598 research outputs found
[Community Oriented Policing (COP) Evaluation]
An in-depth review of the use of force policies and practices used by the Las Vegas Metropolitan Police Department (LVMPD) was conducted after the alarming rate of officer involved shootings was publicized by the Las Vegas Review Journal (RJ) in 2011. The 75 recommendations handed down to LVMPD after the review not only helped guide the agency towards procedural and reporting changes, but also paved a way for the agency to begin rebuilding trust in police within the community. This program evaluation focuses on the community engagement efforts put forth by the Bolden Area Command (BAC) community oriented policing (COP) program, from events they sponsor to youth leagues they coach, in the realm of community engagement. The evaluation will serve as a tool to determine what works with community engagement and what opportunities may come. The ultimate goal of COP programs across the United States is to improve relations between the police and the communities they serve, building trust and mutual respect. This relationship building process is imperative to effectively address underlying issues and change negative behavioral patterns not only in Las Vegas, but across the country (U.S. Department of Justice, 2017)
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.
Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen
Recommended from our members
Tears at dawn : an action short film
The following paper describes the pre-production, production, and post-production of the short action film Tears At Dawn. When his little sister is kidnapped in an ice cream truck, Marine Corpsman Arthur Orange must rely on his specialized training to get her back. The report on making of the film consists of first-person accounts of the challenges and victories experienced in the making of the film. Supplemental materials include the original treatment, shooting script, and "Short Cuts," a reflection on editing short films that was published in the July-August 2012 issue of Moviescope Magazine.Radio-Television-Fil
The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria
AbstractPhotoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qEcya), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II
Bayesian analysis of congruence of core genes in Prochlorococcus and Synechococcus and implications on horizontal gene transfer
It is often suggested that horizontal gene transfer is so ubiquitous in microbes that the concept of a phylogenetic tree representing the pattern of vertical inheritance is oversimplified or even positively misleading. “Universal proteins” have been used to infer the organismal phylogeny, but have been criticized as being only the “tree of one percent.” Currently, few options exist for those wishing to rigorously assess how well a universal protein phylogeny, based on a relative handful of well-conserved genes, represents the phylogenetic histories of hundreds of genes. Here, we address this problem by proposing a visualization method and a statistical test within a Bayesian framework. We use the genomes of marine cyanobacteria, a group thought to exhibit substantial amounts of HGT, as a test case. We take 379 orthologous gene families from 28 cyanobacteria genomes and estimate the Bayesian posterior distributions of trees – a “treecloud” – for each, as well as for a concatenated dataset based on putative “universal proteins.” We then calculate the average distance between trees within and between all treeclouds on various metrics and visualize this high-dimensional space with non-metric multidimensional scaling (NMMDS). We show that the tree space is strongly clustered and that the universal protein treecloud is statistically significantly closer to the center of this tree space than any individual gene treecloud. We apply several commonly-used tests for incongruence/HGT and show that they agree HGT is rare in this dataset, but make different choices about which genes were subject to HGT. Our results show that the question of the representativeness of the “tree of one percent” is a quantitative empirical question, and that the phylogenetic central tendency is a meaningful observation even if many individual genes disagree due to the various sources of incongruence
Carboxysomal Carbonic Anhydrases: Structure and Role in Microbial CO\u3csub\u3e2\u3c/sub\u3e Fixation
Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle
Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway
SummaryThe carboxysome is a protein-based organelle for carbon fixation in cyanobacteria, keystone organisms in the global carbon cycle. It is composed of thousands of subunits including hexameric and pentameric proteins that form a shell to encapsulate the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase. Here, we describe the stages of carboxysome assembly and the requisite gene products necessary for progression through each. Our results demonstrate that, unlike membrane-bound organelles of eukaryotes, in carboxysomes the interior of the compartment forms first, at a distinct site within the cell. Subsequently, shell proteins encapsulate this procarboxysome, inducing budding and distribution of functional organelles within the cell. We propose that the principles of carboxysome assembly that we have uncovered extend to diverse bacterial microcompartments
Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that the self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures
- …