389 research outputs found

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Influence of damping on the vanishing of the electro-optic effect in chiral isotropic media

    Get PDF
    Using first principles, it is demonstrated that radiative damping alone cannot lead to a nonvanishing electro-optic effect in a chiral isotropic medium. This conclusion is in contrast with that obtained by a calculation in which damping effects are included using the standard phenomenological model. We show that these predictions differ because the phenomenological damping equations are valid only in regions where the frequencies of the applied electromagnetic fields are nearly resonant with the atomic transitions. We also show that collisional damping can lead to a nonvanishing electrooptic effect, but with a strength sufficiently weak that it is unlikely to be observable under realistic laboratory conditions

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Direct evidence of the failure of electric-dipole approximation in second-harmonic generation from a chiral polymer film

    Get PDF
    Second-harmonic generation from Langmuir-Blodgett films of a polythiophene is strongly influenced by the chirality of the polymer. The polarization dependence of the process cannot be explained in the elec.-dipole approxn. Evidence of contributions beyond elec. dipoles is obtained directly from individual second-harmonic signal

    Erratum: Linearly polarized probes of surface chirality [J. Chem. Phys. 103, 8296 (1995)]

    Get PDF
    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second‐harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45° and −45° linearly polarized with respect to the p‐polarized direction

    Universal switching of plasmonic signals using optical resonator modes

    Get PDF
    We propose and investigate, both experimentally and theoretically, a novel mechanism for switching and modulating plasmonic signals based on a Fano interference process, which arises from the coupling between a narrow-band optical Fabry–Pérot cavity and a surface plasmon polariton (SPP) source. The SPP wave emitted from the cavity is actively modulated in the vicinity of the cavity resonances by altering the cavity Q-factor and/or resonant frequencies. We experimentally demonstrate dynamic SPP modulation both by mechanical control of the cavity length and all-optically by harnessing the ultrafast nonlinearity of the Au mirrors that form the cavity. An electro-optical modulation scheme is also proposed and numerically illustrated. Dynamic operation of the switch via mechanical means yields a modulation in the SPP coupling efficiency of ~ 80%, while the all-optical control provides an ultrafast modulation with an efficiency of 30% at a rate of ~ 0.6 THz. The experimental observations are supported by both analytical and numerical calculations of the mechanical, all-optical and electro-optical modulation methods

    Frequency comb transferred by surface plasmon resonance

    Get PDF
    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a sub-wavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 x 10(-19) in absolute position, 2.92 x 10(-19) in stability and 1Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.open

    Unrelenting plasmons

    Get PDF
    Following a brief historic introduction to plasmons, their useful properties and early applications, we highlight some of the key advances in the field over the past decade. We then discuss new directions for the future, such as the use of 2D materials and strong coupling phenomena, which are likely to shape the field over the next ten years. For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering and the use of surface plasmon (SP) resonances for sensing. However, it was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed1. Initially, the attention focused on the exploitation of SPs (collective electronic oscillations at the surface of metals) for sensing, subwavelength waveguiding and extraordinary optical transmission2. Since then, the scientific and technological interest in SPs has expanded. Correspondingly, as illustrated in Fig. 1, the number of publications in the field has increased in a steady exponential fashion for more than two decades, and the momentum driving plasmonics research looks set to continue (...
    corecore