Randall rule that

states that the fugacity coefficient of a component i in a

mixture of real gases is roughly equal to the fugacity

coefficient of pure gas i at the temperature T and (total)

pressure p of the mixture.[156] There are some

limitations to this rule. Alternatively, one can use an

EOS with appropriate mixing rules.[157]

The acceptance rules for insertion and deletion in the

grand canonical ensemble are as follows:

Insertion

accðN ! N þ 1Þ ¼ min 1;
bVfp

N þ 1
e2b UnðsNþ1;hÞ2UoðsN ;hÞ½ �

	 

ð76Þ

Deletion

accðN!N2 1Þ ¼min 1;
N

bVfp
e2b UnðsN21;hÞ2UoðsN ;hÞ½ �

	 

:

ð77Þ
For mixtures, a convenient method is to first randomly

choose a component. The acceptance rules, Equations (53)

and (53), remain the same except that N refers to the

number of particles of the chosen component and p to the

partial pressure.

6.1.6 m1N2pT ensemble

The m1N2pT ensemble [158] is the natural ensemble to

compute adsorption for flexible frameworks. The system is

considered as two components, where the chemical

potential of component 1 is kept constant (and has variable

particle number), while the component 2 has a constant

particle number. In a constant pressure ensemble, the

volume will automatically adjust to hold the pressure

constant as the composition or temperature change. For a

single component system, it is not possible to vary three

intensive variables independently because of the Gibbs–

Duhem relation which relates them. However, for two (or

more) species systems, it is possible to derive, rigorously, a

statistical ensemble in which T, P, mads and Nhost are held

fixed. For this ensemble, mads is the chemical potential of

the adsorbate and Nhost is the fixed number of atoms of the

framework (host). This is a hybrid statistical ensemble

which has some properties similar to the single species

(NpT) and (mVT) ensembles.

The form of the probability distribution for the

ensemble can be derived by performing three Laplace–

Legendre transforms from the microcanonical (EVNads-

Nhost) ensemble. The probability that the system

with temperature T, pressure P, chemical potential of the

adsorbate mads and Nhost host atoms has volume V and Nads

atoms, Pðs;V ;NadsÞ, where s stands for the positions of all
the atoms in the system, is given by [158]

Pðs;V;NadsÞ

/ 1

L3Nhost

host Nhost!

V NebmadsNads

L3Nads

ads Nads!
e2bðUðs;hÞþpVÞ ð78Þ

with Lhost ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmhost kBT

p
and Lads ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmads kBT

p
.

In (m1N2pT) MC simulation, one carries out (at least)

four distinct types of trial moves.[158]

Particle move
accðo! nÞ
accðn! oÞ

¼ ð1=L3Nhost

host Nhost!ÞðV N ebmadsNads=L3Nads

ads Nads!Þ e2bðUnðrÞþpVÞ

ð1=L3Nhost

host Nhost!ÞðV N ebmadsNads=L3Nads

ads Nads!Þ e2bðUoðrÞþpVÞ

¼ e2b½U nðsN ;hÞ2U oðsN ;hÞ�

ð79Þ
Insertion

accðo!nÞ
accðn!oÞ¼

ð1=L3Nhost

host Nhost!ÞðV Nþ1 ebmads Nadsþ1ð Þ=L3 Nadsþ1ð Þ
ads Nadsþ1

� �
!Þe2b½UnðsNþ1;hÞþpV�

ð1=L3Nhost

host Nhost!ÞðV N ebmadsNads=L3Nads

ads Nads!Þe2b½UoðsN ;hÞþpV�

ð80Þ
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Insertion

accðo! nÞ
accðn! oÞ ¼

Vebmads

L3
adsðNads þ 1Þ e

2b½UnðsNþ1;hÞ2UoðsN ;hÞ�

ð81Þ

Deletion
accðo!nÞ
accðn!oÞ¼

ð1=L3Nhost

host Nhost!ÞðV Nþ1 ebmads Nads21ð Þ=L3ðNads21Þ
ads ðNads21Þ!Þe2b½UnðsN21;hÞþpV�

ð1=L3Nhost

host Nhost!ÞðV NebmadsNads=L3Nads

ads Nads!Þe2b½UoðsN ;hÞþpV�

ð82Þ
Deletion

accðo! nÞ
accðn! oÞ ¼

L3
adsNads

Vebmads
e2b½UnðsN21hÞ2UoðsN ;hÞ�

ð83Þ

Volume move
accðo!nÞ
accðn!oÞ¼

ð1=L3Nhost

host Nhost!ÞðVN
n e

bmadsNads=L3Nads

ads Nads!Þe2bðUnðsN ;hÞþpVnÞ

ð1=L3Nhost

host Nhost!ÞðVN
o e

bmadsNads=L3Nads

ads Nads!Þe2bðUoðsN ;hÞþpVoÞ

ð84Þ
Volume move

accðo! nÞ
accðn! oÞ ¼

Vn

Vo

	 
N

e2bpðVn2VoÞ e2b½UnðsN ;hÞ2UoðsN ;hÞ�

ð85Þ
which are the conventional acceptance rules. The m1N2pT

ensemble can be seen as a special case of the osmotic

Gibbs ensemble.[159–161]

6.2 Configurational-bias Monte Carlo

Conventional MC is time consuming for long-chain

molecules. Moreover, the configurations of long mol-

ecules in the framework become increasingly different

from the gas phase. The fraction of successful insertions

into the sieve becomes too low. To increase the number of

successfully inserted molecules, the CBMC technique was

developed. Figure 4 shows the definition of S2-butanol

which will be used here to illustrate the method, and in a

later section to validate the generated bond/bend/torsion

distributions. Instead of generating ideal gas configur-

ations and trying to insert the molecule as a whole, the

CBMC method inserts chains part by part biasing the

growth process towards energetically favourable configur-

ations, and therefore significantly reduces overlap with the

framework and other particles. The CBMC framework is

based on the work by Rosenbluth and Rosenbluth [162]

and developed by a variety of researchers.[163–169]

Later, CBMC was extended to include growpaths for

branched molecules,[3,71,76,123,170,171] cyclic mol-

ecules [172–176] and reactive CBMC.[177]

6.2.1 Growing a chain molecule

Let us first tackle the problem of how to generate a

molecule with an appropriate intra-molecular energy

(bond, bend and torsion). We can choose any of the atoms

as a start point. Let us assume to start our growth process

from atom 4 (the labelling is shown in Figure 4). The

starting atom is connected to atoms 0, 5, 6 and 7. One of

these can be chosen randomly, for example atom 7. The

position of atom 7 lies on a sphere with a radius depending

on the bond-length distribution (Figure 5(a)), and is

determined by computing a random vector on a unit sphere

adjusted in length for the bond potential. The chosen bond

length can be generated either using an ‘acceptance–

rejection’ scheme or using a small MC routine. Having

grown atoms 4 and 7 one can continue to grow on either

side but let us assume to continue along the atom 7 path.

Atom 7 is connected to atom 4 (already grown) and atoms

8, 9 and 13. Vlugt et al. noted that atoms 8, 9 and 13 must

be grown simultaneously.[97,170] That is, it would be

wrong to first place atom 13, next atom 8 and then atom 9.

Figure 4. (Colour online) S2butanol: the OPLS definition has 14
bond, 25 bend and 30 torsion potentials. The chiral centre is atom 7.

Figure 5. (Colour online) Growing (branched) molecules, (a)
bonds are grown by choosing random positions on a sphere; bond
lengths (b) and bend angles (c and d) between atoms of a branch
are changed by an MC algorithm. The MC moves displace atoms
along the bond vectors, or change the bend angle, or rotate the
branch atoms around the axis of the bond that was already grown.
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Because of the bond-bending potentials, the branches

connected to the same central atom cannot be added

independently. Vlugt et al. developed an MC procedure

that can be used to generate the positions of the branch

atoms using the following moves:

(1) Changing the bond length

One of the branch atoms is randomly chosen

and an attempt is made to change the bond length

(see Figure 5(b)). The probability of generating a

branch position b with bond length l is given by

PðlÞ dl ¼ e2bu bondðlÞdb ð86Þ

PðlÞ dl ¼ l2 e2bu bondðlÞdl ð87Þ

and the acceptance rule for a change in bond

length from lðnÞ to lðoÞ is

accðo! nÞ ¼ min 1;
lðnÞ
lðoÞ e

2bðu bondðlðnÞÞ2u bondðlðoÞÞÞ
	 


ð88Þ
(2) Changing the bend angle

One of the branch atoms is randomly chosen

and an attempt is made to change the bend angle

(see Figure 5(c)). The probability of generating a

branch position b with bend angle u is given by

PðuÞ du ¼ e2bu bendðuÞdb ð89Þ

PðuÞ du ¼ sinðuÞ e2bu bendðuÞ ð90Þ

and the acceptance rule for a change in bend angle

from uðoÞ to uðnÞ is

accðo!nÞ¼min 1;
sinðuðnÞÞ
sinðuðoÞÞe

2bðu bendðuðnÞÞ2u bendðuðoÞÞÞ
	 


ð91Þ

(3) Rotation on a cone

One of the branch atoms is randomly chosen

and rotated randomly on a cone (see Figure 5(d)).

