243 research outputs found

    Finite-precision measurement does not nullify the Kochen-Specker theorem

    Get PDF
    It is proven that any hidden variable theory of the type proposed by Meyer [Phys. Rev. Lett. {\bf 83}, 3751 (1999)], Kent [{\em ibid.} {\bf 83}, 3755 (1999)], and Clifton and Kent [Proc. R. Soc. London, Ser. A {\bf 456}, 2101 (2000)] leads to experimentally testable predictions that are in contradiction with those of quantum mechanics. Therefore, it is argued that the existence of dense Kochen-Specker-colorable sets must not be interpreted as a nullification of the physical impact of the Kochen-Specker theorem once the finite precision of real measurements is taken into account.Comment: REVTeX4, 5 page

    Dislocation-induced spin tunneling in Mn-12 acetate

    Full text link
    Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is developed, that takes into account imperfections of the crystal structure and is based upon the generalization of the Landau-Zener effect for incoherent tunneling from excited energy levels. It is shown that linear dislocations at plausible concentrations provide the transverse anisotropy which is the main source of tunneling in Mn-12. Local rotations of the easy axis due to dislocations result in a transverse magnetic field generated by the field applied along the c-axis of the crystal, which explains the presence of odd tunneling resonances. Long-range deformations due to dislocations produce a broad distribution of tunnel splittings. The theory predicts that at subkelvin temperatures the relaxation curves for different tunneling resonances can be scaled onto a single master curve. The magnetic relaxation in the thermally activated regime follows the stretched-exponential law with the exponent depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR

    Tunneling with dissipation and decoherence for a large spin

    Full text link
    We present rigorous solution of problems of tunneling with dissipation and decoherence for a spin of an atom or a molecule in an isotropic solid matrix. Our approach is based upon switching to a rotating coordinate system coupled to the local crystal field. We show that the spin of a molecule can be used in a qubit only if the molecule is strongly coupled with its atomic environment. This condition is a consequence of the conservation of the total angular momentum (spin + matrix), that has been largely ignored in previous studies of spin tunneling.Comment: 4 page

    Greenberger-Horne-Zeilinger-like proof of Bell's theorem involving observers who do not share a reference frame

    Full text link
    Vaidman described how a team of three players, each of them isolated in a remote booth, could use a three-qubit Greenberger-Horne-Zeilinger state to always win a game which would be impossible to always win without quantum resources. However, Vaidman's method requires all three players to share a common reference frame; it does not work if the adversary is allowed to disorientate one player. Here we show how to always win the game, even if the players do not share any reference frame. The introduced method uses a 12-qubit state which is invariant under any transformation RaRbRcR_a \otimes R_b \otimes R_c (where Ra=UaUaUaUaR_a = U_a \otimes U_a \otimes U_a \otimes U_a, where UjU_j is a unitary operation on a single qubit) and requires only single-qubit measurements. A number of further applications of this 12-qubit state are described.Comment: REVTeX4, 6 pages, 1 figur

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    Observation of a Distribution of Internal Transverse Magnetic Fields in a Mn12-Based Single Molecule Magnet

    Full text link
    A distribution of internal transverse magnetic fields has been observed in single molecule magnet (SMM) Mn12-BrAc in the pure magnetic quantum tunneling (MQT) regime. Magnetic relaxation experiments at 0.4 K are used to produce a hole in the distribution of transverse fields whose angle and depth depend on the orientation and amplitude of an applied transverse ``digging field.'' The presence of such transverse magnetic fields can explain the main features of resonant MQT in this material, including the tunneling rates, the form of the relaxation and the absence of tunneling selection rules. We propose a model in which the transverse fields originate from a distribution of tilts of the molecular magnetic easy axes.Comment: 4 page

    The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)

    Get PDF
    Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. Biological significance: Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD

    Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres

    Full text link
    A diagrammatic representation is given of the 24 rays of Peres that makes it easy to pick out all the 512 parity proofs of the Kochen-Specker theorem contained in them. The origin of this representation in the four-dimensional geometry of the rays is pointed out.Comment: 14 pages, 6 figures and 3 tables. Three references have been added. Minor typos have been correcte

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres
    corecore