14,610 research outputs found

    What image features guide lightness perception?

    Get PDF
    Lightness constancy is the ability to perceive black and white surface colors under a wide range of lighting conditions. This fundamental visual ability is not well understood, and current theories differ greatly on what image features are important for lightness perception. Here we measured classification images for human observers and four models of lightness perception to determine which image regions influenced lightness judgments. The models were a high-pass-filter model, an oriented difference-of-Gaussians model, an anchoring model, and an atmospheric-link-function model. Human and model observers viewed three variants of the argyle illusion (Adelson, 1993) and judged which of two test patches appeared lighter. Classification images showed that human lightness judgments were based on local, anisotropic stimulus regions that were bounded by regions of uniform lighting. The atmospheric-link-function and anchoring models predicted the lightness illusion perceived by human observers, but the high-pass-filter and oriented-difference-of-Gaussians models did not. Furthermore, all four models produced classification images that were qualitatively different from those of human observers, meaning that the model lightness judgments were guided by different image regions than human lightness judgments. These experiments provide a new test of models of lightness perception, and show that human observers' lightness computations can be highly local, as in low-level models, and nevertheless depend strongly on lighting boundaries, as suggested by midlevel models.York University Librarie

    Object-oriented construction of a multigrid electronic-structure code with Fortran 90

    Get PDF
    We describe the object-oriented implementation of a higher-order finite-difference density-functional code in Fortran 90. Object-oriented models of grid and related objects are constructed and employed for the implementation of an efficient one-way multigrid method we have recently proposed for the density-functional electronic-structure calculations. Detailed analysis of performance and strategy of the one-way multigrid scheme will be presented.Comment: 24 pages, 6 figures, to appear in Comput. Phys. Com

    Estimation of Markov regime-switching regression models with endogenous switching

    Get PDF
    Following Hamilton (1989), estimation of Markov regime-switching regressions nearly always relies on the assumption that the latent state variable controlling the regime change is exogenous. We incorporate endogenous switching into a Markov-switching regression and develop strategies for identification and estimation. Identification requires instruments, which can be found in observed exogenous variables that influence the transition probabilities of the regime-switching process, as in the so-called time-varying transition probability case. However, even with fixed transition probabilities, the lagged state variable can serve as an instrument provided it is exogenous and the state process is serially dependent. This is true even though the lagged state is unobserved. A straightforward test for endogeneity is also presented. Monte Carlo experiments confirm that the estimation procedures perform quite well in practice. We apply the endogenous switching model to the volatility feedback model of equity returns given in Turner, Startz and Nelson (1989).Econometric models

    Predicting wind turbine blade loads using vorticity transport and RANS methodologies

    Get PDF
    Two computational methods, one based on the solution of the vorticity transport equation, and a second based on the solution of the Reynolds-Averaged Navier-Stokes equations, have been used to simulate the aerodynamic performance of a horizontal axis wind turbine. Comparisons have been made against data obtained during Phase VI of the NREL Unsteady Aerodynamics Experimental and against existing numerical data for a range of wind conditions. The Reynolds-Averaged Navier-Stokes method demonstrates the potential to predict accurately the flow around the blades and the distribution of aerodynamic loads developed on them. The Vorticity Transport Model possesses a considerable advantage in those situtations where the accurate, but computationally efficient, modelling of the structure of the wake and the associated induced velocity is critical, but where the prediction of blade loads can be achieved with sufficient accuracy using a lifting-line model augmented by incorporating a semi-empirical stall delay model. The largest benefits can be extracted when the two methods are used to complement each other in order to understand better the physical mechanisms governing the aerodynamic performance of wind turbines