This move changes the bend angle between the

branch atoms. The acceptance rule for a rotation

on a cone is

accðo! nÞ ¼ minð1; e2bðu bendðuðnÞÞ2u bendðuðoÞÞÞÞ
ð92Þ

A few hundred of these moves should be sufficient to

equilibrate the positions of the branch atoms. The growing

scheme of Vlugt et al. is able to handle stiff bond and bend

potentials. Another advantage is that it is easy to include

chirality. If a wrong chirality is detected during the small

MC scheme then two branch atoms are switched, followed

by further equilibration.

The scheme of Vlugt et al. handled torsion potentials

by including the torsion energy u torsionðfÞ in Equation

(92). Unfortunately, this method still fails to generate the

proper distribution when there are multiple torsional

angles that share the same two central atoms because the

bond bending and torsional angle distributions are no

longer independent. Vlugt et al. modified the force field for

branched alkanes such that only one torsion potential was

defined over a central bond. For multiple torsions over a

central bond all of the atoms connected to those central

atoms must be generated simultaneously in order to get the

correct distribution. This implies that the conformation of

the entire 2,3-dimethylbutane molecule must be generated

in a single step in order to obtain the correct distribution.

One of the methods developed to solve this problem is the

coupled–decoupled CBMC algorithm of Martin and

Siepmann.[71,171]

The bond angles are selected based solely on the bond

angle energies and the phase-space terms, and then those

angles are used in all subsequent selections (torsion and

non-bonded). Thus, the bond angle selection is decoupled

from the other selections. In contrast, for each non-bonded

trial a full selection is done to generate torsional angles, so

these two selections are coupled. Before explaining this

further, let us see how to actually increase acceptance of

insertion using more than one set of ‘trail positions’.

6.2.2 Trial positions

So far we have shown how to generate a molecule. In order

to be able to steer (to ‘bias’) the growth, at each step, k sets

of branch atoms called ‘trial positions’ are generated of

which one is chosen with the appropriate probability. The

growth control is largely based on the ‘external’

environment of the molecule, for example the framework

and/or other molecules that are present in the system. In

the CBMC scheme, it is therefore convenient to split the

total potential energy U of a trial site into two parts.

U ¼ U int þ U ext: ð93Þ

The first part is the internal, bonded potential U int which is

used for the generation of trial orientations. The second

part of the potential, the external potential U ext, is used to

bias the selection of a set from the other set of trial sites.

This bias is exactly removed by adjusting the acceptance

rules. In the CBMC technique, a molecule is grown

segment-by-segment. For each segment, a set of k trial

orientations is generated according to the internal energy

U int and the external energy Uext
i ðjÞ of each set of trial

positions j of segment i is computed. The number of trial

positions k is usually between 10 and 20. One of these
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trial positions is selected with a probability

PiðjÞ ¼ e2bUext
i ðjÞPk

l¼1 e2bUext
i ðlÞ ¼

e2bUext
i ðjÞ

wðiÞ : ð94Þ

The selected trial position is added to the chain, and the

procedure is repeated until the entire molecule has been

grown. For this newly grown molecule, the so-called new

Rosenbluth factor W new is computed as

W new ¼
Y
i

wðiÞ: ð95Þ

To compute the old Rosenbluth factor W old of an already

existing chain, k2 1 trial positions are generated for each

segment. These positions, together with the already

existing position, form the set of k trial positions.

6.2.3 Coupled–decoupled CBMC

The Vlugt CBMC scheme and other schemes for branched

alkanes generate conformations according to the prob-

ability

Pgen ¼
Ynstep
n¼1

e2buLJðiÞ

wðnÞ
� �

e2butorsðiÞe2bubendðiÞe2bubondðiÞ ð96Þ

wðnÞ ¼
Xnchoice
i¼1

e2buLJðiÞ ð97Þ

where n is the growth step, nstep is the total number of

growth steps, i is a particular trial set and nchoice is the

number of trials for which the Lennard-Jones interactions

are computed. A move is accepted with probability

Pacc ¼ min 1;
W new

W old

	 

ð98Þ

Martin and Siepmann developed a generic framework of

very flexible CBMC schemes based on decoupled and

coupled selections:

. Decoupled selections

In the decoupled selection, the probability to

generate a given configuration and the correspond-

ing Rosenbluth weights are given by

Pgen ¼
Ynstep
n¼1

e2buLJðiÞ

wLðnÞ
� �

e2butorsðiÞ

wT ðnÞ
� �

e2bubendðiÞ

wBðnÞ
� �

ð99Þ

wLðnÞ ¼
Xnchoice
i¼1

e2buLJðiÞ ð100Þ

wT ðnÞ ¼
Xnchoice
i¼1

e ð101Þ

wBðnÞ ¼
Xnchoice
i¼1

e2bubendðiÞ ð102Þ

where nchLJ, nchtor and nchbend are the number of trial

sites for the Lennard-Jones, torsional and bend

interactions, respectively. The move is accepted

with probability

Pacc ¼ min 1;
Wnew

L Wnew
T Wnew

B

Wold
L Wold

T Wold
B

	 

ð103Þ

Bend angles are chosen in a biased fashion and used

as input for the subsequent biased selection of the

torsional angles. These are then used as input for the

Lennard-Jones selection, but the main drawback of

this method is that once the torsional angles have

been chosen in a biased fashion, there is only one

possible trial site available for the Lennard-Jones

selection (nchLJ ¼ 1).
. Coupled selections

In a coupled biased selection, the selections are

coupled such that each biased selection sendsmultiple

possible conformations to the next selection step. In

this case

Pacc ¼
Ynstep
n¼1

e2buLJðiÞwT ðiÞ

wLðnÞ
� �

e2butorsðjÞwBðjÞ

wT ðiÞ
� �

e2bubend

wBðjÞ
� �

ð104Þ

wLðnÞ ¼
XnchLJ
i¼1

e2buLJðiÞwT ðiÞ ð105Þ

wT ðiÞ ¼
Xnchtor
j¼1

e2butorsðjÞwBðjÞ ð106Þ

wBðjÞ ¼
Xnchbend
k¼1

e2bubendðkÞ ð107Þ

The coupled-biased selection growth now performs a

separate torsional bias selection for each of the nchLJ trial

steps of the Lennard-Jones selection. The disadvantage of

coupling all of the energy types is that nchLJ £ nchtor £
nchbend trial vectors must be generated for the bond angle-

biased selection.
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6.2.4 Handling multiple torsions and intra-molecular

VDW interactions

A combination of the coupled- and decoupled-biased

selections allows a great deal of flexibility when designing

CBMC schemes. To handle multiple torsions over a single

bond and to handle Lennard-Jones interactions, we can use

decoupled CBMC and generate nchLJ £ nchtor trial vectors

for the torsional selection, of which nchLJ are selected for

the Lennard-Jones step. The intra-molecular Lennard-

Jones interactions are treated here as ‘external’ Lennard-

Jones interactions. The CBMC scheme can also be used

when the atoms of the molecule have charges, for

molecules that have anisotropic sites and for molecules

with cross terms such as bond–bond, bond–bend and

bend–torsion potential. The molecule is grown without

these terms but afterwards the weight is corrected (see

section ‘Advanced bias corrections’).

6.2.5 Chemical potential reference state

The excess chemical potential m ex is defined as the

difference in chemical potential of the interacting chain

and a chain in the ideal gas state. The Rosenbluth weight

kW IGl of the reference state of the ideal gas is needed when
comparing with real experimental data. When CBMC is

used, it is straightforward to show that e2bDU has to be

replaced by Wðnew chainÞ=WðIGÞ for inserting a particle

and by WðIGÞ=Wðold chainÞ for the deletion of a particle.

Detailed balance is followed when W IG is replaced by

kW IGl, i.e. the average Rosenbluth weight of a chain in the
reservoir. This implies that kW IGl has to be computed only

once for a given molecule and temperature.[97]

The reference state is important and enters in the

acceptance rules for CBMC insertion and deletion moves

accðN ! N þ 1Þ ¼ min 1;
W newbV

N þ 1

f

kW IGl

	 

ð108Þ

accðN ! N 2 1Þ ¼ min 1;
N

W oldbV

kW IGl
f

	 

ð109Þ

It is best practice to compute kW IGl in advance, but for

single components the results can also be corrected

afterwards for the ideal Rosenbluth weight by ‘correcting’

the fugacity. This is much more cumbersome for mixtures

because both partial fugacities are changed and the initial

imposed mole fraction is now different, i.e. an equimolar

mixture would no longer be equimolar after correcting.

For these reasons, it is important to compute kW IGl first.

6.3 Advanced bias corrections

Dual-cut-off CBMC uses an additional bias in the

selection of trial segments.[178] The motivation is that

hard-core (repulsive) interactions are more important than

long-range interactions in the selection of trial segments.

Therefore, a second smaller cut-off radius can be used for

the selection of trial positions (for LJ fluids one can use

cut-off of around s Å). The potential u ext is split in two

parts

u ext ¼ �u ext þ du ext; ð110Þ
where �u ext is less expensive to calculate and du ext is the

difference between the two potentials. The additional bias

can be exactly removed in the acceptance/rejection rule

accðo!nÞ¼min 1;
�WðnÞ
�WðoÞexpð2b½du extðnÞ2du extðoÞ�Þ

	 

;

ð111Þ
where �WðnÞ and �WðoÞ are the Rosenbluth weights

calculated using �u ext.

