We examine the influence of non-ideal plasma-density and non-Gaussian
transverse laser-intensity profiles in the laser wakefield accelerator
analytically and numerically. We find that the characteristic amplitude and
scale length of longitudinal density fluctuations impacts on the final energies
achieved by electron bunches. Conditions that minimize the role of the
longitudinal plasma density fluctuations are found. The influence of higher
order Laguerre-Gaussian laser pulses is also investigated. We find that higher
order laser modes typically lead to lower energy gains. Certain combinations of
higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and
Controlled Fusio