90 research outputs found

    Early age exposure to moisture damage and systemic inflammation at the age of 6 years

    Get PDF
    Cross-sectional studies have shown that exposure to indoor moisture damage and mold may be associated with subclinical inflammation. Our aim was to determine whether early age exposure to moisture damage or mold is prospectively associated with subclinical systemic inflammation or with immune responsiveness in later childhood. Home inspections were performed in children's homes in the first year of life. At age 6 years, subclinical systemic inflammation was measured by serum C-reactive protein(CRP) and blood leucocytes and immune responsiveness by ex vivo production of interleukin 1-beta(IL-1beta), IL-6 and tumor necrosis factor-alpha(TNF-alpha) in whole blood cultures without stimulation or after 24h stimulation with phorbol 12-myristate 13-acetate and ionomycin(PI), lipopolysaccharide(LPS) or peptidoglycan(PPG) in 251 to 270 children. Moisture damage in child's main living areas in infancy was not significantly associated with elevated levels of CRP or leucocytes at 6 years. In contrast, there was some suggestion for an effect on immune responsiveness, as moisture damage with visible mold was positively associated with LPS-stimulated production of TNF-alpha and minor moisture damage was inversely associated with PI-stimulated IL-1beta. While early life exposure to mold damage may have some influence on later immune responsiveness, it does not seem to increase subclinical systemic inflammation in later life. This article is protected by copyright. All rights reserved

    Microbial secondary metabolites in homes in association with moisture damage and asthma

    Get PDF
    We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 ( range 8-29) and median sum load 65 ( 4-865) ng/m(2). Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years ( aOR 0.06 ( 95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended ( P <0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma.Peer reviewe

    The SGLT2 Inhibitor Dapagliflozin Reduces Liver Fat but Does Not Affect Tissue Insulin Sensitivity: A Randomized, Double-Blind, Placebo-Controlled Study With 8-Week Treatment in Type 2 Diabetes Patients

    Get PDF
    OBJECTIVE The aim of this study was to investigate tissue-specific effects of dapagliflozin on insulin sensitivity and liver and body fat in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS This randomized, double-blind, parallel group, placebo-controlled study recruited 32 patients with type 2 diabetes. Enrolled patients were to have HbA(1c) 6.5-10.5% (48-91 mmol/mol) and >= 3 months of stable treatment with metformin, dipeptidyl peptidase 4 inhibitor, or their combination. Patients were randomized 1:1 to receive 10 mg dapagliflozin or placebo daily for 8 weeks. Before and after the intervention, tissue insulin sensitivity was measured using [F-18]-fluorodeoxyglucose and positron emission tomography during hyperinsulinemic-euglycemic clamp. Liver proton density fat fraction (PDFF) and adipose tissue volumes were assessed using MRI, and blood biomarkers were analyzed. RESULTS After 8 weeks, glycemic control was improved by dapagliflozin (placebo-corrected change in HbA(1c) -0.39%, P < 0.01), but whole-body glucose uptake was not increased (P = 0.90). Tissue-specific insulin-stimulated glucose uptake did not change in skeletal muscle, liver, myocardium, or white and brown adipose tissue, and endogenous glucose production remained unaffected. However, there were significant placebo-corrected decreases in liver PDFF (-3.74%, P < 0.01), liver volume (-0.10 L, P < 0.05), visceral adipose tissue volume (-0.35 L, P < 0.01), interleukin-6 (-1.87 pg/mL, P < 0.05), and N-terminal prohormone of brain natriuretic peptide (-96 ng/L, P = 0.03). CONCLUSIONS In this study, 8 weeks of treatment with dapagliflozin reduced liver PDFF and the volume of visceral adipose tissue in obese patients with type 2 diabetes. Although glycemic control was improved, no effect on tissue-level insulin sensitivity was observed

    The role of Probiotics in allergic diseases

    Get PDF
    Allergic disorders are very common in the pediatric age group. While the exact etiology is unclear, evidence is mounting to incriminate environmental factors and an aberrant gut microbiota with a shift of the Th1/Th2 balance towards a Th2 response. Probiotics have been shown to modulate the immune system back to a Th1 response. Several in vitro studies suggest a role for probiotics in treating allergic disorders. Human trials demonstrate a limited benefit for the use of probiotics in atopic dermatitis in a preventive as well as a therapeutic capacity. Data supporting their use in allergic rhinitis are less robust. Currently, there is no role for probiotic therapy in the treatment of bronchial asthma. Future studies will be critical in determining the exact role of probiotics in allergic disorders