Similarly, for anisotropic alkane models the chain can

be grown as an ordinary united-atom model, but by

correcting with the difference between the anisotropic and

the approximate potential in the acceptance rule the

correct distribution is recovered.[179]

For computational efficiency, for molecules with

partial charges it is advantageous to grow beads only with

the LJ part plus the real part of the Ewald energy, and

correct the final configuration for the Ewald Fourier

energy using Equation (111). The more expensive Fourier

part of the Ewald summation then only has to be computed

once (and not for all the trial positions of all the beads).

[97] This also avoids the problem that during the growth

the already grown part is not charge neutral.

6.4 Continuous fraction Monte Carlo

All open ensemble methods suffer from a major drawback:

the insertion probability becomes vanishingly low at high

densities. One of the schemes to remedy this problem is

the CFMC method of Shi and Maginn.[180,181,182] The

system is expanded with an additional particle scaled in

interactions using a parameter l. Various choices for the
scaling are possible, but for example the Lennard-Jones

and charge–charge interactions are scaled as

uLJðrÞ ¼l4e
1

½ð1=2Þð12 lÞ2 þ ðr=sÞ6�2
�

2
1

ð1=2Þð12 lÞ2 þ ðr=sÞ6� �
# ð112Þ

uCoul ¼ l5 1

4pe0

qiqj

r
ð113Þ

The modified form forces the potential to remain finite

when r ! 0 for l – 1. The scaled potential has the correct
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behaviour at the limits of l ¼ 0 and l ¼ 1. Note that only

the inter-molecular energy is scaled (not the intra-

molecular energy). Many variations on the algorithm are

possible. For example, l can be changed per molecule or

per atom. Both methods slowly ‘inflate’ and ‘deflate’ the

molecule like a balloon but differently.

CFMC uses conventional MC for thermalisation (such

as translation, rotation moves and/or MC–MD hybrid

moves), but in addition attempts to change l of the

fractional molecule using lðnÞ ¼ lðoÞ þ Dl. The Dl is

chosen uniformly between 2Dlmax and þDlmax and

scaled to achieve around 50% acceptance. However, many

systems show behaviour where l changes are hard. An

additional bias h on l can be used, where each l has an

associated biasing factor h. This bias will be removed by

the acceptance rules. A careful calibration of h can make

the l histograms flat and hence can avoid the system

getting stuck in a certain l-range. There are three possible
outcomes of a change from lðoÞ to lðnÞ

. l remains between 0 and 1.

The change in energy of the particle with the new

lðnÞ compared to the old energy is computed and the

move is accepted using

Pacc ¼ min 1; e2b½UinterðnÞ2UinterðoÞ�þhðlðnÞÞ2hðlðoÞÞ� �
ð114Þ

There is no change in the number of particle, nor in

the positions, nor in the intra-molecular energies.

Only l and the inter-molecular energy have

changed.
. l becomes larger than 1.

When l exceeds unity, l ¼ 1þ e , the current

fractional molecule is made fully present (l ¼ 1),

and additional particle is randomly inserted with

l ¼ e . Shi and Maginn used a methodology where a

rigid conformation is chosen from a ‘reservoir’ of

ideal gas molecules generated ‘on the fly’ during the

simulation.
. l becomes smaller than 0.

When l falls below 0, l ¼ 2e , the current

fractional molecule is removed from the system

(l ¼ 0), and a new fractional molecule is chosen

with a new lambda 12 e .

The acceptance rules for insertion and deletion depend on

the ensemble. For use in the grand canonical ensemble, the

rules are given by

PaccðN!Nþ1Þ¼min 1;
fbV

Nþ1
ehðlðnÞÞ2hðlðoÞÞ e2b½UinterðnÞ2UinterðoÞ�

	 

;

ð115Þ

PaccðN!N21Þ¼min 1;
N

fbV
ehðlðnÞÞ2hðlðoÞÞ e2b½UinterðnÞ2UinterðoÞ�

	 

;

ð116Þ

where N is the number of integer molecules. Hence,

appropriate measured densities and loadings should

exclude the fractional molecule.

The fractional molecule has interactions with the

systems but its influence vanishes in the thermodynamic

limit. A scheme that completely avoids the influence of the

fractional particle is to make discrete changes in l and

only take thermodynamic averages when l ¼ 1 or l ¼ 0.

However, this significantly reduces the amount of

sampling points. A continuous distribution of couplings

is therefore more convenient, and as we will show later, the

influence of the fractional particle is in general small due

to symmetry/cancellation.

The method is readily extended to other ensembles like

the Gibbs ensemble. Here, an additional constraint is

applied: the total lambda is unity, but the lambdas of the

individual system are allowed to change, i.e. for box I and

box II we require lI þ lII ¼ 1. The acceptance rule for a l
change which remains between 0 and 1 is

accðo! nÞ ¼
min 1; e2b U sNnð Þ2U sNoð Þ½ �þhIðlIðnÞÞ2hIðlIðoÞÞþhIIðlIIðnÞÞ2hIIðlIIðoÞÞ

� �
:

ð117Þ
The insertion in box I is now accompanied by a deletion in

box II and vice versa with acceptance rule

accðo! nÞ ¼
min 1;

NI;jV II

ðNII;j þ 1ÞV I

e2b U sNnð Þ2U sNoð Þ½ �þhIðlIðnÞÞ2hIðlIðoÞÞþhIIðlIIðnÞÞ2hIIðlIIðoÞÞ
	 


:

ð118Þ
The l , 0 case follows from symmetry, i.e. switching box

labels I and II. Note that each box has a different set of

biasing factors, hI for box I and hII for box II which are

related by symmetry. The number of molecules N entering

in the acceptance rules are the integer molecules (not

including the fractional molecule). This is also the case for

the volume move which has the conventional Gibbs

acceptance rule. Also all other moves such as translation,

rotation and MC-MD hybrid moves have conventional

acceptance rules as these are done at constant l.
Insertions become particularly difficult in strongly

interacting fluids such as ionic liquids and water. At the

low temperatures, the efficiency of Gibbs exchange moves

was found to be two orders of magnitude higher than that

obtained by state-of-the-art rotational and configurational

bias moves. It is therefore a very powerful method to

handle open systems at high densities. A downside of

CFMC compared to CBMC is that it takes longer time to

equilibrate at lower densities. Only at l ¼ 0 or l ¼ 1, an

attempt is made to delete or insert a molecule, respectively.

Even when the l moves are made equally likely using

biasing, the diffusive nature of l in the range 0; . . . ; 1
makes the insertion/deletion rate lower. For this reason,
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Shi and Maginn used a relatively high percentage of l
moves in comparison to the other MCmoves. To overcome

this (small) issue in a practical way, one can first use

CBMC or restart from a CBMC simulation.

The nature of the algorithm can lead to blocking issues.

For example, in CFMC the potentials are scaled such that

particle can overlap. Shi and Maginn noted that for water

models the lack of Van der Waals interaction for the

hydrogens leads to overlap of the negatively charged

oxygen with the positively charged hydrogen. The

repulsive force that normally prevents this has been

reduced by the potential scaling. A simple solution is to

reject all MC moves where atoms get closer, for example

1 Å.[180]

6.5 Reactive Monte Carlo

Many methods have been proposed to compute the

equilibrium properties of chemically reacting or associat-

ing fluids.[183,184] The earlier methods required speci-

fication of chemical potentials or chemical potential

differences. One of the most popular recent methods is the

reactive Monte Carlo (RCMC) algorithm which samples

reactions directly [185,186] (without going through the

transition states). Therefore, only equilibrium properties

can be computed. The method is conceptually simple,

convenient and versatile. No chemical potentials or

chemical potential differences need to be specified for

the reaction steps, just the stoichiometry of the reactions.

Essentially, the method enhances the GCMC with a

‘forward’ and ‘backward’ reaction step, which ensures that

the chemical reaction equilibria between the reactants and

the products are maintained. For a chemical reaction at

equilibrium in a single- or a two-component system, the

stoichiometric coefficient vi of each component i times the

chemical potential of each component must be zero

X
i

vimi ¼ 0 ð119Þ

The forward and reverse reaction steps are simply

combinations of particle creation and destruction moves

in the simulation box, and must be chosen with equal

probability in order to maintain microscopic reversability

in the system. For example, consider N2 þ 3H2 ! 2NH3.

In the forward move, one removes 3H2 molecules and 1N2

molecule and inserts 2NH3 molecules, and accepts this

move with the appropriate transition probability. In the

backward move, 2NH3 molecules are removed and 3H2

molecules and 1N2 molecule are inserted, and accepted/

rejected with the appropriate transition probability. See

Ref. [184] for details on the acceptance rules. Note that for

open ensembles the chemical potential of only one of the

components needs to be specified. One is free to choose

which component to insert, but choosing the smallest

molecule leads to faster convergence.[183]

RCMC simulations can be performed in the canonical,

[185,186] grand canonical,[187,188] isothermal–isobaric,

[189–191] Gibbs [192] and other ensembles. When

RCMC is used in conjunction with an ensemble that

conserves the number of particles, the number of atoms

rather than the number of molecules is held fixed.[183]

The RCMC method has also been combined with the

replica exchange scheme,[193] MD,[194] the CBMC

scheme [177] and the CFMC scheme.[182]

6.6 MC moves

The two most commonMCmoves are rigid translation and

rotation. The molecule is displaced or rotated by a small

modification. The modification is usually scaled to achieve

around 50% acceptance. In a strongly interacting fluid (e.

g. water), the acceptance ratio of the rigid rotation

becomes low and it might be better to do a full random

rotation. The ‘reinsertion’ move removes a randomly

selected molecule and reinserts it at a random position. For

rigid molecules it uses orientational biasing, and for chains

the molecule is fully regrown (the internal configuration is

modified). The reinsertion move bypasses (free) energy

barriers and is particularly useful to redistribute molecules

over cages in nanoporous materials. At high densities, the

acceptance ratio of the reinsertion move becomes vanish-

ingly low. To properly sample the internal structure (i.e.

bond/bend/torsions) the ‘partial reinsertion’ move is

useful. Several atoms of the molecules are kept fixed,

while others are regrown. Because there is already space

for the atoms the acceptance ratios are high. For mixtures,

especially at higher density, the ‘identity switch’ move

becomes crucial. The identity-change trial move

[152,195–197] is called semi-grand ensemble,[198] but

it can also be seen as a special case of the Gibbs ensemble.

