122 research outputs found

    Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female

    Get PDF
    The description of Frasier syndrome until now has been restricted to XY females with gonadal dysgenesis, progressive glomerulopathy, and a significant risk of gonadoblastoma. Mutations in the donor splice site in intron 9 of the Wilms\u27 tumor (WT1) gene have been shown to cause Frasier syndrome and are distinct from WT1 exon mutations associated with Denys-Drash syndrome. The WT1 gene, which is essential for normal kidney and gonadal development, encodes a zinc finger transcription factor. The intron 9 alternative splice donor site mutation seen in Frasier syndrome leads to loss of three amino acids (+KTS isoform), thus disrupting the normal ratio of the +KTS/-KTS isoforms critical for proper gonadal and renal development. This study examines two sisters with identical intron 9 mutations. The proband carries a classic diagnosis of Frasier syndrome with 46,XY gonadal dysgenesis, whereas her sister has progressive glomerulopathy but a 46,XX karyotype and normal female development. This indicates that the proper WT1 isoform ratio is critical for renal and testicular development, but apparently does not affect either ovarian development or function. It is proposed that the clinical definition of Frasier syndrome should be broadened to include 46,XX females with normal genital development and focal segmental glomerulosclerosis associated with a WT1 intron 9 donor splice site mutation. Nephrologists need to consider the possibility of this heritable syndrome in evaluation of females with focal segmental glomerulosclerosis and to consider their risk for gonadal malignancy, as well as the risk for kidney disease, gonadal dysgenesis, and malignancy in their offspring

    A novel mutation 5' to the HMG box of the SRY gene in a case of Swyer syndrome

    Get PDF
    We describe a novel mutation in the coding region of the SRY gene in a 46,XY female with Swyer syndrome. Analysis of SRY was carried out by direct sequencing of a 780-bp PCR product that included the SRY open reading frame (ORF). This revealed the presence of a point mutation, ins108A, in the coding region 50 to the HMG box which results in a frame shift and premature termination of the encoded protein. No other mutation was found in the SRY ORF. We infer that sex reversal in this individual is a result of this insertion. In none of the 13 other 46, XY females that were studied was a mutation detected in SRY, confirming earlier findings that most cases of XY femaleness are due to causes other than mutation in SRY. These observations and those of others are discussed in relation to the aetiology of XY sex reversal

    Loss of Function of the Nuclear Receptor NR2F2, Encoding COUP-TF2, Causes Testis Development and Cardiac Defects in 46,XX Children

    Get PDF
    Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs( *)75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs( *)77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 x 10(-8)). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human "pro-ovary" and "anti-testis" sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology

    Lack of Association between Genetic Polymorphisms in Enzymes Associated with Folate Metabolism and Unexplained Reduced Sperm Counts

    Get PDF
    BACKGROUND: The metabolic pathway of folate is thought to influence DNA stability either by inducing single/double stranded breaks or by producing low levels of S-adenosyl-methionine leading to abnormal gene expression and chromosome segregation. Polymorphisms in the genes encoding enzymes in the folate metabolism pathway show distinct geographic and/or ethnic variations and in some cases have been linked to disease. Notably, the gene Methylenetetrahydrofolate reductase (MTHFR) in which the homozygous (TT) state of the polymorphism c.665C>T (p.A222V) is associated with reduced specific activity and increased thermolability of the enzyme causing mild hyperhomocysteinemia. Recently several studies have suggested that men carrying this polymorphism may be at increased risk to develop infertility. METHODOLOGY/PRINCIPAL FINDINGS: We have tested this hypothesis in a case/control study of ethnic French individuals. We examined the incidence of polymorphisms in the genes MTHFR (R68Q, A222V and E429A), Methionine synthase reductase MTRR; (I22M and S175L) and Cystathionine beta-synthase (CBS; G307S). The case population consisted of DNA samples from men with unexplained azoospermia (n = 70) or oligozoospermia (n = 182) and the control population consisted of normospermic and fertile men (n = 114). We found no evidence of an association between the incidence of any of these variants and reduced sperm counts. In addition haplotype analysis did not reveal differences between the case and control populations. CONCLUSIONS/SIGNIFICANCE: We could find no evidence for an association between reduced sperm counts and polymorphisms in enzymes involved in folate metabolism in the French population

    Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis.