    Human Complement Regulators C4b-Binding Protein and C1 Esterase Inhibitor Interact with a Novel Outer Surface Protein of Borrelia recurrentis

    Get PDF
    The spirochete Borrelia recurrentis is the causal agent of louse-borne relapsing fever and is transmitted to humans by the infected body louse Pediculus humanus. We have recently demonstrated that the B. recurrentis surface receptor, HcpA, specifically binds factor H, the regulator of the alternative pathway of complement activation, thereby inhibiting complement mediated bacteriolysis. Here, we show that B. recurrentis spirochetes express another potential outer membrane lipoprotein, termed CihC, and acquire C4b-binding protein (C4bp) and human C1 esterase inhibitor (C1-Inh), the major inhibitors of the classical and lectin pathway of complement activation. A highly homologous receptor for C4bp was also found in the African tick-borne relapsing fever spirochete B. duttonii. Upon its binding to B. recurrentis or recombinant CihC, C4bp retains its functional potential, i.e. facilitating the factor I-mediated degradation of C4b. The additional finding that ectopic expression of CihC in serum sensitive B. burgdorferi significantly increased spirochetal resistance against human complement suggests this receptor to substantially contribute, together with other known strategies, to immune evasion of B. recurrentis

    A Computational and Experimental Study of the Regulatory Mechanisms of the Complement System

    Get PDF
    The complement system is key to innate immunity and its activation is necessary for the clearance of bacteria and apoptotic cells. However, insufficient or excessive complement activation will lead to immune-related diseases. It is so far unknown how the complement activity is up- or down- regulated and what the associated pathophysiological mechanisms are. To quantitatively understand the modulatory mechanisms of the complement system, we built a computational model involving the enhancement and suppression mechanisms that regulate complement activity. Our model consists of a large system of Ordinary Differential Equations (ODEs) accompanied by a dynamic Bayesian network as a probabilistic approximation of the ODE dynamics. Applying Bayesian inference techniques, this approximation was used to perform parameter estimation and sensitivity analysis. Our combined computational and experimental study showed that the antimicrobial response is sensitive to changes in pH and calcium levels, which determines the strength of the crosstalk between CRP and L-ficolin. Our study also revealed differential regulatory effects of C4BP. While C4BP delays but does not decrease the classical complement activation, it attenuates but does not significantly delay the lectin pathway activation. We also found that the major inhibitory role of C4BP is to facilitate the decay of C3 convertase. In summary, the present work elucidates the regulatory mechanisms of the complement system and demonstrates how the bio-pathway machinery maintains the balance between activation and inhibition. The insights we have gained could contribute to the development of therapies targeting the complement system.Singapore. Ministry of Education (Grant T208B3109)Singapore. Agency for Science, Technology and Research (BMRC 08/1/21/19/574)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project)Swedish Research Counci

    Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    Get PDF
    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland

    Vocabulary and grammar development in young learners of English as an additional language

    Get PDF
    Internationally, an increasing number of children learn English as an additional language (EAL). Children with EAL grow up in an environment where English is the majority language but are exposed to a different, minority language at home. Despite the increase in the number of EAL learners around the world, comparatively little is known about the development of their vocabulary and grammar at preschool age. Furthermore, the use of different methods in EAL studies can make research evidence difficult to summarize. The aim of this chapter is to provide a comprehensive review of EAL learners’ vocabulary and grammar development at preschool, drawing from studies that have used standardized tests, experimental tasks, or both. This review indicates that few studies have focused on preschool children with EAL. These suggest that, at the earliest stages of language learning, EAL learners generally know fewer words and acquire grammatical constructions at a slower pace than their English monolingual peers. These differences often persist throughout development, risking a negative impact on EAL learners’ academic attainment in an English-only school environment. Thus, this chapter also includes some suggestions for practice that could help children with EAL develop their vocabulary and grammar knowledge during and after preschool
    corecore