One of the components is selected at random, and an

attempt is made to change its identity. The acceptance rule

is given by [195]

accðA! BÞ ¼ min 1;
W newf BkW IG

A lNA

W oldf AkW IG
B lðNB þ 1Þ

	 

; ð120Þ

where f A and f B are the fugacities of components A and B

and NA and NB are the number of particles. CBMC

operates on the ends of chains. To rearrange the

conformation of interior segments, a concerted rotation

MC method was introduced by Dodd et al. [199]. In the

End-Bridging Monte Carlo method,[200,201] the end of a

chain attacks the interior of another chain, separating it

into two pieces by excision of a trimer segment.

Subsequently, the attacking end is connected to one of

the two pieces of the victim chain by construction of a new

trimer. The move generally changes the lengths of the
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chains involved. Equilibration of long-chain polymer

systems has been overcome through the development of

connectivity-altering MC moves.[202]

To sample concerted motions of atoms the hybrid MC/

MD can be used. To obtain a new configuration, a short

NVE MD of M time steps is run and accepted or rejected.

[203,204] The starting velocities are chosen from a

Maxwell–Boltzmann distribution at the desired tempera-

ture. The acceptance rule is

accðold! newÞ ¼ min 1; e2bðU new2U oldÞ
� �

: ð121Þ

Note that DU ¼ U new 2 U old is the integration error and

U is the total energy (potential energy and kinetic energy).

The integrator must be time reversible and symplectic for

the algorithm to obey detailed balance. The NVE hybrid

algorithm has been extended to constant temperature,

constant pressure and constant stress trajectories.[205–

207]

The chiral inversion move is especially aimed to

improve the sampling of chiral molecules.[208,209] In this

operation, all atoms are transposed by a mirror operation

that leaves the fixed framework invariant. This operation

applies, in principle, to all atoms in the system. However,

it only affects the orientation and position of guest

molecules as zeolite atoms are just moved to a position

that was previously occupied by an atom of exactly the

same type. If chiral molecules are involved, the MC move

changes every enantiomer to its opposite form in one

single step, which can dramatically improve the ergodicity

of the sampling. For MFI, for example, RT equals L2 R,

with L ¼ ðLx; Ly; LzÞ as the dimensions of the periodic

simulation box. Let j denote the fractional content of the

species in the bulk fluid phase such that
P

a ja ¼ 1. The

acceptance rule is given by

accðR! RTÞ ¼ min 1;

Q
a j

Na;R
a;S jNa;S

a;RQ
a j

Na;S
a;S jNa;R

a;R

 !
; ð122Þ

where a now runs over all enantiomers and RT is the

transposition of R

To overcome the low insertion rates at low temperature

and/or high densities several advanced MC moves were

developed. Uhlherr and Theodorou [210] developed a

generic framework dubbed ‘MinMap Monte Carlo’.

Insertions were performed over a series of m stages, with

a separate minimisation after each stage. Initially, the atom

was inserted as a repulsive soft sphere. Later stages slowly

inflate the atom to a full Lennard-Jones interaction of the

same size, complete with attractive tail. The main purpose

of the quench is to relax the configuration by removing

unrealistic interactions such as atom overlaps. Atom

deletion moves followed the reverse procedure to deflate

the selected atom prior to removal.

Many other moves and methods are published, e.g.

energy–cavity biasing,[211] Reptation move,[212] aggre-

gation–volume—bias,[213] as well as MC methods like

recoil growth,[214,215] reverse MC,[216] phase switch

MC,[217–219] kinetic MC,[220–222] rotational isomeric

state MC,[223] basin-hopping MC,[224] tethered MC,

[225] smart walking,[226] self-referential method,[227–

229] expanded ensembles,[230,231] Fragment regrowth

MC [232] and Waste recycling MC.[233,234]

6.7 Parallel and hyper-parallel tempering

Parallel tempering, also known as replica exchange, is one

of the methods that have been proposed to overcome the

barriers facing traditional molecular simulation methods

and to improve sampling of configuration space for

complex systems.[235–239] Open ensembles provide an

effective means for overcoming some of the problems

associated with slow relaxation phenomena. Yan and de

Pablo proposed a combination of expanded ensembles

(also known as simple tempering) and multidimensional

parallel tempering, referred to as ‘hyper-parallel temper-

ing’ Monte Carlo (HPTMC).[240] The hyper-parallel

algorithm uses the three following moves:

(1) Conventional canonical MC moves to thermalise

the system

(2) Trial shrink/growth moves are used to change the

length of the tagged chain in each replica, thereby

implementing the underlying expanded grand

canonical formalism.

(3) Configuration swaps are proposed between pairs

of replicas i and j. To enforce a detailed balance

condition, the pair of replicas to be swapped are

selected at random, and the trial swap move is

accepted with probability

accðo! nÞ ¼ min 1; eðbi2bjÞðUi2UjÞ2ðNi2NiÞðbimi2bjmjÞ� �
ð123Þ

In addition to replica exchange in temperature the systems

also differ in chemical potential. The algorithms have

several parameters that need to be tuned such that there is

sufficient overlap between the energy distributions of

exchanging replicas: the amount and temperatures of the

replicas and the frequency of swap attempts.

The general idea of parallel tempering is not limited to

exchanges or swaps between systems at different tempera-

tures. For example, Van Erp et al. performed parallel

tempering in the mole fraction for adsorption of chiral

mixtures.[209] The general distribution of an adsorbent that

is in contact with a multicomponent gas is given by

rj / e2bUðrÞ2n�mQ
a L

3na
a

; ð124Þ
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where n is the number vector which denotes the number of

molecules for each speciesa such that
P

a na ¼ n is the total

number of adsorbed molecules, j denotes the fractional

content of these species in the gas phase such thatP
a ja ¼ 1, m gives the corresponding chemical potentials

andLa is the thermal wavelength of speciesa. Van Erp et al.
performed several simulations in parallel using the same

fugacity and temperature but with different compositions of

the external gas. The composition replica move has the

following acceptance rule:

accðn; r$ n0; r0Þ ¼ min 1;

Q
a j

n0a
a

Q
b j

0nb
bQ

a j
na
a

Q
b j

0n0b
b

" #
ð125Þ

Using the j vector as an RE parameter is attractive, as the

molecular content is also the parameter which is usually

interested in when studying multicomponent adsorption.

6.8 Density-of-state (DOS) methods

The canonical partition function can be expressed as [241]

Q ¼ ebE0

ð1
E0

vðEÞ e2bEdE; ð126Þ

where E0 is the lowest possible energy. Equation (126)

suggests that if the unknown function vðEÞ can be

generated for a wide range of energies then the partition

function is known, and therefore any desired thermodyn-

amic property. For example, the canonical partition

function is related to the free energy by [241]

AðT ;VÞ ¼ 2
1

b
lnQðT ;VÞ ð127Þ

The computation of the partition function by numerical

approximation is the basis for many DOS methods,[241]

such as the reference system equilibration (RSE) method,

[242] histogramming,[243,244] multihistogramming,

[245,246] the histogram reweighting method,[247,248]

the Wang–Landau sampling,[249,250] multicanonical

methods,[251–253] transition matrix methods [254,255]

and the nested sampling (NS) algorithm.[256–259] DOS

methods use a finite range of energies in practice, which

means that the partition function can only be computed to

within a multiplicative constant. It is easier to compute the

partition function at a chosen temperature than to obtain

the complete DOS. This is because the integrand

wðEÞ e2bE is a sharply peaked function in E. Therefore,

conventional MC is always more efficient for a predefined

temperature, but when the objective is a range of

temperatures then the DOS approach is more powerful.

[241] The DOS technique, along with ‘work-based

methods’, is able to compute free energy differences.[260]

6.8.1 Histogram reweighting method

The original histogram reweighting technique for MC

simulations was developed by Ferrenberg and Swendsen

for the canonical ensemble.[247,248] It has been extended

to the grand canonical ensemble [261–263] and

isothermal–isobaric ensemble.[264]

With only a few simulations, the entire vapour–liquid

coexistence region of a pure fluid can be investigated.

[264–267] The histogram methods can produce highly

accurate data, especially in the vicinity of critical points.