    Get PDF
    BACKGROUND: Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. METHODS AND FINDINGS: We tested whether polymorphisms in CD209, the gene encoding DC-SIGN, are associated with susceptibility to tuberculosis through sequencing and genotyping analyses in a South African cohort. After exclusion of significant population stratification in our cohort, we observed an association between two CD209 promoter variants (-871G and -336A) and decreased risk of developing tuberculosis. By looking at the geographical distribution of these variants, we observed that their allelic combination is mainly confined to Eurasian populations. CONCLUSIONS: Our observations suggest that the two -871G and -336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens

    Longitudinal Evaluation of the Hypothalamic-Pituitary-Testicular Function in 8 Boys with Adrenal Hypoplasia Congenita (AHC) Due to NR0B1 Mutations

    Get PDF
    BACKGROUND:Boys carrying mutations in the NR0B1 gene develop adrenal hypoplasia congenita (AHC) and impaired sexual development due to the combination of hypogonadotropic hypogonadism (HH) and primary defects in spermatogenesis. METHODS:We analysed the evolution of hypothalamic-pituitary-testicular function of 8 boys with AHC due to NR0B1 mutations. Our objective was to characterize and monitor the progressive deterioration of this function. RESULTS:The first symptoms appeared in the neonatal period (n = 5) or between 6 months and 8.7 years (n = 3). Basal plasma adrenocorticotrophic hormone (ACTH) concentrations increased in all boys, whilst cortisol levels decreased in one case. The natremia was equal or below 134 mmol/L and kaliemia was over 5 mmol/L. All had increased plasma renin. In 3 of 4 patients diagnosed in the neonatal period and evaluated during the first year, the basal plasma gonadotropins concentrations, and their response to gonadotropin releasing hormone (GnRH) test (n = 2), and those of testosterone were normal. The plasma inhibin B levels were normal in the first year of life. With the exception of two cases these concentrations decreased to below the normal for age. Anti-Müllerian hormone concentrations were normal for age in all except one case, which had low concentrations before the initiation of testosterone treatment. In 3 of the 8 cases the gene was deleted and the remaining 5 cases carried frameshift mutations that are predicted to introduce a downstream nonsense mutation resulting in a truncated protein. CONCLUSIONS:The decreases in testosterone and inhibin B levels indicated a progressive loss of testicular function in boys carrying NR0B1 mutations. These non-invasive examinations can help to estimate the age of the testicular degradation and cryopreservation of semen may be considered in these cases as investigational procedure with the aim of restoring fertility

    Clinical, Biological and Genetic Analysis of Prepubertal Isolated Ovarian Cyst in 11 Girls

    Get PDF
    BACKGROUND: The cause of isolated gonadotropin-independent precocious puberty (PP) with an ovarian cyst is unknown in the majority of cases. Here, we describe 11 new cases of peripheral PP and, based on phenotypes observed in mouse models, we tested the hypothesis that mutations in the GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX may be associated with this phenotype. METHODOLOGY/PRINCIPAL FINDINGS: 11 girls with gonadotropin-independent PP were included in this study. Three girls were seen for a history of prenatal ovarian cyst, 6 girls for breast development, and 2 girls for vaginal bleeding. With one exception, all girls were seen before 8 years of age. In 8 cases, an ovarian cyst was detected, and in one case, suspected. One other case has polycystic ovaries, and the remaining case was referred for vaginal bleeding. Four patients had a familial history of ovarian anomalies and/or infertility. Mutations in the coding sequences of the candidate genes GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX were not observed. CONCLUSIONS/SIGNIFICANCE: Ovarian PP shows markedly different clinical features from central PP. Our data suggest that mutations in the GNAS1, NR5A1, LHCGR, FSHR StAR, DMRT4 and NOBOX genes are not responsible for ovarian PP. Further research, including the identification of familial cases, is needed to understand the etiology of ovarian PP

    Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias

    Get PDF
    BACKGROUND: Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, n = 11), ambiguous external genitalia without uterus (n = 33) or hypospadias (n = 33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein. CONCLUSIONS/SIGNIFICANCE: Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations

    Association of Spermatogenic Failure with the b2/b3 Partial AZFc Deletion

    Get PDF
    Infertility affects around 1 in 10 men and in most cases the cause is unknown. The Y chromosome plays an important role in spermatogenesis and specific deletions of this chromosome, the AZF deletions, are associated with spermatogenic failure. Recently partial AZF deletions have been described but their association with spermatogenic failure is unclear. Here we screened a total of 339 men with idiopathic spermatogenic failure, and 256 normozoospermic ancestry-matched men for chromosome microdeletions including AZFa, AZFb, AZFc, and the AZFc partial deletions (gr/gr, b1/b3 and b2/b3)
    corecore