62 research outputs found

    Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype.

    Get PDF
    Characterisation of altered glycosylation of P-glycoprotein (P-gp) found associated with the absence of a multidrug resistance (MDR) phenotype in cell lines prompted an investigation to assess the role of post-translational processing in establishing P-gp efflux pump functionally. The clone A cell line used in this study displays a strong MDR phenotype mediated by high constitutive levels of expression of P-gp. Incubation of clone A cells with tunicamycin for different periods resulted in a time-dependent increase in daunorubicin accumulation, reflecting a reduction in P-gp function. Parallel experiments conducted with verapamil resulted in no loss of P-gp functionality in clone A cells. Reduction in surface-associated P-gp following exposure to tunicamycin was established by FACS analysis, Western blot analysis and immunoprecipitation of surface-iodinated P-gp. In addition, immunoprecipitation of P-gp from 32P-orthophosphate-labelled cells demonstrated reduced phosphorylation of P-gp associated with tunicamycin exposure. From these studies we conclude that glycosylation of P-gp is required to establish the cellular MDR phenotype

    Giant positive magnetoresistance in metallic VOx thin films

    Full text link
    We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.Comment: 4 pages, 5 figures included in the text, references update

    Robustness of the van Hove scenario for high-Tc superconductors

    Full text link
    The pinning of the Fermi level to the van Hove singularity and the formation of flat bands in the two-dimensional t-t' Hubbard model is investigated by the renormalization group technique. The "van-Hove" scenario of non-Fermi-liquid behavior for high-Tc compounds can take place in a broad enough range of the hole concentrations. The results are in qualitative agreement with the recent ARPES data on La2CuO4.Comment: 4 pages, LaTeX, 3 figure

    Superconducting and pseudogap phases from scaling near a Van Hove singularity

    Get PDF
    We study the quantum corrections to the Fermi energy of a two-dimensional electron system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization of the leading logarithm near the divergent density of states. A phase of d-wave superconductivity arises beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower doping levels, the condensation of particle-hole pairs due to the nesting of the saddle points takes over, leading to the opening of a gap for quasiparticles in the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results has been clarifie

    Robust, universal biomarker assay to detect senescent cells in biological specimens.

    Get PDF
    Cellular senescence contributes to organismal development, aging, and diverse pathologies, yet available assays to detect senescent cells remain unsatisfactory. Here, we designed and synthesized a lipophilic, biotin-linked Sudan Black B (SBB) analogue suitable for sensitive and specific, antibody-enhanced detection of lipofuscin-containing senescent cells in any biological material. This new hybrid histo-/immunochemical method is easy to perform, reliable, and universally applicable to assess senescence in biomedicine, from cancer research to gerontology

    Exploiting Available Memory and Disk for Scalable Instant Overview Search

    Full text link
    Abstract. Search-As-You-Type (or Instant Search) is a recently intro-duced functionality which shows predictive results while the user types a query letter by letter. In this paper we generalize and propose an ex-tension of this technique which apart from showing on-the-fly the first page of results, it shows various other kinds of information, e.g. the outcome of results clustering techniques, or metadata-based groupings of the results. Although this functionality is more informative than the classic search-as-you type, since it combines Autocompletion, Search-As-You-Type, and Results Clustering, the provision of real-time interaction is more challenging. To tackle this issue we propose an approach based on pre-computed information and we comparatively evaluate various in-dex structures for making real-time interaction feasible, even if the size of the available memory space is limited. This comparison reveals the mem-ory/performance trade-off and allows deciding which index structure to use according to the available main memory and desired performance. Furthermore we show that an incremental algorithm can be used to keep the index structure fresh.

    Stripes, Vibrations and Superconductivity

    Full text link
    We propose a model of a spatially modulated collective charge state of superconducting cuprates. The regions of higher carrier density (stripes) are described in terms of Luttinger liquids and the regions of lower density as a two-dimensional interacting bosonic gas of d_{x^2-y^2} hole pairs. The interactions among the elementary excitations are repulsive and the transition to the superconducting state is driven by decay processes. Vibrations of the CCS and the lattice, although not participating directly in the binding mechanism, are fundamental for superconductivity. The superfluid density and the lattice have a strong tendency to modulation implying a still unobserved dimerized stripe phase in cuprates. The phase diagram of the model has a crossover from 1D to 2D behavior and a pseudogap region where the amplitude of the order parameters are finite but phase coherence is not established. We discuss the nature of the spin fluctuations and the unusual isotope effect within the model.Comment: 51 pages, 20 figures. Post-March Meeting version: New references are added, some of the typos are corrected, and a few new discussions are include

    On the violation of the Fermi-liquid picture in two-dimensional systems owing to the Van-Hove singularities

    Full text link
    We consider the two-dimensional t-t' Hubbard model with the Fermi level being close to the van Hove singularities. The phase diagram of the model is discussed. In a broad energy region the self-energy at the singularity points has a nearly-linear energy dependence. The corresponding correction to the density of states is proportional to ln^3(e). Both real- and imaginary part of the self-energy increase near the quantum phase transition into magnetically ordered or superconducting phase which implies violation of the Fermi-liquid behavior. The application of the results to cuprates is discussed.Comment: 16 pages, RevTeX, 5 figures; The errors of the published version (PRB 64, 205105, 2001) are correcte

    Paramagnons, weak disorder and positive giant magnetoresistance

    No full text
    At low temperature and for finite spin scattering in a weakly disordered metal, for a certain value, predicted from our theory, of the material-dependent paramagnon interaction, the total conductivity becomes highly sensitive to the orbital effects of a finite magnetic field. As a consequence, positive giant magnetoresistance and giant corrections to the Hall coefficient arise. We obtain very good agreement between this theory and recent positive giant magnetoresistance experiments
    • …
    corecore