5,882 research outputs found

    Status of the ANTARES Project

    Full text link
    The ANTARES collaboration is constructing a neutrino telescope in the Mediterranean Sea at a depth of 2400 metres, about 40 kilometres off the French coast near Toulon. The detector will consist of 12 vertical strings anchored at the sea bottom, each supporting 25 triplets of optical modules equipped with photomultipliers, yielding sensitivity to neutrinos with energies above some 10 GeV. The effective detector area is roughly 0.1 square kilometres for neutrino energies exceeding 10 TeV. The measurement of the Cherenkov light emitted by muons produced in muon-neutrino charged-current interactions in water and under-sea rock will permit the reconstruction of the neutrino direction with an accuracy of better than 0.3 degrees at high energies. ANTARES will complement the field of view of neutrino telescopes at the South Pole in the low-background searches for point-sources of high-energy cosmic neutrinos and will also be sensitive to neutrinos produced by WIMP annihilation in the Sun or the Galactic centre.Comment: 3 pages, 3 figures, to appear in Proc. HEP2003 Europhysics Conf., Aachen, Germany, 17-23 July 200

    Sensitivity studies for the cubic-kilometre deep-sea neutrino telescope KM3NeT

    Full text link
    The observation of high-energy neutrinos from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. The sensitivity of different design options for a future cubic-kilometre scale neutrino telescope in the Mediterranean Sea is investigated for generic point sources and in particular for some of the galactic objects from which TeV gamma emmission has recently been observed by the H.E.S.S. atmospheric Cherenkov telescope. The effect of atmospheric background on the source detection probabilities has been taken into account through full simulation. The estimated event rates are compared to previous results and limits from present neutrino telescopes.Comment: 4 pages, 1 figure, contribution of the 30th International Cosmic Ray conferenc

    Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones

    Full text link
    This article focuses on techniques for acoustic noise reduction, signal filters and source reconstruction. For noise reduction, bandpass filters and cross correlations are found to be efficient and fast ways to improve the signal to noise ratio and identify a possible neutrino-induced acoustic signal. The reconstruction of the position of an acoustic point source in the sea is performed by using small-volume clusters of hydrophones (about 1 cubic meter) for direction reconstruction by a beamforming algorithm. The directional information from a number of such clusters allows for position reconstruction. The algorithms for data filtering, direction and position reconstruction are explained and demonstrated using simulated data.Comment: 7 pages, 13 figure

    Gaia: Organisation and challenges for the data processing

    Get PDF
    Gaia is an ambitious space astrometry mission of ESA with a main objective to map the sky in astrometry and photometry down to a magnitude 20 by the end of the next decade. While the mission is built and operated by ESA and an industrial consortium, the data processing is entrusted to a consortium formed by the scientific community, which was formed in 2006 and formally selected by ESA one year later. The satellite will downlink around 100 TB of raw telemetry data over a mission duration of 5 years from which a very complex iterative processing will lead to the final science output: astrometry with a final accuracy of a few tens of microarcseconds, epoch photometry in wide and narrow bands, radial velocity and spectra for the stars brighter than 17 mag. We discuss the general principles and main difficulties of this very large data processing and present the organisation of the European Consortium responsible for its design and implementation.Comment: 7 pages, 2 figures, Proceedings of IAU Symp. 24

    Gaia Data Processing Architecture

    Get PDF
    Gaia is ESA's ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.Comment: 10 Pages, 2 figures. To appear in ADASS XVI Proceeding

    Third World gap year projects: Youth transitions and the mediation of risk

    Get PDF
    This is the post-print version of the final published article. The definitive, peer-reviewed and edited version of this article is available from the link below. Copyright @ 2008 Pion.In recent years in the UK there has been a great expansion in the number of young people travelling to Third World countries between school and university in order to participate as volunteers on structured gap year projects. Travel to such places is commonly perceived as ‘risky’, and takes young people outside the protective cocoon of UK health and safety legislation. One of the functions played by the providers of gap year projects is to mediate risk. On the basis of analysis of promotional literature, interviews with organisers of gap year projects, and focus groups of returned volunteers, in this paper I argue that the various strategies of risk mediation undertaken by gap year providers serve to reconcile modernising tendencies in UK society toward risk control and structure with postmodern inclinations towards individualisation and uncertainty

    Effects of guanidine on synaptic transmission in the spinal cord of the frog

    Get PDF
    The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10–4 M) did not alter the membrane potential of motoneurons. The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10–3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern. The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution. These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons

    Phase Separation and Coarsening in One-Dimensional Driven Diffusive Systems: Local Dynaimcs Leading to Long-Range Hamiltonians

    Full text link
    A driven system of three species of particle diffusing on a ring is studied in detail. The dynamics is local and conserves the three densities. A simple argument suggesting that the model should phase separate and break the translational symmetry is given. We show that for the special case where the three densities are equal the model obeys detailed balance and the steady-state distribution is governed by a Hamiltonian with asymmetric long-range interactions. This provides an explicit demonstration of a simple mechanism for breaking of ergodicity in one dimension. The steady state of finite-size systems is studied using a generalized matrix product ansatz. The coarsening process leading to phase separation is studied numerically and in a mean-field model. The system exhibits slow dynamics due to trapping in metastable states whose number is exponentially large in the system size. The typical domain size is shown to grow logarithmically in time. Generalizations to a larger number of species are discussed.Comment: Revtex, 29 Pages, 7 figures, uses epsf.sty, submitted to Phys. Rev.
    corecore