45 research outputs found

    Visualizing the IKEA effect: experiential consumption assessed with fNIRS-based neuroimaging

    Get PDF
    IntroductionIn recent years, experiential consumption, which refers to purchases involving hedonic experiences, has been gathering attention in marketing research. Experiential consumption is closely related to cognitive biases, and among them, we focus on the IKEA effect, which is a cognitive bias in which the maximum willingness to pay (WTP) for a product is high because the experience of assembling the product is highly valued. Since no studies have examined the neural mechanism behind the IKEA effect, here we present the first study exploring the neural substrates of the IKEA effect using functional near-infrared spectroscopy (fNIRS). During the WTP evaluation, we expect the attachment to and memory retrieval of DIY products to be the cognitive mechanism for the IKEA effect.MethodsThirty healthy students, of which 24 were confirmed to have undergone the IKEA effect, were asked to perform a WTP evaluation task after assembling three types of do-it-yourself (DIY) products and handling three types of Non-DIY products. Their cerebral hemodynamic responses during the evaluation were measured using fNIRS. In order to adjust for temporal variability of cortical responses among participants, a personalized adaptive general linear model (GLM) analysis was adopted. Then, one-sample t-tests were performed for each DIY and Non-DIY condition for the obtained β values, and a paired t-test was performed between DIY and Non-DIY conditions.ResultsWe identified brain regions, including the left-inferior frontal gyrus (L-IFG) and left-middle frontal gyrus (L-MFG), which were probably related to cognitive processing related to the IKEA effect. Among them, the L-MFG exhibited more activation during the DIY condition than during the Non-DIY condition.ConclusionTo our knowledge, the current study is the first to reveal the neural basis of the IKEA effect. The cortical activation during evaluation of WTP for DIY and Non-DIY products exhibited marked differences. In addition to the R-IFG activation often reported for WTP evaluations, we revealed that other regions, in particular the L-IFG and L-MFG, were activated during the DIY condition. These areas are considered to be related to memory and attachment, which would serve as reasonable cognitive constituents for the IKEA effect. In conclusion, this study suggests that the value of experiential consumption can be assessed using fNIRS-based neuroimaging and provides a novel approach to consumer neuroergonomics. It is predicted that visualization the value of experiential consumption will create marketing opportunities for more and more companies and the visualization will become an indispensable method in the future

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    Get PDF
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    DECIGO and DECIGO pathfinder

    Full text link
    corecore