[266]

Histogram reweighting collects data for the probability

f ðN;EÞ of occurrence of N particles in the simulation cell

with total configurational energy in the vicinity of E. The

probability distribution has the following form

f ðN;EÞ ¼ ZðN;V;EÞ e2bEþbmN

Jðm;V;bÞ ; ð128Þ

where ZðN;V ;EÞ is the microcanonical partition function

and Jðm;V;bÞ is the grand partition function. Neither

ZðN;V;EÞ nor Jðm;V ;bÞ are known at this stage but

Jðm;V ;bÞ is a constant for a run at given conditions. The

entropy can now be obtained as

SðN;V ;EÞ
kB

¼ lnZðN;V ;EÞ

¼ lnf ðN;EÞ þ bE2 bmN þ C ð129Þ

with C a run-time constant.

In general, it is not possible to cover all thermodyn-

amic states of interest from a single simulation. Instead,

multiple simulations are required at various chemical

potentials and temperatures. The histograms that result

from the simulations can be combined by minimising the

differences between predicted and observed histograms.

[247,248] Let us assume that there are multiple

overlapping runs, i ¼ 1; 2; . . . ;R. The composite prob-

ability PðN;E;m;bÞ of observing N particles and energy E,

assuming equal statistical efficiency, is

PðN;E;m;bÞ ¼
PR

i¼1 f iðN;EÞ e2bEþbmNPR
i¼1 Ki e2biEþbimiN2Ci

; ð130Þ

where Ki is the total number of observations ðKi ¼P
N;E f iðN;EÞÞ for run i. The weights Ci, starting from an

initial guess, can be obtained by iteration

eCi ¼
X
E

X
N

PðN;E;mi;biÞ: ð131Þ

Once convergence is achieved thermodynamic properties

can be obtained (for the range of densities and energy

covered). The mean configurational energy kUlm;b, and the

Molecular Simulation 1275

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
5:

11
 0

2 
Ju

ne
 2

01
4 



mean density krlm;b can be obtained from [266]

kUlm;b ¼
X
E

X
N

PðN;E;m;bÞE ð132Þ

krlm;b ¼ 1

V

X
E

X
N

PðN;E;m;bÞN ð133Þ

The pressure of a system can be obtained from the

following expression. If the conditions for run 1 are

ðm1;V ;b1Þ and for run 2 ðm2;V;b2Þ, then

C2 2 C1 ¼ ln
Jðm2;V ;b2Þ
Jðm1;V ;b1Þ ¼ b2P2V 2 b1P1V ; ð134Þ

where P is the pressure, since lnJ ¼ bPV . Only the

pressure difference is obtained, but by performing a low-

density simulation (for which the system follows the ideal

gas equation of state PV ¼ NkBT) the absolute pressure

can be estimated. A plot of lnJ versus N gives a straight

line of unit slope, which shows that the system behaves as

an ideal gas at these conditions. It is possible to extrapolate

lnJ to the N ! 0 limit, with the y intercept representing

the additive constant.[268]

To combine multiple histograms, a reasonable amount

of overlap must be present between neighbouring

histograms. This means that when determining phase

coexistence properties, there must be a connection

between the liquid and vapour at the conditions of

interest. In most cases, it is convenient to bridge the liquid

and vapour regions with a run near the critical point.

Additional histograms are added on the liquid and vapour

sides as one progresses along the coexistence curve.

The methods have been generalised to mixtures.

[266,268,269] In practice, it is impractical to work with 3D

histograms as the range of phase space covered in a

simulation can be quite large. Instead, it is more efficient

to record periodically the set of N1, N2, E values. The

required probability distribution is extracted from this list

at the end of the simulation.[268]

6.8.2 Wang–Landau sampling

The Wang–Landau sampling method [4,249,250,270–

273] has the objective to make all energies equally

probable. During a random walk, the weights are

iteratively adjusted using importance sampling. The

weights that achieve a flat histogram are reciprocal to

the DOS. The precision by which the weights are adjusted

is iteratively increased until desired precision is reached.

The algorithm proceeds as follows:

(1) Choose a set of energy ranges and set the density

of states vðEÞ to unity in each

(2) Start random walk in energy space. The accep-

tance acceptance probability is

PaccðE1 ! E2Þ ¼ min 1;
vðE1Þ
vðE2Þ

� �
ð135Þ

The move is initially accepted with unity

probability. Each time an energy level is visited,

update the corresponding density of states by

multiplying the existing value by a modification

factor f . 1

(3) Do the random walk until the accumulated

histogram of energy is flat

(4) Reset the histogram and reduce the modification

factor to continue and converge the vðEÞ
The main drawback of the method is that the statistics to

estimate the convergence of the weight update factors are

iteratively obtained. If the Wang–Landau technique is

employed for systems with an infinite energy range, such

as fluids, one often has to choose a finite range of energy

(cutting off the high-energy range) either via trial and error

or via calculation.

Shi and Maginn found that Wang–Landau sampling is

very efficient in obtaining the biasing factors for CFMC.

[180–182] The l range is for example divided into 10

bins. Initially, all biasing factors are zero. During

equilibration, the bin corresponding to the current l is

modified according to hðljÞ ¼ hðljÞ2 n after an MC

move attempt, where n is a scaling parameter initially set

to 0.01. Histograms are measured, and in every 10,000

attempts the histograms are checked for flatness. The

histogram is considered sufficiently flat when all bins are

at least 30% as often visited as the most visited bin. If so,

then histograms are set to zero and the scaling factor is

modified to n ¼ ð1=2Þn. Equilibration of h can be stopped

once the value of n is lower than £1026.

6.8.3 Nested sampling

A recent method to explore the configurational phase

space of systems is NS.[256,258,259,274] It is based on

the original nested sampling algorithm proposed in the

Bayesian statistics community by Skilling [275,276] and is

able to explore the entire PES efficiently in an unbiased

way. A unique strength of the method is that the sampling

efficiency is not impeded by phase transitions, unlike the

parallel tempering and Wang–Landau methods. To

illustrate the differences, a hypothetical first-order phase

transition is shown in Figure 6 (left), taken from Ref.

[256]. Up-down denotes energy E and left–right the

logarithm of available phase space lnvðEÞ. The thick lines

in the parallel tempering and Wang–Landau sampling

denote the region where a phase transition occurs. In this

region, the energy rapidly changes over a small

temperature range. This entropy jump makes equilibration
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and sampling difficult using these methods. NS avoids this

by constructing a series of energy levels that are

equispaced in lnðvÞ. Hence, the energy level spacings

near the phase transition will be narrow. The NS method

constructs such a sequence of energy levels in a single top-

down pass.

NS is a top-down approach (in energy) where the

whole phase space is sampled using N sample points

(‘random walkers’) that control the resolution. The error in

lnZ scales as N21=2. The sampling procedure is as follows.

(1) Generate N random configurations, uniformly

distributed over the space of all configurations.

(2) Find the highest energy Emax among all Ei with

i ¼ 1; . . . ;N and remove the corresponding

configuration.

(3) Replace the removed configuration with a new one

subjected to the following two criteria:

(a) the energy should be lower than the energy

Emax of the discarded configuration,

(b) the energy should be uniformly distributed

in the regions of the PES that has lower

energy than Emax.

The new configuration x0 should be

drawn randomly from a uniform distri-

bution over the space of configurations {x}

with EðxÞ , Emax. A simple way to

generate such configurations is to ran-

domly choose one of the remaining sample

points (which is guaranteed to be below

the energy threshold Emax) and use MC to

modify it.[257,276] Configurations that

are lower in energy than Emax are accepted

and that are higher in energy than Emax are

rejected.

(4) Check for convergence, if not, go to 2.

Figure 6 (right) shows the procedure schematically. The

top graph (‘Top’) shows the initialisation. One can use for

example very high temperatures to obtain high energy

random walkers uniformly distributed in phase space. In

general, they will differ slightly in energy (they are

enumerated in order of decreasing energy in the graph),

and are able to explore a region of phase space around the

walker (denoted with the thick blue dashed horizontal

lines). A higher number N of walkers leads to a better

estimation of the phase space. The process of going down

in energy involves removing the highest energy walker

(labelled 1) with energy Emax and replacing it by a new

configuration randomly sampled in phase space, but lower

Parallel
Tempering U

T

Wang–Landau
sampling

Equidistant in energy

Equidistant in log
phase volume

Nested
Sampling

7

1

5
4

3

N
8

6

2

Top

Middle

Down

Figure 6. (Colour online) NS, (left) first-order transitions are dealt with differently by parallel tempering, Wang–Landau sampling, and
NS (right). NS is a top-down approach where a set of randomwalkers converge downwards in energy at a rate equal to the logarithm of the
phase space. Left figure taken from Ref. [256].
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in energy than the walker 1. A convenient procedure is to

randomly choose one of the other random walkers (here

walker 3), and to do a random walk leading to a new

energy and configuration of the random walker denoted

with the red point. This new energy is required to be lower

than Emax. During the top-down scanning, the sequence of

energies fEmax} and the corresponding configurations {x}

are recorded (e.g. stored to disc). This set is the input to

compute expectation values of thermodynamic properties.

The graph ‘Middle’ shows how, when the energies are

lowered, some walkers will fall into local energy minima.

These eventually will become the highest energy, and

hence, they will be removed from the walkers. Therefore,

the sampling is ergodic and the algorithm will not ‘get

stuck’. Close to the global minimum (‘Down’) sampling

becomes harder and harder. A random walk in phase space

will rarely be accepted because there is exponentially more

phase space for going up in energy rather than for going

down. When no random walk is accepted anymore the

algorithm can be considered converged.