    Hydrodynamic propulsion of human sperm

    Get PDF
    The detailed fluid mechanics of sperm propulsion are fundamental to our understanding of reproduction. In this paper, we aim to model a human sperm swimming in a microscope slide chamber. We model the sperm itself by a distribution of regularized stokeslets over an ellipsoidal sperm head and along an infinitesimally thin flagellum. The slide chamber walls are modelled as parallel plates, also discretized by a distribution of regularized stokeslets. The sperm flagellar motion, used in our model, is obtained by digital microscopy of human sperm swimming in slide chambers. We compare the results of our simulation with previous numerical studies of flagellar propulsion, and compare our computations of sperm kinematics with those of the actual sperm measured by digital microscopy. We find that there is an excellent quantitative match of transverse and angular velocities between our simulations and experimental measurements of sperm. We also find a good qualitative match of longitudinal velocities and computed tracks with those measured in our experiment. Our computations of average sperm power consumption fall within the range obtained by other authors. We use the hydrodynamic model, and a prototype flagellar motion derived from experiment, as a predictive tool, and investigate how sperm kinematics are affected by changes to head morphology, as human sperm have large variability in head size and shape. Results are shown which indicate the increase in predicted straight-line velocity of the sperm as the head width is reduced and the increase in lateral movement as the head length is reduced. Predicted power consumption, however, shows a minimum close to the normal head aspect ratio

    Pressureless Sintering t -zirconia@Ī“-Al 2 O 3 (54 mol%) Coreā€“Shell Nanopowders at 1120Ā°C Provides Dense t -Zirconia-Toughened Ī±-Al 2 O 3 Nanocomposites

    Full text link
    Zirconia-toughened alumina (ZTA) is of growing importance in a wide variety of fields exemplified by ZTA prosthetic implants. Unfortunately, ZTA composites are generally difficult to process because of the need to preserve the tetragonal zirconia phase in the final dense ceramic, coincident with the need to fully densify the Ī±-Al 2 O 3 component. We report here that liquid-feed flame spray pyrolysis of mixtures of metalloorganic precursors of alumina and zirconia at varying compositional ratios provide access in one step to coreā€“shell nanoparticles, wherein the shell is Ī“-Al 2 O 3 and the core is a perfect single crystal of tetragonal ( t -) zirconia. Pressureless sintering studies provided parameters whereby these nanopowder compacts could be sintered to full density (>99%) at temperatures just above 1100Ā°C converting the shell component to Ī±-Al 2 O 3 but preserving the t -ZrO 2 without the need for any dopants. The final average grain sizes of these sintered compacts are ā‰¤200 nm. The resulting materials exhibit the expected response to mechanical deformation with the subsequent production of monoclinic ZrO 2 . These materials appear to offer a low-temperature, low-cost route to fine-grained ZTA with varied Al 2 O 3 : t -ZrO 2 compositions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79122/1/j.1551-2916.2009.03498.x.pd

    Quantum Monte Carlo study of a magnetic-field-driven 2D superconductor-insulator transition

    Get PDF
    We numerically study the superconductor-insulator phase transition in a model disordered 2D superconductor as a function of applied magnetic field. The calculation involves quantum Monte Carlo calculations of the (2+1)D XY model in the presence of both disorder and magnetic field. The XY coupling is assumed to have the form -J\cos(\theta_i-\theta_j-A_{ij}), where A_{ij} has a mean of zero and a standard deviation \Delta A_{ij}. In a real system, such a model would be approximately realized by a 2D array of small Josephson-coupled grains with slight spatial disorder and a uniform applied magnetic field. The different values \Delta A_{ij} then corresponds to an applied field such that the average number of flux quanta per plaquette has various integer values N: larger N corresponds to larger \Delta A_{ij}. For any value of \Delta A_{ij}, there appears to be a critical coupling constant K_c(\Delta A_{ij})=\sqrt{[J/(2U)]_c}, where U is the charging energy, above which the system is a Mott insulator; there is also a corresponding critical conductivity \sigma^*(\Delta A_{ij}) at the transition. For \Delta A_{ij}=\infty, the order parameter of the transition is a renormalized coupling constant g. Using a numerical technique appropriate for disordered systems, we show that the transition at this value of \Delta A_{ij} takes place from an insulating (I) phase to a Bose glass (BG) phase, and that the dynamical critical exponent characterizing this transition is z \sim 1.3. By contrast, z=1 for this model at \Delta A_{ij}=0. We suggest that the superconductor to insulator transition is actually of this I to BG class at all nonzero \Delta A_{ij}'s, and we support this interpretation by both numerical evidence and an analytical argument based on the Harris criterion.Comment: 17 pages, 23 figures, accepted for publication in Phys. Rev.

    Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation

    Get PDF
    Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy (Ļˆ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to Ļˆ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from Ļˆ of 0.60 SE = 0.03 in the spring of 2006 to Ļˆ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trapā€“vaccinateā€“release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RGĀ®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management
    • ā€¦
    corecore