72 research outputs found

    Episodic abdominal pain characteristics are not associated with clinically relevant improvement of health status after cholecystectomy

    Get PDF
    BACKGROUND: Cholecystectomy is the therapy of first choice in patients with uncomplicated symptomatic cholecystolithiasis, but it remains unclear which patients truly benefit in terms of health status improvement. Patients generally present with episodic abdominal pain of varying frequency, duration, and intensity. We assessed whether characteristics of abdominal pain episodes are determinants of clinically relevant improvement of health status after cholecystectomy. METHODS: In a post hoc analysis of a prospective multicenter cohort study, patients of ≄18 years of age with uncomplicated symptomatic cholecystolithiasis subjected to cholecystectomy were included. Preoperatively, patients received a structured interview and a questionnaire consisting of the visual analogue scale (VAS; range 0–100) and gastrointestinal quality of life index (GIQLI). At 12 weeks after cholecystectomy, the GIQLI was again administered. Logistic regression analyses were performed to determine significant associations. RESULTS: Questionnaires were sent to 261 and returned by 166 (63.6 %) patients (128 females, mean age at surgery 49.5 ± 13.8). A total of 131 (78.9 %) patients reported a clinically relevant improvement of health status. The median (interquartile range) frequency, duration, and intensity of abdominal pain episodes were 0.38 (0.18–0.75) a week, 4.00 (2.00–8.00) hours, and 92 (77–99), respectively. None of the characteristics was associated with a clinically relevant improvement of health status at 12 weeks after cholecystectomy. CONCLUSIONS: Characteristics of abdominal pain episodes cannot be used to inform patients with symptomatic cholecystolithiasis who are skeptic about the timing of cholecystectomy for optimal benefit. Timing of cholecystectomy should therefore be based on other characteristics and preferences

    Hemophilia B in a female with intellectual disability caused by a deletion of Xq26.3q28 encompassing the F9

    Get PDF
    Background: Hemophilia B is an X-linked recessive disorder caused by mutations in the F9 on Xq27.1. Mainly males are affected but about 20% of female carriers have clotting factor IX activity below 0.40 IU/ml and bleeding problems. Fragile-X syndrome (FMR1) and FRAXE syndrome (AFF2) are well-known causes of X-linked recessive intellectual disability. Simultaneous deletion of both FMR1 and AFF2 in males results in severe intellectual disability. In females the phenotype is more variable. We report a 19-year-old female with severe intellectual disability and a long-standing bleeding history. Methods: A SNP array analysis (Illumina Human Cyto 12-SNP genotyping array) and sequencing of F9 were performed. Laboratory tests were performed to evaluate the bleeding diathesis. Results: Our patient was diagnosed with mild hemophilia B after finding an 11 Mb deletion of Xq26.3q28 that included the following genes among others IDS, SOX3, FMR1, AFF2, and F9. Conclusion: The case history demonstrates that a severe bleeding tendency suggestive of a hemostasis defect in patients with intellectual disability warrants careful hematological and genetic work-up even in the absence of a positive family history

    Modelling the cascade of biomarker changes in progranulin‐related frontotemporal dementia

    Get PDF
    AbstractBackgroundProgranulin related frontotemporal dementia (FTD‐GRN) is a fast progressive disorder, in which pathophysiological changes precede overt clinical symptoms in only a short time period. Modelling the cascade of multimodal biomarker changes aids in understanding the etiology of this disease, enables monitoring of individual mutation carriers, and would give input for disease‐modifying treatments. In this cross‐sectional study, we estimated the temporal cascade of biomarker changes for FTD‐GRN, in a data‐driven way.MethodWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non‐carriers. Of the symptomatic subjects, 17 had behavioural variant FTD (bvFTD), 16 presented as non‐fluent variant primary progressive aphasia (nfvPPA). The selected biomarkers for establishing the cascade of changes were neurofilament light chain, regional grey matter volumes, fractional anisotropy of white matter tracts, and cognitive domains. We used a data‐driven analysis called discriminative event‐based modelling (Venkatraghavan, NeuroImage, 2019) with a novel modification to its Gaussian Mixture Model (GMM) called Siamese GMM, to estimate the cascade of biomarker changes for FTD‐GRN. Using cross‐validation, we estimated disease severities of individual mutation carriers in the test set based on their progression along the biomarker cascade established on the training set.ResultNeurofilament light chain and white matter tracts were the earliest biomarkers to become abnormal in FTD‐GRN mutation carriers. Attention and executive functioning were also affected early on in the disease process. Based on the estimated individual disease severities, presymptomatic mutation carriers could be distinguished from symptomatic mutation carriers with a sensitivity of 95% and specificity of 100% in the cross‐validation experiment. There was a high correlation (r=0.94, p<0.001) between estimated disease severity and years since symptom onset in nfvPPA, but not in bvFTD (r=0.33, p=0.46).ConclusionIn this study, we unravelled the temporal cascade of multimodal biomarker changes for FTD‐GRN. Our results suggest that axonal degeneration is one of the first disease events in FTD‐GRN, which calls for designing disease modifying treatments that strengthens the axons. We also demonstrated a good delineation between symptomatic and presymptomatic carriers using the estimated disease severities, which suggest that our model could enable monitoring of individual mutation carriers