After n iterations of the nested sampling procedure

beginning with n ¼ 0, the removed energy Emax
n is

assigned a phase-space weight of wn ¼ an 2 anþ1 where

a ¼ N=ðN þ 1Þ is the phase-space volume ratio between

neighbouring Emax values, and the nested sampling

approximation of the configurational partition function

and of an observable is [256]

Zest ¼
X
n

½ðaÞn 2 ðaÞnþ1� e2bEn ; ð136Þ

kAlest ¼ 1

Zest

X
n

½ðaÞn 2 ðaÞnþ1�AðxnÞ e2bEn : ð137Þ

Since the sampled phase-space volume decreases

exponentially with the iteration number n, the NS

algorithm is able to sample exponentially small regions

of configurational space. Because of the fixed a value,

even energy regions where a phase transition occurs are

properly sampled. Instead of using a fixed energy spacing,

like in Wang–Landau, the NS algorithm automatically has

more energy sampling in the region of a phase transition.

More generally, a smaller value of a could be used, but

this would entail discarding more than one configuration

per NS iteration and the expression to estimate the

partition function would need to be modified. The NS is

also able to compute free energy differences and rates. For

free energy differences, the discarded configurations {x}

need to be separated into ‘states’ using an appropriate

metric.[256]

There is no temperature b in the sampling algorithm.

The sampled weights are independent of b because e2bE is

a monotonic function of E. Like all DOS methods, any

observable can be evaluated at an arbitrary temperature

just by re-summing over the same sample set. Of course

for lower temperatures one needs more sampling of the

energy basins, and for higher temperature the low-energy

states contribute less to the partition function. In contrast

to other DOS methods, the NS algorithm always converges

with a resolution at the basins of the PES determined by

the sample size N. High energies are sampled uniformly,

with the low-energy samples directly obtained from the

high-energy samples.

Pártay et al. demonstrate the new framework in the

context of Lennard-Jones (LJ) clusters. For cluster size

2-5, N ¼ 300, while for size 30–40, N < 250000 to

achieve an essentially exact heat capacity versus

temperature curve.[256] The latter corresponds to about

1012 energy evaluations. For LJ17, the efficiency gain of

NS is a factor of 10 over parallel tempering, while for the

larger LJ25 cluster, as the entropy jump is larger, the

efficiency gain is a factor of 100.

7. Testing, debugging and verification

MC codes are notoriously difficult to debug. One deals

with probabilities and energy distributions instead of

generating deterministic trajectories like in MD. In MC,

one can have sampling issues without knowing it. Error

bars are in that respect not helping, because small error

bars for short and intermediate runs usually are suspicious

and indicatory of sampling problems. In this section, we

describe tests that combine various methods (MC, MD and

energy minimisation) and explore limiting cases (e.g.

infinite dilution). It is therefore a good approach to not just

have a code aimed at MC or only at MD, but have a code

that combines all these methods. The advantage is that all

energy evaluations and method details are consistent and

can be controlled exactly. This combination of methods

allows for a wide and various array of stress tests. In this

section, we discuss a few examples.

7.1 Checking energies, gradients and higher

derivatives

It is essential to implement the potential energy evaluation

correctly. However, there is no real ‘test’ other than (1)

checking the source routines carefully and (2) comparing

to other codes. The first should be done regardless, but for

the second option one has to make sure that all details are

handled identically: e.g. cut-off radius, shifted at the cut-

off or truncated or smoothed near the cut-off, tail

corrections or not, charge method and Ewald precision.

The different charge methods include shifted or smoothed

Coulomb, Wolf’s method, Ewald or Smoothed-Particle

Mesh Ewald (SPME). VDW LJ size parameters are

usually given in terms of s, but sometimes the size value

should be given as the potential minimum (e.g. default in

TINKER). There are also force field conventions that must
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be handled identically which are as follows: Are 1-2 and

1-3 interactions removed from VDWand electrostatics? Is

1–4 removed or scaled or fully included or only handled

when a torsion is also defined? Is the bendangle a

conventional angle or handled as an in-plane/out-of-plane

pair? and so on. Even codes that handle generic force fields

(e.g. CHARMM, AMBER, OPLS, UFF and DREIDING)

do not implement these details in exactly the same way or

have different default settings. For testing (and other)

purposes, it is convenient to have input/output converters

for formats to and from other codes such as DLPOLY and

TINKER. Table 1 shows a typical energy analysis of a

snapshot done with these codes. The energies should be

very close, but slight differences can appear due to

different handlings of VDW cut-off and charge–charge

interactions. For this comparison, these details were

handled identically, except that RASPA uses conventional

Ewald and TINKER/DLPOLY uses SPME for charge–

charge interactions. One can generate snapshots of

molecules and compare the energies between codes. One

important source of error is the precision of writing/

reading floating point numbers. Especially the use of file

formats with limited precision such as pdb format is

discouraged for this purpose.

Once energies are checked, the analytical forces can be

compared with numerical estimates using finite difference

methods. For example, using a central difference method

with four energy evaluations one can obtain the gradient

with fourth-order accuracy

f 0ðxÞ< ð1=12Þf ðx22Þ2 ð2=3Þf ðx21Þþð2=3Þf ðxþ1Þ2 ð1=12Þf ðxþ2Þ
hx

þO h4x
� �

:

ð138Þ

The central difference divided by h approximates the

derivative when h is small. Once the gradients have been

tested and confirmed to be correct, the analytical gradients

can be used to numerically evaluate the analytical second

derivatives, again using finite differences. One thing to be

aware of is that a truncated potential has a force divergence

at the cut-off. A shifted potential is continuous in the force

but discontinuous in the second derivative. For that

smoothing functions are needed. Usually there are many

particles in the system and it is in fact likely, despite the

fact that h is small, that one of energy evaluations will

place the particle outside of the cut-off while the other

particles are inside. This can lead to errors in the numerical

approximation of the forces. Keeping the positions the

same and changing the cut-off slightly will show that the

gradient was in fact correct. The comparison of smoothed

potentials with continuous first and second derivatives

should not have this problem.

In a similar way, it is possible to test the configurational

part of the stress tensor and elasticity tensor. The stress tensor

in the canonical ensemble is defined as

sab ¼ ksB
abl2 rkBTdab ð139Þ

and the elasticity tensor

Cabmn ¼ kCB
abmnl2

V

kBT
ksB

abs
B
mnl2 ksB

ablks
B
mnl

h i

þ rkBTðdamdbn þ dandbmÞ; ð140Þ

where the configurational parts are defined as energy

derivatives with respect to strain e

sB
ab ¼ 2

1

V

›U

›eab
ð141Þ

CB
abmn ¼

1

V

›2U

›eab›emn
ð142Þ

andwhere d denotes theKronecker delta. Often, the pressure
tensor is defined as the negative of the stress tensor

Table 1. Energies of a snapshot of 20 CO2 and 10 pentane molecules (TraPPE model) in a 25 £ 25 £ 25 Å box computed with RASPA,
TINKER and DLPOLY 4.

RASPA (K) TINKER (K) DLPOLY-4 (K)

Bond 7928.6266 7928.6266 7928.6
Bend 3729.0582 3729.0582 3729.1
Torsion 8410.5480 8410.5480 8410.5
VDW 211947.2181

211111:116 ðinterÞ
2836:102 ðintraÞ

211947.2184 212390.0 (includes tail)

Charge–charge 942.6349 942.429 942.70
Tail 2442.9700 2442.97
Total (with tail) 8620.6796 – 8620.7
Total (no tail) 9063.6496 9063.44368 –

Notes: All energies are given in Kelvin. Cut-off 12 Å, charge interaction computed with Ewald summation for RASPA and SPME for TINKER and
DLPOLY.
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pab ¼ 2sab ð143Þ
The hydrostatic pressure is the trace trðpabÞ of this tensor.
The configurational part of the stress, pressure and the

elasticity tensor can be approximated by deforming the

simulation cell using a finite difference method. The atoms

in the cell are kept fixed at their fractional coordinates and

are not relaxed.

The instantaneous stress tensor is not necessarily

symmetric. For example, for rigid molecules the tensor is

asymmetric. The presence of intra-molecular constraints

results in a force term to be added to the strain derivative of

an atomic system.

›Umolecular

›eab
¼ ›U atomic

›eab
þ
X
i;j

fTi;j�ðri;j 2 riÞ ð144Þ

and the conversion from atomic to molecular stress is

smolecular
ab ¼ satomic

ab 2
1

V

X
i;j

fTi;j�ðri;j 2 riÞ: ð145Þ

It is customary, however, to explicitly symmetrise the

stress tensor.

7.2 Checking boundary conditions

The implementation of boundary conditions can be tested,

e.g. by constructing different unit cells of a nanoporous

material. The unit cell of the Chabazite zeolite (CHA) is

usually defined as a triclinic structure with

a ¼ b ¼ c ¼ 9:2294 Å, and a ¼ b ¼ g ¼ 94:26768. How-
ever, it is possible to transform the unit cell into different

(but also periodic) cells. For example, to transform an

a ¼ b – c, a ¼ b ¼ 908; g ¼ 1208 monoclinic cell to an

a – b – c, a ¼ b ¼ g ¼ 908 orthorhombic cell the

following transformation matrix can be used

2 1 0

0 1 0

0 0 0

0
@

1
A: ð146Þ

The unit cell volume is doubled. Figure 7 shows three

possible CHA-type zeolite simulation cells. The primitive

cell is the experimentally reported cell. However, one can

convert this cell to body-centred, mono-clinic, orthor-

hombic, face-centre A, face-centre B, face-centre C and

primitive 110 cells. In the Supporting Information Table

S1 available via the article webpage, we list the data that

show that statistically identical adsorption isotherms are

obtained for all these structures.

