1,547 research outputs found
Sequential Monte Carlo simulation of collision risk in free flight air traffic
Within HYBRIDGE a novel approach in speeding up Monte Carlo simulation of rare events has been developed. In the current report this method is extended for application to simulating collisions with a stochastic dynamical model of an air traffic operational concept. Subsequently this extended Monte Carlo simulation approach is applied to a simulation model of an advanced free flight operational concept; i.e. one in which aircraft are responsible for self separation with each other. The Monte Carlo simulation results obtained for this advanced concept show that the novel method works well, and that it allows studying rare events that stayed invisible in previous Monte Carlo simulations of advanced air traffic operational concepts
Photons, neutrinos and optical activity
We compute the one-loop helicity amplitudes for low-energy
scattering and its crossed channels in the standard
model with massless neutrinos. In the center of mass, with , the cross sections for these channels grow roughly
as . The scattered photons in the elastic channel are circularly
polarized and the net value of the polarization is non-zero. We also present a
discussion of the optical activity of a sea of neutrinos and estimate the
values of its index of refraction and rotary power.Comment: 9 pages, ReVTeX4, 6 figures include
Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.
BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer.
METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON).
RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours.
CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients
Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity
If extra spacetime dimensions and low-scale gravity exist, black holes will
be produced in observable collisions of elementary particles. For the next
several years, ultra-high energy cosmic rays provide the most promising window
on this phenomenon. In particular, cosmic neutrinos can produce black holes
deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers.
We determine the sensitivity of cosmic ray detectors to black hole production
and compare the results to other probes of extra dimensions. With n \ge 4 extra
dimensions, current bounds on deeply penetrating showers from AGASA already
provide the most stringent bound on low-scale gravity, requiring a fundamental
Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large
as 4 TeV and may observe on the order of a hundred black holes in 5 years. We
also consider the implications of angular momentum and possible exponentially
suppressed parton cross sections; including these effects, large black hole
rates are still possible. Finally, we demonstrate that even if only a few black
hole events are observed, a standard model interpretation may be excluded by
comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA
and Fly's Eye comparison added; v3: Earth-skimming results modified and
strengthened, published versio
Long-Range Forces of QCD
We consider the scattering of two color dipoles (e.g., heavy quarkonium
states) at low energy - a QCD analog of Van der Waals interaction. Even though
the couplings of the dipoles to the gluon field can be described in
perturbation theory, which leads to the potential proportional to
(N_c^2-1)/R^{7}, at large distances R the interaction becomes totally
non-perturbative. Low-energy QCD theorems are used to evaluate the leading
long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu
R) (\mu is the Goldstone boson mass), which is shown to arise from the
correlated two-boson exchange. The sum rule which relates the overall strength
of the interaction to the energy density of QCD vacuum is derived.
Surprisingly, we find that when the size of the dipoles shrinks to zero (the
heavy quark limit in the case of quarkonia), the non-perturbative part of the
interaction vanishes more slowly than the perturbative part as a consequence of
scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi
\to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added,
to appear in Phys.Rev.
Determination of the Gamow-Teller Quenching Factor from Charge Exchange Reactions on 90Zr
Double differential cross sections between 0-12 degrees were measured for the
90Zr(n,p) reaction at 293 MeV over a wide excitation energy range of 0-70 MeV.
A multipole decomposition technique was applied to the present data as well as
the previously obtained 90Zr(p,n) data to extract the Gamow-Teller (GT)
component from the continuum. The GT quenching factor Q was derived by using
the obtained total GT strengths. The result is Q=0.88+/-0.06 not including an
overall normalization uncertainty in the GT unit cross section of 16%.Comment: 11 papes, 4 figures, submitted to Physics Letters B (accepted),
gzipped tar file, changed content
Differential impact of preventive cognitive therapy while tapering antidepressants versus maintenance antidepressant treatment on affect fluctuations and individual affect networks and impact on relapse:a secondary analysis of a randomised controlled trial
Background: There is an urgent need to better understand and prevent relapse in major depressive disorder (MDD). We explored the differential impact of various MDD relapse prevention strategies (pharmacological and/or psychological) on affect fluctuations and individual affect networks in a randomised setting, and their predictive value for relapse. Methods: We did a secondary analysis using experience sampling methodology (ESM) data from individuals with remitted recurrent depression that was collected alongside a randomised controlled trial that ran in the Netherlands, comparing: (I) tapering antidepressants while receiving preventive cognitive therapy (PCT), (II) combining antidepressants with PCT, or (III) continuing antidepressants without PCT, for the prevention of depressive relapse, as well as ESM data from 11 healthy controls. Participants had multiple past depressive episodes, but were remitted for at least 8 weeks and on antidepressants for at least six months. Exclusion criteria were: current (hypo)mania, current alcohol or drug abuse, anxiety disorder that required treatment, psychological treatment more than twice per month, a diagnosis of organic brain damage, or a history of bipolar disorder or psychosis. Fluctuations (within-person variance, root mean square of successive differences, autocorrelation) in negative and positive affect were calculated. Changes in individual affect networks during treatment were modelled using time-varying vector autoregression, both with and without applying regularisation. We explored whether affect fluctuations or changes in affect networks over time differed between treatment conditions or relapse outcomes, and predicted relapse during 2-year follow-up. This ESM study was registered at ISRCTN registry, ISRCTN15472145. Findings: Between Jan 1, 2014, and Jan 31, 2015, 72 study participants were recruited, 42 of whom were included in the analyses. We found no indication that affect fluctuations differed between treatment groups, nor that they predicted relapse. We observed large individual differences in affect network structure across participants (irrespective of treatment or relapse status) and in healthy controls. We found no indication of group-level differences in how much networks changed over time, nor that changes in networks over time predicted time to relapse (regularised models: hazard ratios [HR] 1063, 95% CI <0.0001–>10 000, p = 0.65; non-regularised models: HR 2.54, 95% CI 0.23–28.7, p = 0.45) or occurrence of relapse (regularised models: odds ratios [OR] 22.84, 95% CI <0.0001–>10 000, p = 0.90; non-regularised models: OR 7.57, 95% CI 0.07–3709.54, p = 0.44) during complete follow-up. Interpretation: Our findings should be interpreted with caution, given the exploratory nature of this study and wide confidence intervals. While group-level differences in affect dynamics cannot be ruled out due to low statistical power, visual inspection of individual affect networks also revealed no meaningful patterns in relation to MDD relapse. More studies are needed to assess whether affect dynamics as informed by ESM may predict relapse or guide personalisation of MDD relapse prevention in daily practice. Funding: The Netherlands Organisation for Health Research and Development, Dutch Research Council, University of Amsterdam.</p
- …