    Infant Ustekinumab Clearance, Risk of Infection, and Development After Exposure During Pregnancy

    Get PDF
    Background:Evidence on ustekinumab safety in pregnancy is gradually expanding, but its clearance in the postnatal period is unknown. The aim of this study was to investigate ustekinumab concentrations in umbilical cord blood and rates of clearance after birth, as well as how these correlate with maternal drug concentrations, risk of infection, and developmental milestones during the first year of life. Methods: Pregnant women with inflammatory bowel disease were prospectively recruited from 19 hospitals in Denmark and the Netherlands between 2018 and 2022. Infant infections leading to hospitalization/antibiotics and developmental milestones were assessed. Serum ustekinumab concentrations were measured at delivery and specific time points. Nonlinear regression analysis was applied to estimate clearance. Results:In 78 live-born infants from 76 pregnancies, we observed a low risk of adverse pregnancy outcomes and normal developmental milestones. At birth, the median infant-mother ustekinumab ratio was 2.18 (95% confidence interval, 1.69–2.81). Mean time to infant clearance was 6.7 months (95% confidence interval, 6.1–7.3 months). One in 4 infants at 6 months had an extremely low median concentration of 0.015 ÎŒg/mL (range 0.005–0.12 ÎŒg/mL). No variation in median ustekinumab concentration was noted between infants with (2.8 [range 0.4–6.9] ÎŒg/mL) and without (3.1 [range 0.7–11.0] ÎŒg/mL) infections during the first year of life (P = .41). Conclusions: No adverse signals after intrauterine exposure to ustekinumab were observed with respect to pregnancy outcome, infections, or developmental milestones during the first year of life. Infant ustekinumab concentration was not associated with risk of infections. With the ustekinumab clearance profile, live attenuated vaccination from 6 months of age seems of low risk.</p

    Diagnostic exome sequencing in 266 Dutch patients with visual impairment

    Get PDF
    Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective

    The attenuated end of the phenotypic spectrum in MPS III: from late-onset stable cognitive impairment to a non-neuronopathic phenotype

    Get PDF
    BACKGROUND: The phenotypic spectrum of many rare disorders is much wider than previously considered. Mucopolysaccharidosis type III (Sanfilippo syndrome, MPS III), is a lysosomal storage disorder traditionally considered to be characterized by childhood onset, progressive neurocognitive deterioration with a rapidly or slowly progressing phenotype. The presented MPS III case series demonstrates adult onset phenotypes with mild cognitive impairment or non-neuronopathic phenotypes. METHODS: In this case series all adult MPS III patients with a mild- or non-neuronopathic phenotype, who attend the outpatient clinic of 3 expert centers for lysosomal storage disorders were included. A mild- or non-neuronopathic phenotype was defined as having completed regular secondary education and attaining a level of independency during adulthood, involving either independent living or a paid job. RESULTS: Twelve patients from six families, with a median age at diagnosis of 43 years (range 3-68) were included (11 MPS IIIA, 1 MPS IIIB). In the four index patients symptoms which led to diagnostic studies (whole exome sequencing and metabolomics) resulting in the diagnosis of MPS III; two patients presented with retinal dystrophy, one with hypertrophic cardiomyopathy and one with neurocognitive decline. The other eight patients were diagnosed by family screening. At a median age of 47 years (range 19-74) 9 out of the 12 patients had normal cognitive functions. Nine patients had retinal dystrophy and 8 patients hypertrophic cardiomyopathy. CONCLUSION: We show the very mild end of the phenotypic spectrum of MPS III, ranging from late-onset stable neurocognitive impairment to a fully non-neuronopathic phenotype. Awareness of this phenotype could lead to timely diagnosis and genetic counseling

    Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles

    Get PDF
    Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / +, KINSSHIP/KINSSHIP, LoF/ +, LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.</p

    Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles

    Get PDF
    Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / +, KINSSHIP/KINSSHIP, LoF/ +, LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.</p

    PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability

    Get PDF
    The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T&gt;G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C&gt;A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.</p
    • 

    corecore