Orthorhombic cells allow for a faster implementation of

the periodic boundary condition (Equation (16)), because

the off-diagonal elements of the box matrix h are zero.

When periodic unit cells are very large, for example MIL-

101 with a ¼ b ¼ c ¼ 88:9 Å and a ¼ b ¼ g ¼ 908, the

computation can bemade tractable by converting the cell to

a primitive cell a ¼ b ¼ c ¼ 62:8 Å, a ¼ b ¼ g ¼ 608.

[277] The full cell has 14416 atoms, the primitive cell 3604

(4 times less).

7.3 Checking MD

Besides the force routines, MD needs an integration

algorithm. In principle, MD is only well defined in the

micro-canonical ensemble, but over the years integration

algorithms have been developed for other ensembles such

as the canonical, constant pressure and constant tension

ensembles. These algorithms inevitable modify the

trajectories, but only slightly and usually have negligible

effects on dynamics properties. A good test is to first use

the NVE ensemble as a reference simulation and measure

the average temperature. Then an NVT simulation done

exactly at that measured temperature can reveal any

artefacts due to the thermostat. During an NVE trajectory,

the sum of the potential and kinetic energy should be

conserved, and this can be checked. But also the extended

MD ensembles have a conserved quantity (when one adds

the energy of the thermo- and barostats). Newton’s

equations of motion are time reversible and so should the

integration algorithm. More generally, it is highly

desirable to have a symplectic or measure-preserving

integration algorithm.[278–284] Figure 8 shows the

excellent long-term energy conservation that is obtained

when such integrators are used. The drift of the energy

needs to be sufficiently small (usually smaller than 1023)

for the trajectories to be considered accurate enough. To

test the energy drift DE of the numerical integration

algorithm for a given time step Dt after N integration steps,

Figure 7. (Colour online) Three possible CHA unit cells, (left) primitive cell, (middle) body-centred cell, (right) orthorhombic cell.
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one usually computes [278]

DEðDtÞ ¼ 1

N

Xi¼N

i¼1

Eð0Þ2 EðiDtÞ
Eð0Þ










: ð147Þ

7.4 Comparing average energies

For a single molecule, MC is able to compute the average

interaction energy of a molecule inside a nanoporous

material with high accuracy. MD, however, is not well

suited to compute single-particle properties. For example,

most thermostats require many particles and the intrinsic

error decays inversely with the number of used particles.

The low-density limit of MD remains difficult. The best

(correct) solution is to view the r ¼ N=V ! 0 limit as N

very large and V !1. However, this makes the

simulations expensive, and the second best solution is to

use, for example, 256 particles but remove all inter-

particle interactions in the simulations (the particle only

interacts with the framework; all particles feel the same

thermostat). Figure 9 shows the comparison of MC and

MD computing the average energy of a particle inside a

nanoporous material as a function of temperature. The MC

simulations use translation/rotation, and the CBMC

simulation also includes the reinsertion move. Also

included in the graph are the lowest binding energies

obtained from energy minimisation. A combined view of

all these methods shows that CBMC converges at low

temperatures to the minimum energy at 0K (as it should).

Error bars on these simulations are small and the curve

over temperature is smooth (as is physically expected).

Conventional MC and MD shared the same flow at low

temperature, namely these methods tend to get ‘stuck’ in

local energy minima. The reinsertion move bypasses these

free energy bottlenecks by simply deleting the molecule

and randomly placing it elsewhere. To increase the

acceptance of the reinsertion move, one can use multiple-

first bead and orientational biasing (as is done here using

k ¼ 10 positions for the first bead, and k ¼ 10 random

orientations, out of which one is selected with the

appropriate probability, usually the most energetically

favourable one).
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The data with error bars are listed in the Supporting

Information (Tables S2 and S3) available via the article

webpage. The results at higher temperatures where all

used methods should be applicable for these systems show

that MC with rotation and translation and MC with

translation, rotation and reinsertion move and CBMC with

just reinsertion give statistically identical results. There is

also no influence (when simulated long enough) of the

number k (number of first bead trials and trial

orientations). This provides strong evidence that the

reinsertion move is correctly implemented.

CBMC is very well suited to obtain the average energy

of a single molecule, and this property is directly related to

the enthalpy of adsorption DH at infinite dilution

DH ¼ kUghl2 kUhl2 kUgl2 RT ; ð148Þ

where kUghl is the average energy of the particle inside the
framework, kUhl the average energy of the framework and

kUgl the average energy of the isolated (guest) molecule.

The latter two energies are zero here, because the

framework and the molecule are considered rigid. Figure 9

(left) shows a graph of the enthalpy of adsorption at

infinite dilution. The low-temperature limit converges to

the binding energy. At non-zero temperature, the (large)

contribution of the entropy can be observed.

Figure 9 (right) shows a comparison of the average

energy (per molecule) at finite loading. An excellent

agreement betweenCBMCandMD is found (also seeTable

S4 of the Supporting Information available via the article

webpage). Note that the average energy is not directly

related to the enthalpy of adsorption, but rather has to be

computed for example using the Clausius–Clapeyron

equation, which requires the partial derivative of the

pressure with respect to temperature at constant loading, or

using a fluctuation formula

2Q ¼ DH

¼ kU £ Nlm 2 kUlmkNlm
kN 2lm 2 kNlmkNlm

2 kUgl2 RT ; ð149Þ

where the brackets k· · ·lm denote an average in the grand

canonical ensemble,N is the number of guestmolecules and

m is the chemical potential of the guest molecules. Q in

Equation (149) is usually defined as the isosteric heat of

adsorption, and it is often applied at non-zero loading.[285]

It is assumed here that the gas phase is ideal. The low

loading limit should converge to Equation (148).

7.5 Validating NpT simulations

It is straightforward to verify NpT MC with NpT MD

simulations. For consistency, in both simulation types a

shifted potential is used (a cut-off of 12 Å). A starting box

size of 30 £ 30 £ 30 with 256 propane molecules was

used. MC used 30000 initialisation cycles and 50000

cycles for production. The MD started with 10000 MC

cycles, then 50 ps of velocity equilibration and 500 ps of

time for the production run. The equations of motions were

integrated using a measure-preserving integrator for MD

in the isothermal–isobaric ensemble.[283,284] Figure 10

shows that both methods give statistically identical results

(see Table S5 of the Supporting Information available via

the article webpage).

7.6 Validating CBMC growth

To validate the growth of CBMC, we examine the bond,

bend and torsion distributions of S2butanol. The definition

of the molecule was shown previously in Figure 4. The
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molecule has VDW and electrostatic interactions for

atoms further than 1-4 apart (OPLS force field). Figure 11

shows the comparison of CBMC and MD. Note that for

this molecule the energy landscape is already quite

complex. The MD result for 16 and 1024 molecules is

different. This is common and due to internal energy

barriers between different conformations of molecules.

For example, for n-alkanes, the experimental gauche–

trans energy differences range from 0.5 to 1.0 kcal/mol.

[286] Alkenes and cycloalkanes have rigid double bonds

that prevent rotation, giving rise to cis and trans isomers.

These geometric isomers cannot interconvert without

breaking and re-forming bonds. Using more molecules in

MD helps because it is closer to the proper distribution.

(CB-)MC inherently generates the proper distribution and

is therefore the most appropriate tool to investigate

Table 2. Comparison of CBMC and CFMC for adsorption of CO2 and CH4 in MFI, as a function of fugacity f.

CO2 in MFI at 353K CH4 in MFI at 277K

f (bar) CBMC acc. (%) CFMC acc. (%) CBMC acc. (%) CFMC acc. (%)

0.01 0.0295(5) 15.5 0.0287(8) 17.7 0.1052(8) 26.7 0.106(2) 52.3
0.1 0.292(2) 34.1 0.290(8) 37.4 1.005(4) 31.6 1.002(72) 73.0
1 2.55(1) 34.9 2.49(2) 41.1 6.492(18) 20.3 6.508(58) 65.4
10 11.21(9) 19.2 11.2(6) 46.1 14.091(9) 4.25 14.02(10) 68.8
100 17.81(12) 4.3 17.7(3) 43.7 17.266(25) 0.78 17.18(6) 75.0
1000 21.97(22) 0.9 21.9(6) 46.6 19.149(35) 0.08 19.06(11) 73.3
10000 26.3(1) 0.3 26.2(2) 46.4 20.740(49) 0.05 20.63(8) 75.8
100000 31.4(2) 0.06 31.0(7) 39.6 21.86(7) 0.01 21.76(8) 76.3

Notes: Adsorption in molec. uc21. The acceptance percentages are, for both CBMC and CFMC, the insertion acceptances. The CFMC simulations used l
biasing. CBMC: 50,000 initialisation cycles, 500,000 production cycles, CFMC: 100,000 equilibration cycles (initialisation and Wang–Landau sampling),
500,000 production cycles.
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conformation energy barriers.[286] Another point to note

is how different the dihedral distribution is without VDW

and electrostatics. There are multiple torsions defined over

the 4–7 bond, and the coupled–decoupled algorithm used

here generates the correct internal energy distributions for

the internal configurations. In the Supporting Information

(Figures S1–S3) available via the article webpage, we

have plotted all internal bond, bend and torsional

distributions for CBMC and MD.

