964 research outputs found

    Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation.

    Get PDF
    BackgroundSilver nanowires (Ag NWs) are increasingly being used to produce touchscreens for smart phones and computers. When applied in a thin film over a plastic substrate, Ag NWs create a transparent, highly-conductive network of fibers enabling the touch interface between consumers and their electronics. Large-scale application methods utilize techniques whereby Ag NW suspensions are deposited onto substrates via droplets. Aerosolized droplets increase risk of occupational Ag NW exposure. Currently, there are few published studies on Ag NW exposure-related health effects. Concerns have risen about the potential for greater toxicity from exposure to high-aspect ratio nanomaterials compared to their non-fibrous counterparts. This study examines whether Ag NWs of varying lengths affect biological responses and silver distribution within the lungs at different time-points.MethodsTwo different sizes of Ag NWs (2 μm [S-Ag NWs] and 20 μm [L-Ag NWs]) were tested. Male, Sprague-Dawley rats were intratracheally instilled with Ag NWs (0, 0.1, 0.5, or 1.0 mg/kg). Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post exposure for analysis of BAL total cells, cell differentials, and total protein as well as tissue pathology and silver distribution.Results and conclusionsThe two highest doses produced significant increases in BAL endpoints. At Day 1, Ag NWs increased total cells, inflammatory polymorphonuclear cells (PMNs), and total protein. PMNs persisted for both Ag NW types at Day 7, though not significantly so, and by Day 21, PMNs appeared in line with sham control values. Striking histopathological features associated with Ag NWs included 1) a strong influx of eosinophils at Days 1 and 7; and 2) formation of Langhans and foreign body giant cells at Days 7 and 21. Epithelial sloughing in the terminal bronchioles (TB) and cellular exudate in alveolar regions were also common. By Day 21, Ag NWs were primarily enclosed in granulomas or surrounded by numerous macrophages in the TB-alveolar duct junction. These findings suggest short and long Ag NWs produce pulmonary toxicity; thus, further research into exposure-related health effects and possible exposure scenarios are necessary to ensure human safety as Ag NW demand increases

    Efficient Adaptive Stochastic Collocation Strategies for Advection-Diffusion Problems with Uncertain Inputs

    Full text link
    Physical models with uncertain inputs are commonly represented as parametric partial differential equations (PDEs). That is, PDEs with inputs that are expressed as functions of parameters with an associated probability distribution. Developing efficient and accurate solution strategies that account for errors on the space, time and parameter domains simultaneously is highly challenging. Indeed, it is well known that standard polynomial-based approximations on the parameter domain can incur errors that grow in time. In this work, we focus on advection-diffusion problems with parameter-dependent wind fields. A novel adaptive solution strategy is proposed that allows users to combine stochastic collocation on the parameter domain with off-the-shelf adaptive timestepping algorithms with local error control. This is a non-intrusive strategy that builds a polynomial-based surrogate that is adapted sequentially in time. The algorithm is driven by a so-called hierarchical estimator for the parametric error and balances this against an estimate for the global timestepping error which is derived from a scaling argument.Comment: 29 pages, 14 figure

    Active Referral Intervention following Fragility Fractures Leads to Enhanced Osteoporosis Follow-Up Care

    Get PDF
    At one major urban academic medical center, patients aged 50 years and older with fragility fractures were identified and scheduled or assisted in referral into osteoporosis medical management appointments. We evaluated the efficacy of an active intervention program at overcoming the logistical barriers and improving proper osteoporosis follow-up for persons who have sustained a fragility fracture. Of 681 patients treated for defined fractures, 168 were eligible and consented for the study of fragility fractures. Of those enrolled, 91 (54.2%) had appropriate osteoporosis follow-up on initial interview, and overall 120 (71.4%) had successful osteoporosis follow-up following our active intervention. Seventy patients (41.7%) were deemed to have no osteoporosis follow-up, and, of these, 48 were successfully referred to a scheduling coordinator. The scheduling coordinator was able to contact 37 (77%) patients to schedule proper follow-up, and, of these, 29 (78.4%) confirmed receiving an appropriate follow-up appointment. Active intervention and assisted scheduling for patients with recent fragility fractures improved the self-reported rate of osteoporosis follow-up from 54.2% to 71.4%

    The use of singlebeam echo-sounder depth data to produce demersal fish distribution models that are comparable to models produced using multibeam echo-sounder depth

    Get PDF
    Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%–10% of the world\u27s seafloor has been mapped at high resolution, as it is a time-consuming and expensive process. Multibeam echo-sounders (MBES) can produce high-resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo-sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full-coverage MBES distribution models. A Random Forest classifier was used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo-sounder type. Distribution models for P. multidens and P. typus performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of P. multidens and P. typus in both MBES and SBES models. While further research is needed, this study shows that in resource-limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation

    Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Full text link
    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with arcminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings of SPIE; added reference in section 2 and merged repeated referenc

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Clinical Study Active Referral Intervention following Fragility Fractures Leads to Enhanced Osteoporosis Follow-Up Care

    Get PDF
    At one major urban academic medical center, patients aged 50 years and older with fragility fractures were identified and scheduled or assisted in referral into osteoporosis medical management appointments. We evaluated the efficacy of an active intervention program at overcoming the logistical barriers and improving proper osteoporosis follow-up for persons who have sustained a fragility fracture. Of 681 patients treated for defined fractures, 168 were eligible and consented for the study of fragility fractures. Of those enrolled, 91 (54.2%) had appropriate osteoporosis follow-up on initial interview, and overall 120 (71.4%) had successful osteoporosis follow-up following our active intervention. Seventy patients (41.7%) were deemed to have no osteoporosis follow-up, and, of these, 48 were successfully referred to a scheduling coordinator. The scheduling coordinator was able to contact 37 (77%) patients to schedule proper follow-up, and, of these, 29 (78.4%) confirmed receiving an appropriate follow-up appointment. Active intervention and assisted scheduling for patients with recent fragility fractures improved the selfreported rate of osteoporosis follow-up from 54.2% to 71.4%

    Genetic risk prediction of atrial fibrillation

    Get PDF
    Background—Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. Methods—To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from &lt;1x10-3 to &lt;1x10-8 in a prior independent genetic association study. Results—Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10-4) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10-15). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10-3). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). Conclusions—Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms
    corecore