74 research outputs found

    Auditory Physiology

    Get PDF
    Contains reports on one research projects split into ten sections.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 RO1 NS20269)National Institutes of Health (Grant 5 PO1 NS23734)National Institutes of Health (Grant 5 T32 NS07047)Symbion, Inc

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3 and reports on nine research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 P01 NS23734)National Institutes of Health (Grant 5 R01 NS18682)National Institutes of Health (Grant 5 RO1 NS25995)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 R01 NS20322)National Institutes of Health (Grant 5 T32 NS07047)Johnson and Johnson Foundatio

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.Health Sciences FundNational Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant 8 P01 DC00119National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 5 R01 DC00238National Institutes of Health Grant 5 T32 DC00006National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 5 R01 DC00235Peoples Republic of China FellowshipUnisys Corporation Doctoral FellowshipWhitaker Health Sciences Fellowshi

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on nine research projects.National Institutes of Health Grant 5 T32 NS07047National Institutes of Health Grant 5 P01 NS13126National Institutes of Health Grant 8 R01 DC00194National Institutes of Health Grant 5 R01 NS25995National Institutes of Health Grant 8 R01 DC00238National Institutes of Health Grant 5 R01 NS20322National Institutes of Health Grant 5 R01 DC00235National Institutes of Health Grant 5 R01 NS20269National Institutes of Health Grant 1 P01 NS23734Johnson and Johnson FoundationUnisys Corporation Doctoral Fellowshi

    Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation

    Get PDF
    : Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases

    Inter-laboratory multiplex bead-based surface protein profiling of MSC-derived EV preparations identifies MSC-EV surface marker signatures

    Get PDF
    Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs – being small and non-living – are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field

    Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance

    Get PDF
    Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents

    Gene-Educational attainment interactions in a Multi-Population Genome-Wide Meta-Analysis Identify Novel Lipid Loci

    Get PDF
    corecore