Martin and Siepmann validated their CBMC algor-

ithms by performing some single-molecule calculations

with a hit-and-miss integration program that creates

individual molecule conformations from scratch by

connecting n random vectors (where n is the number of

bonds in that molecule).[71] Properties are then calculated

by simple Boltzmann averaging using the total energy (the

sum of bond bending, torsional and intra-molecular

Lennard-Jones interactions). Although extremely ineffi-

cient, this allows one to compare the angle and torsional

distributions generated via CBMC simulations with an

independent, non-biased generation of the same quantities.

7.7 Validating adsorption isotherms

It is possible to validate the adsorption results by

comparing to other codes, but there are less than a handful

of codes that can do CBMC. However, a very good check

is to validate CBMC against CFMC. In CFMC, no

configurational biasing is used, only energy evaluations.

The approach differs so much that an agreement between

these methods is a high indication of the correct

implementation of both algorithms. Of course, one must

keep in mind that CBMC is limited up to a certain density

while CFMC can handle dense systems.

Table 2 lists data for CO2 and CH4 in MFI-type zeolite.

When run long enough both methods are statistical

equivalent. Because of the diffusive nature of l it can take

quite some l moves before an insertion or a deletion move

is attempted. Equilibration therefore takes significantly

longer at low loadings when compared to CBMC.

However, for low temperatures and/or very high densities

CFMC equilibrates much faster than CBMC. Figure 12

shows several isotherms run up to high densities. At low

temperatures the CFMC leads to higher values, while the

CBMC results are hampered by very low insertion rates (e.

g. propane in UiO-66 at 200K). Note, however, that

acceptance probabilities are only an indication of

performance and not a proof. If a molecule is inserted,

but subsequently removed before the environment could

adjust to the insertion, then the insertion effort was

basically in vain. Nonetheless, it is clear that acceptance

Table 3. Gibbs simulations of TraPPE ethane.

TraPPE [70] CBMC CFMC NIST (exp.)

T Vapour Liquid Vapour Liquid Vapour Liquid Vapour Liquid

178 2.2(1) 551(1) 2.3(2) 551.6(2.0) 2.3(3) 549.9(1.3) 1.5 552.1
197 5.6(5) 527(2) 5.2(2) 526.4(8) 5.2(5) 525.4(2.0) 3.7 527.9
217 10.0(3) 499(1) 10.7(7) 498.6(2.4) 11.0(1.1) 497.2(1.9) 8.1 500.0
236 20(2) 469(2) 19.2(1.1) 468.7(2.3) 20.2(3.4) 467.8(1.3) 15.4 471.6
256 31(4) 432(5) 33.8(1.7) 434.0(3.2) 33.3(2.9) 431.6(1.5) 28.2 436.8
275 56(8) 396(5) 53.8(1.2) 385.7(1.5) 53.2(4.6) 381.4(4.0) 48.8 396.1

Notes: Density is in kgm23. CBMC: 50,000 initialisation cycles, 100,000 production cycles, CFMC: 50,000 equilibration cycles (initialisation andWang–
Landau sampling), 100,000 production cycles; in total, 500 molecules were used.

Table 4. Gibbs simulations of TraPPE CO2.

CBMC CFMC NIST (exp.)

T Vapour Liquid Vapour Liquid Vapour Liquid

220 17.9(0) 1169.8(0.8) 14.6(2.7) 1151.8(7.5) 15.817 1166.1
230 22.3(1.3) 1124.3(4.1) 22.8(2.6) 1119.1(7.7) 23.271 1128.7
240 30.4(1.7) 1086.0(2.6) 30.7(4.5) 1080(5.6) 33.295 1088.9
250 43.6(1.3) 1042.0(3.3) 46.4(2.9) 1037.5(8.9) 46.644 1046.0
260 60.3(0.7) 996.4(1.5) 61.0(2.1) 997.7(9.2) 64.417 998.89
270 82.2(4.1) 947.6(6.5) 84.3(8.5) 945.5(7.6) 88.374 945.83
280 117.1(5.5) 891.3(10.2) 107.9(9.7) 888.2(15.5) 121.74 883.58

Notes: Density is in kgm23. CBMC: 50,000 initialisation cycles, 100,000 production cycles, CFMC: 50,000 equilibration cycles (initialisation andWang–
Landau sampling), 100,000 production cycles; in total, 500 molecules were used.
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probabilities should be at least a few per mill, and insertion

and deletion probabilities should be equal in equilibrium.

7.8 Validating Gibbs simulations

Similar to adsorption isotherms, also Gibbs CBCM

simulations can be compared to CFMC. Numerical values

for ethane and CO2 VLE are listed in Tables 3 and 4,

respectively. Again, excellent agreement is obtained. For

strongly interacting fluids e.g. ionic liquids, methanol and

water, the CFMC Gibbs is superior. Figure 13 shows the

VLE data for CBMC and CFMC, also compared to

published simulation data of Martin and Siepmann (who

developed the TraPPE model for alkanes based on

reproducing experimental VLE data). The right figure

shows typical behaviour of l. Without l biasing the

histogram of l is peaked near unity. For more strongly

interacting fluids l will ‘get stuck’. Using WL sampling,

biasing factors can be obtained which lead to essentially

flat l histograms. By construction, the vapour and liquid

distributions are mirror images of each other. In the limit

of the l distribution being completely flat, the difference

between adjacent values of hðlÞ is the free energy

difference between these adjacent states.[181]
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Table 5. CBMC versus CFMC for an equimolar mixture of CO2/N2 in DMOF at 300K, with and without the identity switch move.

CBMC (identity) CBMC (without identity)

p (bar) CO2 acc. (%) N2 acc. (%) CO2 N2

0.2 0.409(5) 20.0 0.301(3) 75.1 0.404(5) 0.0331(5)
0.6 1.314(9) 32.2 0.099(7) 55.2 1.30(3) 0.0986(7)
1 2.27(3) 36.7 0.160(1) 47.4 2.27(2) 0.1600(8)
2 5.04(4) 37.1 0.284(2) 40.0 5.04(6) 0.284(4)
5 10.27(5) 31.6 0.388(3) 32.5 10.23(4) 0.388(3)
10 12.81(6) 27.1 0.397(5) 27.9 12.79(3) 0.393(6)
20 14.47(4) 23.2 0.397(4) 23.9 14.46(5) 0.394(7)

CFMC (identity) CFMC (without identity) IAST

p (Pa) CO2 N2 CO2 N2 CO2 N2

0.2 0.413(8) 0.0327(8) 0.40(2) 0.033(1) 0.590 0.034
0.6 1.30(5) 0.098(4) 1.28(5) 0.097(3) 1.694 0.095
1 2.28(4) 0.157(3) 2.22(8) 0.157(3) 2.75 0.15
2 4.92(13) 0.277(4) 4.95(24) 0.28(1) 5.10 0.26
5 10.05(14) 0.385(5) 10.16(21) 0.372(18) 9.68 0.43
10 12.64(8) 0.397(4) 12.58(9) 0.40(2) 12.82 0.54
20 14.32(3) 0.394(5) 14.3(2) 0.40(5) 14.57 0.55

Notes: The IAST is computed from the CBMC pure component isotherms. Units of adsorption in mol kg21. The reported acceptance percentages are for the
identity switch for an attempt to change it to the other component. CBMC: 50,000 initialisation cycles, 20,0000 production cycles, CFMC: 10,0000
equilibration cycles (initialisation and Wang–Landau sampling), 25,0000 production cycles.
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7.9 Mixture isotherms, IAST and identity change

Mixtures can also be validated by comparing CBMC to

CFMC. At low and medium densities, the results with and

without the identity switch move should be identical.

Furthermore, it is known that Ideal Adsorption Solution

Theory (IAST) works very well for homogeneous systems

(i.e. no segregation). IAST predicts the mixture based on

pure components,[287] and can be used as a first guess

where to expect the mixture results to be. MC simulation

can be used to validate IAST, which then can be confidently

applied to experimental isotherms (in experiments it is very

difficult to measure mixture isotherms directly). Figure S4

in the Supporting Information available via the article

webpage shows that IAST works qualitatively well for this

system. In Table 5, we show that for a CO2/N2 mixture all

the mixture simulations are in agreement with each other

within the statistical error. The results with and without

identity switch move are identical. Note that acceptance

probabilities of the identity switch moves are high over the

full loading range for molecules that are similar in size and

shape.

8. Conclusions

We have reviewed modern MC algorithms and discussed

some validation methodology. The basis of an MC code,

the energy evaluations, can be compared to other codes or

checked by hand for snapshots of molecules. Derivatives

of energies can be easily checked numerically. To properly

check more advanced MC algorithms, it is useful to

implement two (or more) quite different techniques (e.g.

CBMC and CFMC) that overlap in applicability for a large

range of conditions. Comparison of MC and MD is

feasible, but care must be taken so that the same property is

measured.
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