398 research outputs found
Mediation as an effective method to transform relationships and resolve conflict
Mediation has become a well-respected method of conflict resolution. It is currently utilized in a variety of areas including family situations such as divorce and custody concerns, employer and employee disputes, and individual conflicts. Mediation occurs on a global level as well, including intervention with countries engaged in conflict with one another and countries with governments at odds with their constituents. In the United States, mediation is often seen as a way to lower the burden on the courts by having parties resolve issues with the help of a mediator rather than further clogging the judicial system. While this is one way mediation can be useful, true mediation not only resolves conflict, it teaches the parties how to better resolve their conflicts in the future. Mediation has the power to transform individuals and in so doing, transform their relationships in a positive way with lasting impact
Engineering of spin-lattice relaxation dynamics by digital growth of diluted magnetic semiconductor CdMnTe
The technological concept of "digital alloying" offered by molecular-beam
epitaxy is demonstrated to be a very effective tool for tailoring static and
dynamic magnetic properties of diluted magnetic semiconductors. Compared to
common "disordered alloys" with the same Mn concentration, the spin-lattice
relaxation dynamics of magnetic Mn ions has been accelerated by an order of
magnitude in (Cd,Mn)Te digital alloys, without any noticeable change in the
giant Zeeman spin splitting of excitonic states, i.e. without effect on the
static magnetization. The strong sensitivity of the magnetization dynamics to
clustering of the Mn ions opens a new degree of freedom for spin engineering.Comment: 9 pages, 3 figure
Electric field control of magnetization dynamics in ZnMnSe/ZnBeSe diluted-magnetic-semiconductor heterostructures
We show that the magnetization dynamics in diluted magnetic semiconductors
can be controlled separately from the static magnetization by means of an
electric field. The spin-lattice relaxation (SLR) time of magnetic Mn2+ ions
was tuned by two orders of magnitude by a gate voltage applied to n-type
modulation-doped (Zn,Mn)Se/(Zn,Be)Se quantum wells. The effect is based on
providing an additional channel for SLR by a two-dimensional electron gas
(2DEG). The static magnetization responsible for the giant Zeeman spin
splitting of excitons was not influenced by the 2DEG density
Self-guided wakefield experiments driven by petawatt class ultra-short laser pulses
We investigate the extension of self-injecting laser wakefield experiments to
the regime that will be accessible with the next generation of petawatt class
ultra-short pulse laser systems. Using linear scalings, current experimental
trends and numerical simulations we determine the optimal laser and target
parameters, i.e. focusing geometry, plasma density and target length, that are
required to increase the electron beam energy (to > 1 GeV) without the use of
external guiding structures.Comment: 15 pages, 8 figure
Accurate and linear time pose estimation from points and lines
The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such
scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based
counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error
that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms,
the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or
only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft
Influence of realistic parameters on state-of-the-art LWFA experiments
We examine the influence of non-ideal plasma-density and non-Gaussian
transverse laser-intensity profiles in the laser wakefield accelerator
analytically and numerically. We find that the characteristic amplitude and
scale length of longitudinal density fluctuations impacts on the final energies
achieved by electron bunches. Conditions that minimize the role of the
longitudinal plasma density fluctuations are found. The influence of higher
order Laguerre-Gaussian laser pulses is also investigated. We find that higher
order laser modes typically lead to lower energy gains. Certain combinations of
higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and
Controlled Fusio
Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation
Betatron X-ray radiation in laser-plasma accelerators is produced when
electrons are accelerated and wiggled in the laser-wakefield cavity. This
femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt
range has been observed at different interaction regime using high power laser
from 10 to 100 TW. However, none of the spectral measurement performed were at
sufficient resolution, bandwidth and signal to noise ratio to precisely
determine the shape of spectra with a single laser shot in order to avoid shot
to shot fluctuations. In this letter, the Betatron radiation produced using a
80 TW laser is characterized by using a single photon counting method. We
measure in single shot spectra from 8 to 21 keV with a resolution better than
350 eV. The results obtained are in excellent agreement with theoretical
predictions and demonstrate the synchrotron type nature of this radiation
mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our
experimental conditions. In addition, the features of the source at this energy
range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure
- …